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EXECUTIVE SUMMARY   

 

The contents of this report provide information regarding a study conducted for the New Jersey 

Department of Transportation (NJDOT) to utilize Laser-Induced Breakdown Spectroscopy (LIBS) 

to quantify problematic minerals in aggregate stone. LIBS is a chemical analysis technique, which 

involves firing a laser pulse at a sample to ablate material and excite atoms in the melted mass. 

The light emitted by the resulting plasma is then used to identify and quantify the sample’s 

chemical composition. Overall, LIBS appears to be an attractive alternative to conventional 

chemical testing, offering accurate and relatively rapid results with little to no sample preparation. 

LIBS has been used to obtain typical light spectra from pure samples of metals, mica, limestone 

and aggregates of known composition provided by the NJDOT to properly calibrate the system for 

future use. The research team has developed a series of predictive models for quantifying 

compounds within aggregate samples. Current testing utilizes an Applied Spectra LIBS system, 

and data analysis is performed via Partial Least Squares Regression Analysis (PLSRA) to develop 

predictive models based on the spectra produced by aggregate samples with a known composition. 

Initially, predictive models were not accurate; however, adjustments to data collection procedures 

and pre-processing have significantly improved the accuracy and overall reliability of these 

models. A user friendly Graphical User Interface (GUI) has also been developed for visualizing 

the results. A portable LIBS unit has also been developed so that it can be used in the field. As a 

result, mineralogical composition of aggregates can be obtained in the field using the portable 

apparatus in a short duration.  
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INTRODUCTION 

 

This research project is a strong and bold partnership between three different academic 

departments at Rowan University namely Civil Engineering, Electrical and Computer Engineering 

and Physics, to address a topic of prime importance for highway design and quality control, namely 

the mineralogy characteristics of aggregates, which can have a significant effect on the life and 

performance of the roadway.   

 

As Chesner and McMillan (2012) report in an FHWA sponsored IDEA project, Laser Induced 

Breakdown Spectroscopy (LIBS) can provide real time aggregate properties such as Acid 

Insoluble Residue (AIR), freeze-thaw cracking susceptibility (D-cracking) and Alkali Silica 

Reactivity (ASR). This requires bombarding aggregates with a medium to high energy laser pulse 

so that up to 13,000 wavelengths of subsequent optical emission can be obtained, which can then 

be used as a unique identifier to determine aggregate characteristics such as AIR, freeze-thaw 

susceptibility and ASR by determining the aggregate mineralogy. This requires significant data 

processing, Partial Least Squares Regression Analysis (PLS) and Principal Component Analysis 

(PCA).  PCA aims to determine patterns in a set of large data that is obtained using the LIBS 

technique, to reveal similarities and differences within the data.  In a multi-dimensional dataset, 

PCA isolates important components of the data so that the numbers of dimensions analyzed can 

be reduced without losing valuable information.  This allows the datasets to be handled more 

efficiently. 

 

The research study investigates the application of laser technology for real time aggregate property 

determination that can be performed in the field and laboratory to yield relevant data quickly, so 

that aggregate quality control can be undertaken in a timely and cost efficient manner. Laser 

Induced Breakdown Spectroscopy is utilized for this study in combination with data preprocessing 

and Partial Least Squares Regression Analysis.     

 

OBJECTIVES 
 

This study focused on the development of a portable tool for the in-situ characterization and 

quality control of aggregates using laser analysis. The primary objectives of this research are as 

follows: 

1. To obtain the characteristic laser spectra models for various aggregate sources from New 

Jersey and surrounding areas; 

2. To calibrate the model using laser spectrums of newly added rocks to identify real time 

aggregate properties such as mineralogy; 

3. To determine if the field and laboratory setup produce consistent results; 

4. To improve the accuracy of the results with the expanded calibration dataset; 

5. To develop a user friendly program for rapid analysis of laser spectra with batch 

capability and for future refinement of the models as new stones are added; 

6. To determine the feasibility of laser technology as a portable tool for identification of real 

time aggregate mineralogy; 

7. To determine the feasibility and affordability of laboratory based laser technology 

applications for field use; 

8. To field test the use of lasers for real time property identification; 
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9. To demonstrate the use of laser technology in the field for aggregate property 

determination and as a means of quality control; 

10. To develop a user friendly manual for operation and regular maintenance of the portable 

laser setup; and 

11. To train New Jersey Department of Transportation (NJDOT) personnel in the use of the 

laser technology. 

 

LITERATURE REVIEW 
 

This study intends to utilize LIBS to analyze the mineralogy of aggregates in the field. An 

overview of previous research and applications are described in the following sections, as well as 

an overview of conventional techniques employed by NJDOT and elsewhere for determination of 

mineralogy of aggregates. 

 

Current Chemical Testing Methods 

Current techniques for analyzing the chemical composition of aggregate samples include Wet 

Chemical Analyses, Inductively Coupled Plasma – Mass Spectrometry (ICP-MS), X-ray 

Fluorescence (XRF) Spectrometry, and Electron Microprobe Analysis. 

 

Wet Chemical Analyses 

Wet Chemical Analyses were used exclusively prior to 1960, and each involves dissolving a 

powdered sample in an acid. The analyses include: Gravimetric Analyses, Volumetric Analyses, 

and Colorimetric Analyses. Gravimetric Analysis is a technique in which the amount of a 

substance is determined by reacting the dissolved sample with a chemical and measuring the mass 

of precipitate produced. Volumetric Analysis involve using titration to determine the amount of a 

chemical to be added to completely react with a certain substance in a sample, which can then be 

used to determine the substance’s concentration in the sample. Colorimetric Analysis involves 

adding a solution, which will react and produce a color change in the dissolved sample, and 

determining the concentration based on the intensity of color. Both these techniques are still used, 

but both of them require sample preparation, laboratory analyses, and results will not be obtained 

in real-time. 

 

Inductively-Coupled Plasma – Mass Spectrometry (ICP-MS) 

ICP-MS involves injecting an acid-dissolved sample as an aerosol into Argon plasma to break the 

dissolved sample into separate ions, which are then extracted by a mass spectrometer in a vacuum, 

which separates the particles per their mass and charge. The results are determined relative to 

standard solutions with known concentrations. Alternatively, a small portion of the sample 

material may be ablated via laser before injecting it into the Argon plasma. This technique can be 

used but requires significant time to prepare the samples and results cannot be obtained 

instantaneously. 

 

X-ray Fluorescence (XRF) Spectrometry 

XRF Spectrometry is often used in the analysis of stone samples, but typically involves testing a 

compressed or vitrified powdered sample in solid form. This analysis is performed by directing a 

X-ray beam at a sample to induce dissociation of inner shell electrons. As outer shell electrons 

drop to the inner shell, X-ray beams of characteristic wavelengths are emitted and collected by a 
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variety of sensors. The intensities of a given emitted wavelength can be correlated to 

concentrations; however, a large number of separate standards are required to determine and 

account for all of the interfering effects. Electron Microprobe (EMP) Analysis operates on the 

same principle, but uses a focused electron beam rather than X-rays to induce electron dissociation, 

and requires different sample preparation. EMP analysis is generally used for very small parts of 

samples (5). X-ray fluorescence can be used in many of the same fields and applications as LIBS. 

XRF analysis is generally complete and accurate, but measurements of elements lighter than 

sodium are typically very inaccurate. Its shortcoming is this form of analysis has not proven itself 

useful for identifying isotopes or ions in varying valence states. Throughout this research, accepted 

values for aggregate composition in this research are obtained from XRF analyses. XRF analyses 

also require sample preparation and results cannot be obtained in the field but requires that the 

samples be brought back to the laboratory for further analyses.  

 

Introduction to LIBS 

The focus of this study is to develop a system which accurately determines the mineralogy of 

aggregates via LIBS in the field. The basic concept of LIBS involves firing a pulse laser at an 

aggregate sample, using a spectrometer to determine the intensities of light emitted at various 

wavelengths by the resulting plasma, and determining the ablated material’s composition based on 

the results (Figure 1).  

 
Figure 1. Typical LIBS Setup (14) 

 

LIBS is a technique used for rapid chemical analysis. The process includes directing a short, high 

power laser pulse at a compound which can be either a solid, liquid, or gas. When the material is 

bombarded by very high intensities of light from the laser pulse, the atoms and their electrons 

become excited. This excitation vaporizes the material, breaks the molecular bonds in the material, 

and ionizes the atoms as excited electrons dissociate from the atoms, forming plasma. The free 

electrons will recombine with the ions after the plasma cools sufficiently. As the excited electrons 

drop to normal energy levels, they emit photons of wavelengths, which are specific to the element 

in question. Other species of the elements, i.e. ions, may emit different wavelengths of light than 

their neutral counterparts as their electrons drop to lower energy states. Neutral elements are stated 

as the element symbol, followed by a roman numeral I, once ionized atoms are denoted with a 

roman numeral II, and so forth. For example, neutral oxygen is denoted as O(I), while once ionized 
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oxygen is denoted as O(II). The light emitted by the electrons falling to their ground state is 

collected, and split by a spectrometer into its various wavelengths. The relative intensity of light 

collected for each wavelength is plotted as a spectrum for the sample. The resulting spectrum will 

be the sum of the spectra for all elements and species in the sample (2). The relative quantities of 

each element can be determined based on the intensities of the wavelengths collected as well as 

the distribution of neutral atoms and various ions, as determined by various parameters (9). 

However, as the light collected during this study’s tests will be late in the plasma glow, the 

resulting light spectrum will be emitted almost entirely by neutral particles, which helps to simplify 

analysis, as will be discussed later. 

 

Spectrum lines of interest for a particular element or set of elements comprising a material or 

mineral can be isolated and related to samples of known composition, which can then be used to 

predict the quantity of a material of interest in unknown samples. For the purposes of this study, 

Partial Least Squares Regression; which does not require the explicit identification of related 

peaks, will be used to determine the relative quantity of compounds within aggregates, which can 

be compared to mandated limits to ensure compliance with limitations. This should reduce the 

need for conventional chemical testing (2). 

 

Laser Operation 

This study utilizes a Nd: YAG Laser (Figure 2) for LIBS analysis of aggregate particles. The way 

that a pulse laser functions is described below. 

1. An Ultraviolet flash lamp activates, exciting the particles in the Gain Medium. In the case 

of the laser used, the Gain Medium is a Neodymium ion doped Yttrium Aluminum Garnet 

crystal. Note that the system used in this study flashes for 8 seconds at 10 Hz before being 

ready to fire. 

2. Stimulated Emission occurs, wherein an emitted photon from one excited particle can 

stimulate other excited particles to emit photons of the same wavelength.  

3. The Q-Switch, or Quality Switch blocks light emitted by the Gain Medium for an 

adjustable delay time, which regulates the power output of the laser. 

4. When the Q-Switch opens, the light is permitted to pass through a partial mirror and is 

emitted as a laser pulse of uniform wavelength. 

5. A spectrometer is synchronized to the Q-Switch, and light is collected from the plasma 

glow, split into various wavelengths, and the relative intensities of light collected are output 

as a spectrum. 

 

Changing the time between when the flash lamp stimulates the particles and the Q-Switch opens 

will change the energy of the laser pulse (Figure 3). The longer the delay time, the less energy is 

emitted. The resulting spectrum shows the different wavelengths emitted from the sample being 

struck by the laser. Note that trace elements may not be represented in the results for lower energy 

shots, as they may not be able to be distinguished from baseline light. Changing the Q-switch delay 

time gradually identifies the optimum level of energy required to identify each element clearly (6).  
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Figure 2. Laser Apparatus (15) 

 

LIBS analysis assumes that the system is in thermal equilibrium; however real cases may not 

necessarily reflect this (2). Some studies suggest that utilizing a double pulse to heat the sample and 

more reliably achieve local thermal equilibrium before ablating the material will help to reduce 

the amount of plasma formed in the air (3). 

 

 
Figure 3. Energy Graph (2) 

 

Applications of LIBS 

LIBS has been used as a means of quality control in several industries and fields, such as in the 

analysis of metals and alloys, analyzing water and soil contamination, archeological applications, 

pharmaceuticals and other medical applications, analysis of aerosols, military and forensic 

applications, as well as geological applications. The versatility of LIBS, from the Mars Rover to 
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industrial recycling, makes it a promising tool for this study.  This study is limited to geological 

applications of LIBS. 

 

Previous study conducted by New York State Department of Transportation using LIBS 

The New York State Department of Transportation (NYSDOT) Materials Method 28 (1) imposes 

limits on the use of carbonate aggregates in asphalt and concrete; namely that a carbonate 

aggregate must contain at least 20% Acid Insoluble Residue (AIR), i.e. silicates, or that the 

aggregate must be blended into a mix containing at least 20 percent silicates. Chesner and 

McMillan utilized LIBS and created and calibrated a model utilizing PLSR, which predicts the 

AIR content of an aggregate sample (1). Another model was created which determines the percent 

non-carbonated material in an aggregate blend. Both models performed reasonably well, with the 

percent AIR model achieving very high accuracy. It is worth noting however, that the NYSDOT 

models utilizes large calibration test samples. 

 

Previous study conducted by Kansas State Department of Transportation using LIBS  

The Kansas Department of Transportation (KSDOT) used LIBS to analyze the likelihood of D-

Cracking and to identify the source quarry of an aggregate sample (1). D-Cracking is a breakdown 

of aggregates, typically caused by freeze-thaw conditions. The KSDOT uses two test methods; the 

KTMR-21 and KTMR-22 tests, as a criterion for determining an aggregate blend. To identify a 

source bed, a model was developed to classify an aggregate sample based on a branching 

algorithm, which distinguishes an aggregate based on its spectrum meeting a unique criterion, or 

continuing to additional checks. A second model was generated to predict whether the aggregate 

would pass or fail the previously mentioned tests. The model predicted the result with perfect 

accuracy, indicating that a spectrum feature or features can be correlated to a susceptibility to D-

Cracking. 

 

Previous study conducted by Texas State Department of Transportation using LIBS  

The Texas Department of Transportation (TXDOT) developed a three-model system to quantify 

the percent of reactive chert in an aggregate blend to classify the sample as highly reactive or not 
(1). Chert is a type of silica, which is a major cause of Alkali Silica Reactive aggregates and can 

experience damaging expansion within the concrete. The first model resulted in very high accuracy 

in quantifying chert content in the testing set. Similar to the KSDOT’s model, the second model 

was developed by regressing samples against a yes/no or pass/fail system. While the model 

incorrectly classified some individual spectrum, the model correctly classified aggregates when 

spectra were averaged. Individual sources of cherts were identified using a branching test model 

similar to the KSDOT, in which sources were differentiated based on a unique criterion (1). 

 

Other Noteworthy Applications 

LIBS analysis can also be used for quality control of concrete. LIBS has been used to produce a 

depth profile of chloride and Sulphur contamination in concrete. Traditional chemical analyses are 

only capable of modeling such profiles with a resolution of 10 mm or more from drill dust, while 

LIBS analysis can be used to obtain a resolution of 1 mm. This allows one to more accurately 

determine the depth of these contaminants, thus mitigating the amount of acceptable concrete 

which is needlessly replaced; leading to more economical repairs. (8) LIBS may also be used as a 

means of quality control for cement powder. Calibration curves have been developed for 
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measuring Ca, Si, K, Mg, Al, Na, Ti, Mn, and Sr in samples of cement powder. This type of 

analysis is useful in cement manufacturing (4).  

 

LIBS has also shown to be promising for use in screening recycled concrete. LIBS could be used 

for three purposes: to identify large contaminants in a waste flow of demolished concrete, to 

control input and output flows for a system, and monitor for contaminants, such as high amounts 

of silicon in cement, or chloride or Sulphur contamination. This would allow such a system to 

reliably screen waste concrete for recycling (12).  

 

A study has also used LIBS in conjunction with an electron microscope to model the structure of 

surface micro cracks, and further research will investigate whether a similar technique can be 

applied to modeling the three-dimensional structure of such cracks (11).  

 

Advantages and Disadvantages of using LIBS for Geological Materials 

The use of LIBS for determining the composition of geological materials provides an alternative 

to time consuming chemical tests. Some studies suggest that LIBS may present a more complete 

analysis of a sample than can be obtained from chemical testing (7), however the analysis also 

includes a number of sources of uncertainty. 

 

Advantages of using LIBS 

Using LIBS to analyze the mineral content of aggregates has several advantages over conventional 

chemical testing, such as XRF analysis. 

● Time Required for Analysis: Chemical testing involves sending aggregate samples to a 

testing laboratory, and waiting a significant period of time to obtain results and begin 

working, while requiring significant sample preparation in the process, as is the case in 

XRF analysis. This study expects that by using LIBS to analyze the same aggregate 

samples, results of comparable accuracy or better can be obtained within 30 minutes, and 

be performed in the field with little to no sample preparation. 

● Cost of Analysis: While a portable LIBS system will likely require a greater initial 

investment than conventional chemical testing, the apparatus requires only a source of 

electricity, as opposed to chemical testing which would incur significant testing costs. 

● Accuracy and Completeness of Results: Because LIBS analysis represents all elements 

in a sample as spectrum lines, all components of a sample can be determined, including 

trace elements. 

● Portable LIBS systems have previously been developed and shown to be viable for testing 
(7). 

Disadvantages of using LIBS 

LIBS testing methodology can produce errors that an experimentalist should be aware of since it 

can adversely affect results; however, most of these sources of uncertainty can be corrected for or 

mitigated.  

● Plasma Opacity: During the laser pulse, the plasma itself will absorb light from the laser, 

partially shielding the remaining material from the laser light. The plasma will also advance 

in the air towards the laser source, further shielding the material over the course of the laser 

pulse. This effect can be mitigated by utilizing a fast laser pulse (typical LIBS laser pulses 

are Nano- or feta-seconds in length.) The plasma will also shield part of the light emitted 
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by inner particles, which can skew the results. Accurate models and correct calibration 

curves will reduce the impact of this effect. 

 

● Incomplete Vaporization: Plasma opacity, combined with the tendency for certain 

materials to ablate more easily than others may cause some material to be left behind after 

a laser pulse. This will cause inconsistency between subsequent pulses on a sample. 

Completely vaporized particles will also produce higher light intensities than would 

otherwise be observed. As in-situ testing will not be performed on powdered samples, 

sufficient sampling sizes will be used with short laser pulses to mitigate the impact of 

incomplete vaporization on the results. 

 

● Baseline Spectrum: Background light will be included in the plasma spectrum, however 

conducting tests in a dark chamber will minimize this. The production of plasma in the air 

adjacent to the sample will also produce nitrogen and oxygen lines in the spectrum. During 

this study, these lines will be identified and subtracted from the spectra.  

 

● Stark Widening: Local electric fields produced by the ionization of atoms in the plasma 

will cause slight variations in the wavelength of light emitted. This can be corrected by 

integrating a spectrum between the limiting wavelengths for a particular line to determine 

the total light intensity of a line. The effect of these local electric fields can also be 

mitigated by sampling light emitted by a cooler plasma; minimizing the presence of ionized 

particles in the plasma. 

 

● Accelerated Ionization: The presence of free electrons can cause interactions in some 

particles, which will increase their likelihood of ionization. Ensuring a sufficient delay time 

will allow most of the free electrons to recombine with ions, so that the resulting spectrum 

will display lines primarily from neutral particles. 

 

● Chemical Matrix Effects: Some elements ionize more readily than others, producing 

more free electrons to recombine with other elements, resulting in higher concentrations of 

neutral particles in other elements. As previously stated, collecting light from cooler 

plasma should mitigate these effects (2).  

 

● Surface Conditions: The roughness and pitting of a sample aggregate will affect the 

amount of material that is ablated by a laser pulse, which may skew results. A sufficiently 

large sample size should mitigate this effect. Dust or other surface contaminants may also 

be present on the aggregate samples. If it is determined that this significantly affects the 

quality of the results, the testing procedure may fire multiple pulses at a single point on 

each aggregate tested before reading the spectra to ensure that the majority of surface 

contaminants are ablated away before testing (1).  

 

It is also worth noting that some studies suggest that the original molecule’s composition may have 

some influence on the wavelengths of light produced, however research on this phenomenon is 

still ongoing (1).  

 

 



10 

 

Previous studies using LIBS have used a variety of data processing techniques, such as: 

1. Artificial Neutral Networks (ANN) 

2. Soft Independent Modeling of Class Analogy (SIMCA) 

3. Principle Component Analysis (PCA) 

4. Partial Least-Squares Analysis (PLS) 

 

From the methods provided above, ANN, PCA and Partial Least Squares Discriminant Analysis 

(PLS-DA) proved to be most effective when a large number of classes were analyzed. Partial Least 

Squares and Principle Components analyses were performed by the New York State, Kansas, and 

Texas Departments of Transportation to produce accurate predictive models and calibration curves 

for various aggregate traits and to categorize aggregates for various purposes (1). In these analysis 

methods, the data projections were produced by applying linear algebraic techniques on sample 

data arrays. By reducing the number of data dimensions, visual relationships between the variables 

and quantitative analyses are simplified.  

 

PCA can be used to visually determine whether properties in a sample can be differentiated relative 

to various collected data features. PLS can be used to produce a model which predicts quantities 

and traits in a manner similar to Multiple Linear Regression, however instead of minimizing square 

error, coefficients are determined by maximizing the covariance between a set of collected 

independent variables; in this case light intensity at various wavelengths, and known values, such 

as mineral concentration. Utilizing a larger number of samples and selecting samples for the 

training model which represent a wide range of possibilities will improve the reliability of the 

resulting model. Sample traits and quantities of substances in unknown samples can then be 

determined based on the predictive model and its reliability determined by comparing predictions 

to known values. This study uses PLS regression analysis to quantify the concentration of various 

minerals present in aggregate samples (1).  This method was selected due to its relative simplicity 

in calculating predicted values from input data and an established model, as well as due to the 

success of other state Departments of Transportation in applying this technique to similar 

applications. As each prediction can be made as a linear combination of normalized light intensities 

and coefficients, a predicted value for each compound or mineral can be calculated independently. 

As the procedure for developing a model using PLS is quite involved, it will not be explored in 

detail in this report. 

 

EXPERIMENTAL SETUP AND PROCEDURE 

 

Experimental Laboratory Setup 

The experimental setup is shown in Figures 4 and 5. Additionally, a modified procedure was 

developed and is explained below. After the flashlamp is activated, the system will trigger and the 

laser is fired. When the laser’s Q-switch opens, an electric pulse is sent along a Bayonet Neill–

Concelman (BNC) cable to the spectrometer (4 on Figure 4(a)). When triggered, a laser pulse will 

exit the laser (1 in Figure 4(a)), and pass through a series of optics. To mitigate shot to shot 

variation, a relatively intense laser pulse is fired, and about 95 percent of the laser energy is then 

split off via a beam splitter (4 on Figure 4(b)) and directed to an energy sink (5 in Figure 4(b)). 
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The remaining light is directed through a series of optics within the sample chamber, which 

refocuses the laser and directs it downward at a steep angle toward the sample on the tray (3 in 

Figure 5), which has been previously positioned so that the sample is at the appropriate location 

and height. The Beam Splitter (Label 4 in Figure 5) rotates such that its tip will be positioned at 

the focal point, and the sample stage height is adjusted such that a sample comes in contact with 

the tip before it is moved away from the sample tray. Light emitted by the ablated mass reflects 

off the mirror (Label 2 in Figure 5) and is collected by a fiber optic cable, which is connected to 

each of the spectrometer’s channel ports. The spectrometer then transfers the data it collects to the 

software in the laptop via a USB cable.  

 

Figure 5. Experimental Setup - Sample Chamber 

Figure 4. Experimental Setup 

(a) Overall view of laser setup   (b) Close-up view of laser optics 
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After the appropriate number of shots has been fired, the software will automatically prompt the 

user to save the data.  An appropriate naming convention should be selected for the data files. 

Previous test files have names which include the date, type of stone sample, and the test number. 

 

Previous tests have been conducted as a series of independent tests, to mitigate the effect of shot 

to shot variation, the ‘Accumulate Data’ option in the software is checked, and 100 shots are fired 

per sample, per location. This results in a single output spectrum per location which is the sum of 

the spectra from 100 shots. In the event of a low-emission shot, this additive data collection ensures 

that the overall trends and peaks in the output data remain largely unaffected. To conduct these 

tests in a timely manner, the continuous fire option on the laser is utilized rather than the single 

shot option. It was found that the software does not encounter issues when this option is utilized.  

 

Portable Laser 

The portable system consists of several noteworthy components as shown in Figures 6 and 7.  The 

Quantel ULTRA Laser emits laser light focused on the sample aggregate, which creates plasma at 

the surface of the material. The focusing lens concentrates the light from the laser onto a spot on 

the sample. This creates plasma that emits light that can be analyzed to determine the composition 

of the sample. The automatic adjustable sample holder keeps the sample aggregate in place and 

ensures that the sample can be placed exactly at the focal point of the laser. The input optical-fiber 

collects the wavelengths of light emitted by the plasma and transmits it to the spectrometer. The 

spectrometer resolves the collected light into spectra with a wavelength resolution of 190 to 1040 

nm. 

 

Figure 6. Portable Laser Components 
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The detector controller is used to start and stop the laser using a delay generator, as well as modify 

laser timing parameters. The laser power supply unit supplies power to the laser and also provides 

a lockout mechanism so that unauthorized individuals cannot operate the laser, if the key is 

removed. The Aurora software is used to analyze and graph the collected light data. It can output 

data tables to be used for percent composition analysis, which is described later. 

 

 

Laser Analysis Tool 

The software code, named the “Laser Analysis Tool” has been constantly updated to make it more 

efficient and user friendly. The final version consists of a more professional Graphical User 

Interface and proper titles for every screen including progress bars. An Excel file is created for 

ease of analysis. The code is also efficient and reduces the size of the laser analysis program while 

making it faster. This version of the code contains no known bugs and functions to meet all 

expectations. 

 

Data Collection 

 

Calibration Set 

A standard set of data is collected to calibrate the model using PLSR. 35 rock types are used for 

calibration. For each rock type, 10 rock samples are randomly selected. Each rock is tested at 5 

different locations. 200 shots are fired to ablate the surface contaminants and stabilize the light 

intensity collected for the next 100 shots. This calibration set consists of 35 rock types as 

mentioned earlier with 10 carbonates, 17 non-carbonates and 8 trap rocks as shown in Table 1. 

Figure 7. Portable Laser Equipment 
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Each spectrum collected is the accumulated light data of 100 shots which is averaged to 

minimize the shot to shot variations. For each rock type, 50 spectrums are collected so as to 

capture the heterogeneity in the rocks. 

 

 

Table 1 - Aggregates used for calibration 

 Name of the aggregate Type of rock 

1 Allen Myers Carbonate Carbonate 

2 Andreas Lehigh Carbonate Carbonate 

3 Bechtelsville Gneiss Non-Carbonate 

4 Braen Franklin Carbonate Carbonate 

5 Carbonate Dolomite Carbonate 

6 Dyer Quarry Diabase Trap Rock 

7 EI Hamburg Gneiss Non-Carbonate 

8 Eureka Milford Quartzite Non-Carbonate 

9 Fanwood Trap rock Trap Rock 

10 Hanson Glen Gneiss Non-Carbonate 

11 Kingston Argillite Non-Carbonate 

12 Kingston Trap Rock Trap Rock 

13 Lehigh Asphalt Carbonate Carbonate 

14 New Hope Crushed Stone Carbonate Carbonate 

15 OW Trap rock Orange Basalt Trap Rock 

16 Westfield Trap rock Trap Rock 

17 Pioneer Laflin Quartzite Non-Carbonate 

18 Temple Quartzite Non-Carbonate 

19 Atkinson Quartzite Non-Carbonate 

20 Woodboro Carbonate Carbonate 

21 Plumstead Argillite Belt Non-Carbonate 

22 Plumstead Argillite Stockpile Non-Carbonate 

23 Tilcon Diabase Trap Rock 

24 New hope Carbonate Carbonate 

25 Eastern Wantage Carbonate Carbonate 

26 Tilcon Oxford Carbonate Carbonate 

27 Plumstead Argillite Lockatong Non-Carbonate 

28 Tilcon Oxford Gneiss Non-Carbonate 

29 Eastern Hamburg Gneiss Losee Non-Carbonate 

30 Moores Argillite Trap rock Ind Trap Rock 

31 Bechtelsville Gneiss 15179 Non-Carbonate 

32 Plumstead Argillite 15165 Non-Carbonate 

33 Tarheel Quartzite Non-Carbonate 

34 Kingston Trap rock 15219 Trap Rock 

35 Pyramid Gneiss Non-Carbonate 
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Testing Set 

A separate set of data is collected to validate the model and test the accuracy of each model. 

Initially, 5 samples were selected randomly and tested at 3 locations on each sample. Later, it 

was found that 30 data points were required to obtain a more representative dataset. Hence, the 

testing set size was increased to 10 samples and 3 locations each on each sample.  

 

RESULTS AND DISCUSSION 
Initial tests were performed on pure metal samples to demonstrate how effectively LIBS can be 

used to identify the elemental composition of a sample. The peak wavelengths were compared to 

the NIST atomic spectral database to demonstrate how certain spectra lines can be used to 

qualitatively identify elements in a sample. Samples of pure mica and limestone were then tested 

to obtain typical output spectra corresponding to each of these minerals which are used in the 

future analysis of the different aggregates. Following these pure sample tests, a PLS model was 

developed based on a simplified case; identifying the amount of copper and zinc present in pennies 

minted in various years with varying chemical composition. The results of testing this model 

appeared to be quite accurate, showing that the PLS method of analysis has promise for aggregate 

analysis. 

 

Testing was then performed on aggregate stone samples, with much more complex compositions. 

The results of XRF testing for each sample provided by the NJDOT provide a set of known 

compositions to aid in calibrating the models. Output spectra for a given type of aggregate stone 

typically show very similar trends, with slight variation and rare outliers likely caused by the innate 

inhomogeneity of the solid stone samples.  

 

Data from several separate shots for each type of stone were input into the model as a testing set, 

and the results were averaged to help mitigate the effects of variation and possible outliers. The 

resulting outputs and deviation from ‘known’ values were then compared to the results of inputting 

the data from outside the calibration data. Models were generated using calibration sets of various 

sizes, and as expected, it was found that increasing the size of the calibration set generally 

improved the accuracy of the models.  

 

At this point in time, it was considered possible that the data set itself was the source of the error. 

To test this hypothesis, an entire new set of data was collected for future models. This averaging 

testing was repeated on this new data using the original center clipping threshold of 200, however 

as before, results were inconsistent and in most cases did not outperform the original calibration 

technique or data set. These results led the research group to the conclusion that this error was 

caused by excessive variation in spectrum data or variation in accepted values which had not been 

represented. To address this, future tests used a modified testing procedure. These samples were 

tested such that the output spectrum was the sum of the emissions from 100 shots, and tests were 

conducted on five separate locations per sample. Once new data had been collected using this new 

procedure, new models were developed. 

 

The results showed that while variable, an increase in calibration set size typically improves the 

accuracy of predictions overall. This general trend is evident regardless of the number of PLS 

components used to calibrate the model. It was also determined that a larger testing set may be 

necessary to produce reasonable predictions. 
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Data Analysis and Interpretation 

Before any type of analysis can be performed, the raw data must be adjusted to a useable form. 

Over the course of this research various techniques have been used, including: 

● Discarding “bad shots;” i.e. data sets from laser pulses which, due to randomness in the 

system, produce abnormally low light emission from the sample, where relative light 

intensities cannot be properly represented. The experimental procedure has since been 

changed so that each collected spectrum is the sum of the emissions from 100 laser shots; 

mitigating the effect of low emission shots and rendering this step unnecessary. 

● Subtracting baseline light intensity from the spectrum (the Data Analysis software used 

with the current spectrometer does this automatically, and the enclosed sample chamber 

minimizes external light contamination).  

● Reducing spectral amplitudes. Following the first procedure modification, resulting spectra 

amplitudes were reduced by a factor of 100 to produce an effective average for each testing 

location. This is not strictly necessary, but the practice was continuing for consistency of 

results. 

● Removing remaining variation along baseline via center clipping; in which light intensities 

below a certain value are assumed to be noise and are set to be zero. The threshold for 

center clipping was varied in previous tests, and the model response considered, however 

modern models merely use this technique with a 0 threshold to remove negative values 

caused by noise in the system. 

● Normalizing light intensities for a given spectrum to the total amount of light emitted by 

the sample in said spectrum to account for shot to shot variation in total light emission. 

Several different normalization techniques have been used, but this method has been shown 

to be the most effective. 

 

To ensure that the XRF data provided for calibration are reproducible, additional XRF tests were 

performed by both the Rowan research team and NJDOT staff. The Rowan research team tested 

on solid samples while the NJDOT staff tested on powdered samples. Given this difference in 

procedure, it was expected that the Rowan research team’s results would be less consistent as these 

tests examined various points on an inherently inhomogeneous sample, whereas the NJDOT staff’s 

powdered samples were expected to produce more consistent results given the fact that the samples 

effectively blended the solid samples into a more homogeneous mass. As per the XRF testing 

procedure, all elements were assumed to be bound in oxides, which may or may not actually be 

the case in real samples. These tests confirmed that the XRF results provided by the NJDOT were 

more reliable and reproducible, and the provided XRF results continued to be used as known values 

for calibration.  

 

Each model was calibrated using an optimized number of PLS components determined through 

the MATLAB code’s built-in mean square error output. In each case, the model was generated 

using 15 to 20 PLS components which had been determined to be excessive, and examining the 

amount of variation explained by each component and the residuals remaining after each. No 

additional PLS components were used after the addition of another would explain less than another 

one percent of the variation in the known values, but an approximate point of diminishing returns 

for reduction of residuals was also considered. 
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Data Preprocessing Techniques 

Before any alternative pre-processing options were explored, a Base Model was developed for 

comparison. In the Base Model, the 100 shot total spectra were reduced in amplitude as previously 

described, negative values were removed through applying center clipping with a 0 threshold, and 

spectra were normalized to the total light emission. The performance of other methods were 

visually compared to the Base Model in Figures 10 through Figure 14. Each case is shown with 

two bars, representing the upper and lower bounds of a 90 percent confidence interval so as to 

show the overall variability of predictions. In each case the results for two carbonate rocks, the 

Carbonate Dolomite and Woodboro Carbonate, and two non-carbonate rocks, the original Gneiss 

and Argillite samples, are reported as these generally represent the trends for samples of the same 

designation. Only the five most significant compounds are reported for sake of visual clarity. 

Unless otherwise noted, each method described below includes these Base Model steps before 

applying other data preprocessing techniques. 

 

Y-Scaling Method 

One method explored in Tucker et al. (2010) research is scaling the Y-variables, thereby forcing 

the PLS algorithm to consider the concentrations of all compounds equally rather than prioritizing 

compounds with high variability in the calibration set (10). This is done in two ways. One method 

is to divide the value of each compounds by the maximum value of the same compound among all 

the aggregates in the calibration set, thereby reducing each concentration to the ratio of the smallest 

to the largest value, to one for each compound being considered (Y-scaling Ratio:1). The other 

method involves first subtracting the minimum value for each case before dividing all remainders 

by the range for that compound, thereby reducing each to a value between 0 and 1 (Y-scaling 0:1). 

Regardless of which method is used, the reverse adjustments must be applied to predicted values 

to convert them to actual predictions. The predicted ranges for each case are shown in Figure 8. 

Note that both methods of Y-scaling produce nearly identical predictions. 

 
Figure 8. Y-Scaling Results 
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The above result show that this method tends to underestimate the composition and often 

produces unreasonable predictions for the given data set. This method has therefore been 

rejected. 

 

Split Training Method 

The final method explored was inspired by the work by Tucker et al (10). This technique involved 

reducing the range of values presented in the calibration set by training two or more separate 

models as opposed to a broad base one. Tucker et al. suggested that by applying a broad base 

model to obtain a ‘first guess’ of a stone’s composition and then applying an appropriately 

specialized model for a more precise prediction, individual models can become more accurate. 

This is because they consider a narrower range of possibilities. In this case samples were divided 

into carbonate and non-carbonate rocks for the sake of providing an intuitive classification of 

samples. Figure 9 shows the results for the model corresponding to the stone’s classification: 

carbonate or non-carbonate. 

 
Figure 9. Split Training Set Results 

This technique shows real promise. While still imperfect, using this split training set method has 

shown to be an improvement over the base model in terms of accuracy and precision. Models will 

be further refined by building on this technique by applying other methods in conjunction with 

this. Future model testing will also be performed using larger testing sets to produce more reliable 

results with greater confidence, and to establish an appropriate standard testing set size to obtain a 

reliable prediction. 

 

Combination Model 

The above methods such as Split Training and Y-Scaling were combined. Based on the initial 

guess using a Y-Scaled model, the aggregates are classified and send to the specified precise model 

of Y-scaling.  



19 

 

 

Split Training with Y-Scaling 

The results from combining the split training model and Y-Scaling are shown in Figures 10 through 

14. Through the use of Y-scaling coupled with split training, better results were produced. Split 

training combined with a Y Scaling Ratio:1 produced similar results as before. This suggests that 

this method is subject to variability of samples or an error during analysis. Split training combined 

with Y-scaling 0:1 produce accurate results and was selected for final use.  

 
Figure 10. SiO2 Split Training, Y-Scaling Model Predictions 

 
Figure 11. Al2O3 Split Training, Y-Scaling Model Predictions 
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Figure 12. Fe2O3 Split Training, Y-Scaling Model Predictions 

 
Figure 13. CaO Split Training, Y-Scaling Model Predictions 
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Figure 14. MgO Split Training, Y-Scaling Model Predictions 

 

Classification Methods 

The chosen method for analysis of the data for classification was Split Training with Y-scaling 0:1 

based on the fact that this method produced the most accurate results. But before deciding on how 

to classify the aggregates, various methods for split training were analyzed, which are detailed 

below.  

 

One-Dimensional Classification 

One-Dimensional Classification uses the initial guess from a Broad-Based model and classifies 

the samples based on percent calcium oxide into two categories. If the composition of CaO is 

below 25 percent, the sample is classed as a non-carbonate rock, but if the composition of CaO in 

the sample is above 25 percent, then the rock is classified as a carbonate rock. The rocks will be 

classified and sent into more precise models, ‘Carbonate’ or ‘Non-carbonate’ to produce more 

accurate results. This threshold is chosen based on the percentage of Calcium Oxide from the XRF 

analysis of each rock. Figure 15 shows the percent of CaO present in various rocks that are used 

for calibration and their rock classification. Figure 16 through 20 shows the results of Calcium 

Oxide classification method for each compound. For simplicity, the major five compounds are 

shown here. This method has not been selected since it is less effective in classifying rocks. The 

initial prediction values of the percentage of CaO in Andreas Lehigh Carbonate is 16.83% and of 

Lehigh Asphalt Carbonate is 11.12%, which are less than the threshold ratio (25%) as shown in 

Table 2. Because of the low CaO content in Andreas Lehigh Carbonate and Lehigh Asphalt 

Carbonate, these rocks are not correctly identified as Carbonates demonstrating that this method 

was not very effective in identifying the split models.  

 

Table 2 - Outliers of One-Dimensional Classification 

Outlier Threshold Value Classified as: 

Lehigh Asphalt Carbonate 11.12 Non Carbonate 

Andreas Lehigh Carbonate 16.83 Non Carbonate 
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Figure 15. Classification of rocks based on CaO% 

 

 

 
Figure 16. Results of SiO2 using Calcium Oxide classification. 
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Figure 17. Results of Al2O3 using Calcium Oxide classification. 

 

 

 
Figure 18. Results of Fe2O3 using Calcium Oxide classification. 
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Figure 19. Results of CaO using Calcium Oxide classification. 

 

 
Figure 20. Results of MgO using Calcium Oxide classification. 

 

Two-Dimensional Line Classification 

This method is based on a graphical pattern observed by plotting the percentage of Ferrous Oxide 

and the ratio of percentages of Silica to Calcium Oxide (SiO2/CaO) present in the aggregate. 

Carbonate with lower SiO2 and Fe2O3 values tend to move closer to zero and non-carbonates with 

higher Fe2O3 values tend to move away from both axes. A threshold line separating both carbonates 

and non-carbonates is found using trial and error maximizing the space between the line and each 

data point. The second method used was with a line classification referred to as a Two Way Split, 

which uses an equation to determine the classification of the rock. The equation is derived from 

Figure 21, with ferrous oxide on the x-axis and Silica/Calcium oxide ratio on the y-axis. 
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Figure 21. Classification of rocks based on the threshold line. 

 

𝑌 + 0.286𝑋 − 5 = 0       (1) 

where, X is the percentage of Fe2O3 and Y is the ratio of percentages of SiO2 and CaO.  

 

When 𝑌 + 0.286𝑋 − 5 is less than zero, it is classified as carbonate and when it is greater than 

zero, it is classified as a non-carbonate. Based on the initial prediction, the rocks will be classified 

accordingly and split into corresponding model. Figure 22 through 26 shows the results of line 

classification method. This method fails to classify the Lehigh Asphalt Carbonate as a carbonate 

and most of the trap rocks are incorrectly classified as carbonates as shown in Table 3. This method 

also gives the lowest R Square value; hence it is no longer used.  

 

Table 3 - Outliers of Two-Dimensional Line Classification. 

Outlier Threshold Value Classified as: 

Bechtelsville Gneiss 15179 -0.53705 Carbonates 

Dyer Quarry Diabase -8.788 Carbonates 

Hanson Glen Gneiss -13.379 Carbonates 

Kingston Argillite -52.283 Carbonates 

Kingston Trap Rock -4.78 Carbonates 

Plumstead Argillite 

Stockpile 

-12.371 Carbonates 

Temple Quartzite -4.1864 Carbonates 

Tilcon Diabase -7.0635 Carbonates 
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Figure 22. Results of SiO2 using Line classification. 

 

 
Figure 23. Results of Al2O3 using Line classification. 

 

R² = 0.7341

0.000

10.000

20.000

30.000

40.000

50.000

60.000

70.000

80.000

90.000

0 10 20 30 40 50 60 70

K
n

o
w

n
 V

a
lu

es

Predicted Values

R² = 0.5261

0.000

5.000

10.000

15.000

20.000

25.000

0 5 10 15 20

K
n

o
w

n
 V

a
lu

es

Predicted Values



27 

 

 
Figure 24. Results of Fe2O3 using Line classification. 

 

 
Figure 25. Results of CaO using Line classification. 
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Figure 26. Results of MgO using Line classification. 

 

Two-Dimensional Ratio Classification 

A Two-Dimensional Ratio classification method is implemented considering two compounds, 

calcium oxide and silica. Carbonates tend to have higher percentages of Calcium Oxides (CaO) 

and non-carbonates tend to have higher percentage of SiO2. Classification is done using a ratio of 

SiO2 to CaO. If this ratio is below 3 the aggregate is considered carbonate, otherwise it is 

considered a non-carbonate as shown in Figure 27. The ratio classification method resulted in an 

effective classification of carbonates and non-carbonate rocks. Figure 28 through 32 shows the 

results for the Ratio Classification Method. The percentage of rocks going to the right bin has been 

increased compared to the Calcium Oxide classification method. Even then, most of the trap rocks 

which are near the threshold value is incorrectly classified. Carbonates except Lehigh Asphalt 

Carbonate are classified correctly for split training purposes compared to the Two-Dimensional 

Line classification method as shown in Table 4. However, the accuracy of prediction of trap rocks 

and non-carbonates are yet to be improved.  An improvement has been made on this classification 

and is discussed in the next session.  

 

Table 4 - Outliers of Two-Dimensional Ratio Classification 

Outlier Threshold Value Classified as: 

Lehigh Asphalt Carbonate 17.668 Non-Carbonate 
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Figure 27. The classification of rocks based on the threshold ratio of 3 

 

 

 
Figure 28. Results of SiO2 using Ratio classification. 
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Figure 29. Results of Al2O3 using Ratio classification. 

 

 
Figure 30. Results of Fe2O3 using Ratio classification. 
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Figure 31. Results of CaO using Ratio classification. 

 

 
Figure 32. Results of MgO using Ratio classification. 

 

Three Way Split Classification 

A Three-Way Split was finally decided to be the best way to classify the aggregate rocks. Based 

on the initial prediction of composition using a Broad-Based Model, the rocks are classified into 

three categories namely Carbonates, Trap Rocks and Non-Carbonates. The ratio classification 

gives a clear demarcation between Carbonates and Non-carbonates. To amplify this demarcation 

between two categories, SiO2/CaO ratio is squared. Trap rocks seems to have higher percentage of 

Fe2O3 compared to other non-carbonates (other than trap rocks), hence Fe2O3 is used to distinguish 

between Trap Rocks and Non-carbonates. The following formula is how this method classifies the 

sample into one of three categories. 
𝑆𝑖𝑂2

𝐶𝑎𝑂

2
∗ 𝐹𝑒2𝑂3 < 150 =  𝐶𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒𝑠     (2) 
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150 <  
𝑆𝑖𝑂2

𝐶𝑎𝑂

2
∗ 𝐹𝑒2𝑂3 < 500 =  𝑇𝑟𝑎𝑝 𝑅𝑜𝑐𝑘𝑠    (3) 

500 <
𝑆𝑖𝑂2

𝐶𝑎𝑂

2
∗ 𝐹𝑒2𝑂3 =  𝑁𝑜𝑛 − 𝐶𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒𝑠    (4) 

 

If the value of (SiO2/CaO)2 × Fe2O3 is less than 150, it is a Carbonate. If it is between 150 and 500, 

then it is a trap rock; otherwise it is a non-carbonate as shown in Figure 33. The threshold values 

are chosen based on XRF values and further modified based on the initial guess values. Lehigh 

Asphalt Carbonate is again classified as Non-Carbonate, which is later identified as a contaminated 

rock by NJDOT. Some trap rocks are classified as non-carbonates as shown in Table 5. This can 

be explained by the metamorphism of trap rocks due to the weathering process where the CaO and 

Fe2O3 contents are washed away.  Three-Way Split classification is found to be the best method 

for an accurate prediction of chemical composition. Figure 34 through 38 shows the results for the 

split training using the Three Way Split Classification technique. 

 

 

 
Figure 33. The classification of rocks based on the Ratio Square method. 

 

Table 5 -  Outliers of Three-Way Split Classification 
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Fanwood Trap Rock 6539.836 Non-Carbonate 

Kingston Trap Rock 8052.592 Non-Carbonate 

Kingston Trap Rock 15219 991.4638 Non-Carbonate 

OWT Orange Basalt 1744.469 Non-Carbonate 

Lehigh Asphalt Carbonate 8411.455 Non-Carbonate 
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Tilcon Diabase 18852.28 Non-Carbonate 

Westfield Trap Rock 1189.668 Non-Carbonate 

 

 
Figure 34. Results of SiO2 using Ratio Square classification. 

 

 

 
Figure 35. Results of Al2O3 using Ratio Square classification. 
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Figure 36: Results of Fe2O3 using Ratio Square classification. 

 

 

 
Figure 37: Results of CaO using Ratio Square classification. 
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Figure 38. Results of MgO of Ratio Square classification. 

 

Accuracy of Models 

The accuracy of each model is determined using R square values and ANOVA analysis.  

 

Statistical Analyses 

R2 values show the percentage of variation of the predicted results. When the R2 value is higher, 

the model fits the data better. Table 6 shows the R2 values for each model compared for each 

compound and Table 7 shows the R2 values for carbonates, trap rocks and non-carbonates for each 

split training classification method. Split Training with Y-Scaling combined with the Three Way 

Split Classification shows the highest R2 values. Y-Scaling improved the accuracy of minor 

compound predictions since this method considered all compounds with equal priority. 

 

Table 6 – R2 values of each method against each compound 

R2 Value SiO2 Fe2O3 Al2O3 CaO MgO 

Base Model .8589 .6103 .3691 .8421 .4914 

Y-Scaling .8722 .6956 .4924 .8469 .6178 

Split Training .9109 .753 .5276 .9271 .7123 

Split Training with Y 

Scale 

One-Dimensional 

Classification 

.9021 .72 .5011 .9829 .7251 

Split Training with Y 

Scale 

Two-Dimensional Line 

Classification 

.7341 .5261 .4735 .6861 .536 

Split Training with Y 

Scale 

Two-Dimensional Ratio 

Classification 

.914 .6955 .5289 .9136 .7211 
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Split Training with Y 

Scale 

Three-Way Split 

Classification 

.9119 .7529 .8015 .9081 .7064 

 

Table 7 – R2 values of Carbonates, Trap Rocks and Non-Carbonates for various split training 

methods. 

R2 Value Carbonates Trap Rocks Non-Carbonates 

One-Dimensional 

Classification 

.806 .873 .983 

Two-Dimensional Line 

Classification 

.819 .687 .710 

Two-Dimensional Ratio 

Classification 

.932 .713 .978 

Three-Way Split 

Classification 

.932 .747 .969 

 

ANOVA (Analysis of Variance) 

ANOVA is a statistical method developed by Ronald Fisher in 1918 (13) to analyze the variance of 

more than two groups. This is also called the Fisher analysis of variance. This is an extended 

version of the t- and z-test. The assumptions considered while running ANOVA for the prediction 

results are as follows: 

1. The weighted average errors of each compound of aggregates are normally distributed. 

2. Independence of cases: Each LIBS test at various locations and on different samples are 

independent of each other.  

3. Homogeneity: The variance between the aggregate groups are approximately equal. 

A two-way ANOVA analysis is conducted on the average weighted error of each compound for 

all aggregates.   

 

ANOVA for Various PLSR Models 

The two-way ANOVA analysis is conducted on the results for the various spectrum analysis 

methods. Figure 39 through 41 shows the results of the ANOVA analysis to assess the accuracy 

of the different spectrum pre-processing techniques and split training strategies. X-axis represents 

the P-value associated with each analysis method, which is the significance level of the interaction 

term. Y-axis represents each method of analysis as follows: 

1- Base Model  

2- Y-Scaling  

3- Split Training  

4- Split Training with Y-Scaling  

 

When the P-value on the X-axis is lower this indicates that the method is successful. Figure 39 

shows that Split Training with Y-Scaling (#4 in Figure 39) is the best method because it has the 

lowest error for carbonates. Figure 40 for trap rock and Figure 41 for non-carbonates also indicates 

that method #4 is the most accurate.  
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Figure 39. ANOVA results of various models for Carbonates 

 

Figure 40. ANOVA results of various models for trap rocks. 
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Figure 41. ANOVA analysis of various models for non-carbonates. 

 

ANOVA for Various Classifications 

Two-way ANOVA is also conducted to determine the relative accuracy of the various 

classification methods. Figures 42 through 45 show the results from the ANOVA analysis for 

various split training classification methods. X-axis represents the error of each classification 

method. Y-axis represents each method of classification as follows: 

1- One-Dimensional Classification  

2- Two-Dimensional Line Classification 

3- Two-Dimensional Ratio Classification 

4- Three-Way Split Classification  

 

Figure 42 displays the results of the ANOVA analysis for carbonates. Methods #3 and #4 are 

equally accurate with the lowest error. ANOVA analysis on trap rocks (Figure 43) shows that 

method #1 is more accurate compared to the other three methods. ANOVA analysis on non-

carbonates (Figure 44) shows that methods #1, #3 and #4 are significantly different from method 

#2. However, method 4 is selected because it has slightly less error than methods #1 and #3.  
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Figure 42. ANOVA results of various split training methods for Carbonates 

 

 
Figure 43. ANOVA results of various split training methods for Trap Rocks 
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Figure 44. ANOVA results of split training methods for Non-Carbonates 

 

High Pass Filter of LIBS Spectrum 

To improve the accuracy of the LIBS-PLSR analysis model, a filtering technique was developed 

to eliminate the Bremsstrahlung baseline, while preserving the remaining information. This called 

for the development of a code that could filter both the rock data used for training the PLSR model 

and the rock data to be tested. A filtering technique was developed in MATLAB as a preliminary 

step to the future integration of the filter method into the PLSR code, creating an easy-to-use 

graphical interface. 

 

Moving Average Subtraction (MAS) 

To remove the baseline of the LIBS data, a moving average of the data was created with an 

adjustable value, N, which would take the average of the N values before and after each data point 

between N:(12,288-N). Values 1: N and (12,288-N): 12,288 were assigned as zero. By adjusting 

the N value, the peaks of the original data were eliminated, leaving only the baseline. This resulting 

baseline was then subtracted from the original data, and all negative values of intensity were set to 

zero intensity. This method removes the baseline height from the maximum intensity of the peaks 

with the assumption that the relevant data is shifted in intensity by the baseline. Figures 45 and 46 

shows the effect of moving average subtraction. 
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Figure 45. Left to right: Unfiltered Atkinson Quartzite data, moving average of data, subtraction 

of data, subtraction of moving average from original data, filtered data adjusted to eliminate 

negative values. 

 

 
Figure 46. Subtraction from MAS filtration method showing the moving average N=180 to best 

conserve relevant information. 

 

 

Moving Slope Analysis (MSA) 
An array consisting of 12,288 zero points was created. The original data was then scanned point 

to point to determine slope. If the slope, ((J+1)-J)/1, was greater than or equal to 100, the 

corresponding J point in the zero array was assigned the value. By adjusting the slope value, the 

original peak data was preserved. This method preserved relative intensity when removing the 

baseline, with the assumption that the baseline overshadows relevant information. 



42 

 

 
Figure 47. From Left to Right - Unfiltered Atkinson Quartzite data, moving slope analysis data, 

showing preservation of intensity information, filtered data subtracted from unfiltered data leaving 

only the baseline 

 
Figure 48. From left to right - Unfiltered Atkinson Quartzite data, moving slope analysis 

preserving data with slope≥10, moving slope analysis preserving data with slope≥100, moving 

slope analysis preserving data with slope≥1000. 

 

The effectiveness of the MAS filtering technique was maximized by varying the N value used for 

the average to determine which value would result in the greatest preservation of intensity peak 

data. An average of 361 data points surrounding each individual point, N=180 value, was shown 

to best preserve the data while still eliminating the baseline as shown in Figure 47. The MSA 

filtering technique was maximized similarly by determining the slope value that resulted in best 

conservation of the sharp intensity peak data as shown in Figure 48. The effectiveness of the filters 

was determined by comparing the results of the filtered model to the XRF values and the results 

of the unfiltered model. A students’ t-test was performed with 95% confidence that the true value 

lies within the uncertainty of the mean. Figures 49 through 51 show the results of MSA and MAS 

filtering methods. 
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Figure 49. Comparing the output of the PLSR calculation of Atkinson Quartzite, error bars 

showing uncertainty of data with 95% certainty 

 
Figure 50. Comparing the output of the PLSR calculation of Carbonate Dolomite, error bars 

showing uncertainty of data with 95% certainty 

 
Figure 51. Comparing the output of the PLSR calculation of EI Hamburg Gneiss, error bars 

showing uncertainty of data with 95% certainty 
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Frequency cut off and slope detection 

This method uses a high-pass filter, in which each laser pulse reading had an associated cutoff 

frequency selected and values lower than this cutoff would be removed from the data. The hope 

was that this technique would remove any noise in the data generated by these frequencies. The 

ultimate goal of this was that the identified broadening would be removed. 

 

This method was to find the standard deviation of the derivative of the laser system’s readings. 

Using the standard deviation and a chosen slope threshold an edge detection system was developed 

that could differentiate the quick spikes in the data from the small, gradual raises. All rises in the 

‘Y’ direction that were not equal to or greater than the chosen slope were filtered out, as any tiny 

or slow changes in the ‘Y’ direction of the data were considered to be noise. Figure 52 shows the 

filtered and unfiltered spectrums after high pass filtering. 

 

Both methods worked with various samples. Although the broadening was successfully removed 

the filtered data seemed to have no significant effect on the accuracy of the results after tested in 

the analysis program. Due to fear of the filtering negatively effecting data in the future, it was 

removed from the process and deemed unnecessary. Figure 53 shows the comparison of results 

using filtered and unfiltered spectrums. Although the high pass filter removed the broadening of 

the spectrum, there is no improvements in the model predictions. Hence, the idea of removing the 

broadening of spectrum is not considered anymore.  

 
Figure 52. High Pass Filtering of LIBS spectrum 
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Figure 53. Results of High Pass Filtering of LIBS spectrum 

 

Determination of a suitable sample size 

Testing set size is determined based on the number of samples required for a stabilized prediction. 

Figure 54 shows predictions of Woodboro Carbonate for various testing set size. X-axis shows the 

total number of testing data used for each prediction and Y-axis shows the predicted values for the 

percentage of SiO2. As per the figure, a minimum of 30 data points is recommended. The number 

of samples tested is of greater importance than the number of locations tested per sample. Thus, a 

testing set size of 10 samples with 3 locations per sample is selected.  

 

 
Figure 54. Determination of Testing Set Size 
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Development of a User-Friendly Program 

A Graphic User Interface (GUI) program is developed using MATLAB to analyze the LIBS 

spectrum. Figure 55 shows the GUI for the Laser Data Analysis Tool. It gives options for the 

various operating modes such as training the model, testing single aggregates at a time and testing 

a set of aggregates. In the training mode, number of PLS components are calculated by default or 

by manual input. For each testing mode, testing threshold defaults are 150 for carbonate and 500 

for non-carbonate. Carbonate threshold classify rocks into Carbonates and Non-Carbonates while 

non-carbonate threshold classifies rocks between Non-Carbonates and Trap Rocks. A custom 

threshold option is also provided. The user can select the input data and run the program. A help 

option is also provided to address any questions users would have about running the program. The 

directory to which results will be saved can be changed using Settings.  

 

A GUI for updating the calibration data is also provided. Figure 56 shows the interface of the 

updated calibration tool. It provides the options to input the laser calibration data as a folder and 

the corresponding XRF data as an excel spreadsheet.  

 

A stand-alone deployable software for these programs has been developed, which could be 

installed and used in any system without MATLAB. This software program will not allow users 

to make changes to the code or available features. 

 

 
Figure 55. Laser Data Analysis Tool 
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Figure 56. Update Calibration Tool 

 

Portable Equipment Testing 

Vibration/ Impact Testing 

To test the durability and the resiliency of the portable laser system, the equipment was loaded into 

the back of a truck which was then subjected to high speeds and roadways with poor driving 

conditions. Sudden jerks and rigorous impacts due to pot holes, rutting, and overall inconsistencies 

in the roadway, as well as sudden application of the vehicle’s brakes were applied to simulate an 

idealized worst case scenario for future customer use. The following tests were conducted on the 

same samples of the same batch of aggregates before and after the ride. Figures 57 through 59 

depict the results for the vibration and impact testing. 

 

The results look more or less the same before and after field test. The small variations can be 

attributed the typical shot-to-shot variations within the aggregate samples which has been 

experienced before and is to be expected.  

 
Figure 57. Vibration/ impact test results, Carbonate Dolomite 

-10

0

10

20

30

40

50

60

1 2 3 4 5 6

Carbonate Dolomite

Before field test

After field test

XRF



48 

 

 
Figure 58. Vibration/ impact test results, Bechtelsville Gneiss 15179 

 

 
Figure 59. Vibration/ impact test results, Plumstead Argillite Stockpile 

 

Temperature Testing 

The equipment was kept in the field and allowed to cool off and heat up to the atmospheric 

temperature within a 4-hour time frame. It was then tested on the same sample of aggregates from 

the same stockpile of rocks at various temperatures to depict the field conditions. Finally, these 

were compared with the results obtained in the laboratory conditions at a room temperature of 68 

°F. 

 

Figure 60 and 61 shows the results of temperature testing for Carbonate Dolomite and Plumstead 

Argillite Stockpile. The results show a wide variation of results at the various temperatures. 

Testing at the temperature of approximately 79 °F and room temperature with an average of 68 °F 

gives results close to the XRF values. This has been deemed acceptable while testing at 54 °F and 
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32 °F hade a wide variation from acceptable values and therefore it has been concluded that this 

equipment should be utilized with temperatures above 60 °F and on less humid days.  

 

The poor performance of the equipment is explained by the spectrums obtained at different 

temperatures 34 °F and 68 °F as shown in Figures 62 and 63. The first and third fiber optic channels 

of the spectrometer give negative light intensities. Since the Aurora module of spectrometer is not 

rugged to test outside of the laboratory freezing temperatures and humidity can affect the data 

collection which in turn affect the results. The ultra Quantel laser has been manufactured for harsh 

environments and an anti-freeze cooling reagent is used as coolant. This minimizes the effect of 

laser on the poor data collection. Some spectrum processing was done to uplift the negative values 

of the spectrum, but it doesn’t make improvements and hence neglected. 

 
Figure 60. Temperature Testing, Carbonate Dolomite 
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Figure 61. Temperature Testing Results, Plumstead Argillite Stockpile 

 

 
Figure 62. LIBS spectrum obtained at 34 deg. F 

 

 
Figure 63. LIBS spectrum obtained at 68 deg. F. (laboratory condition) 
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To understand the effect of moisture content of the sample on the results the samples were soaked 
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results of sample moisture content testing. The testing depicts the samples collected after a rainy 

day and the results show that there does not appear to have any effect on LIBS testing. 

  

 
Figure 64. Sample moisture content testing results, Carbonate Dolomite 

 

 
Figure 65. Sample moisture content testing results, Plumstead Argillite Stockpile 

 

Testing of Affordability of the equipment 

Testing was done through LIBS spectrum using a high as well as a low-resolution spectrometer. 

Data was collected from the same sample and same location of an aggregate of Atkinson Quartzite. 

The Aurora module of high resolution spectrometer has a resolution of 12288 points. Figure 66 

shows the results for lower resolution spectrometer. Although various resolutions give the same 

result as that of the higher resolution spectrometer, the results are slightly better for lowest 

resolution (1/20th). This may be due to the reduced sensitivity of the low-resolution spectrometer 

to the signal noises. 
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Figure 66. Testing of the equipment using lower resolution spectrums 

 

CONCLUSIONS 
The purpose of this project is to utilize LIBS to analyze the mineral composition of aggregates in 

the field, and ensure said aggregate samples meet NJDOT standards. A review of previous 

literature and applications of LIBS has shown the system to be an attractive alternative to 

conventional chemical testing procedures. LIBS involves the use of a pulse laser to ablate and 

excite particles in a mass. As these particles return to normal energy states they emit photons of 

characteristic wavelengths which can be collected and fed into a spectrometer to obtain a spectrum 

of emitted light. The corresponding elements for wavelengths of light can be determined from the 

NIST atomic spectra database. Previous applications by other state DOTs using LIBS to analyze 

the composition and characteristics of aggregate samples have generally met with success. These 

analyses generally utilized PLSR analysis to develop predictive models by relating variation in 

spectrum traits to variation in a mineral concentration or other aggregate properties using known 

samples. Such models can then be used to determine the mineral concentrations or traits in an 

unknown sample from the light spectrum it produces. A number of models have been generated 

using Partial Least Squares Regression and subsequently tested. While preliminary models were 

inaccurate and unreliable, after several iterations of testing procedure modifications and numerous 

variations of data preprocessing and calibration parameter adjustments, reasonably accurate and 

consistent predictive models have been created using a split training set strategy. Split Training 

with Y-Scaling is found to have more accurate predictions with three way split classification 

system. The conclusions from the model testing are the following.  

 

 Split Training with Y-Scaling using a Three-Way Split classification is found to be the best 

model with an overall accuracy of 90%.  

 35 rocks were used to calibrate the model with 10 Carbonates, 8 Trap Rocks and 17 Non-

Carbonates. 

 A standard testing set size is determined as 10 samples with 3 locations per sample to 

represent the aggregate stockpile. The initial 200 laser shots are neglected to eliminate the 
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surface dust contamination and also to stabilize the peak light intensity collected. The 

accumulated data of succeeding 100 shots are saved per locations. 

 No sample preparation is needed for this testing. Brush the sample with a damp cloth to 

remove the surface dust.  

 Testing for a single stone type takes less than an hour to collect the LIBS spectrum, analyze 

the data and predict the result.  

 Various high pass filtering methods are considered to remove the broadening of the 

spectrum. This idea of smoothing the spectrum is not pursued further in this study as it did 

not produce significant improvement in test results.  

 A user-friendly GUI program is developed for easy analysis of LIBS data.  The user can 

browse the data needed to be analyzed. Manual input options are also provided for the 

number of PLS components and also for the carbonate, non-carbonate threshold values. A 

stand-alone software for the data analysis program is developed, named “Laser Analysis 

Tool,” which can be installed and used in any system without MATLAB. A program for 

expanding the calibration set in future is developed, which will automatically create the 

analysis input file needed for the model training.  

 The portable equipment is built to handle the vibrations and the impact caused by poor 

roadway and driving conditions.  

 The portable equipment is tested for various atmospheric temperatures by allowing it to 

cool/heat to the atmospheric temperature in 4hrs. It is found that the portable equipment 

gives reliable test results at 600F or above. The equipment should be stored in a temperature 

controlled room during winter to avoid the damage to the spectrometer caused by the 

freezing weather.  

 The aggregate samples with high moisture content were also tested with no impact on the 

accuracy of the results obtained.  

 This equipment is also tested with a low cost, temperature controlled, lower resolution 

spectrometer (Flame Miniature Spectrometer from Ocean Optics) and found producing 

similar results with the same accuracy. Thus the equipment can be made 50% more 

affordable in the future.  

 A manual is developed for the end users that includes the safety precautions, operation and 

maintenance of the equipment and trained the NJDOT personnel to equip them to use the 

equipment.  

 

In conclusion, 

1. Laser Induced Breakdown Spectroscopy can be used to quantify the chemical composition 

of aggregate stone samples. 

2. Partial Least Square Regression Analysis can be used to develop predictive models to 

predict the aggregate composition. 

3. Split Training with Y Scaling with a Three-Way Split classification produce accurate 

results. 

4. A Graphical User Interface program facilitates rapid model testing and future refining of 

the models. 

5. The equipment is feasible and affordable as a portable tool for field use and is efficient in 

terms of time and cost compared to XRF. 
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APPENDIX A 

 

Below is a summary of XRF results provided by the NJDOT. Note that this list only includes 

samples used for model calibration. Additional samples and chemical composition results have 

recently been received and will be incorporated into future models. 

Rock 

Names 

SiO

2 

Al2

O3 

Fe2O3 CaO MgO Na2

O 

P2O5 TiO2 K2O MnO 

Allen 

Myers 

Carbonate 

13.8 6.72

5 

2.195 43.25 31.3 0 0.748

5 

0.2265 1.235 0.0918 

Andreas 

Lehigh 

Carbonate 

42.7

5 

19.8 5.485 20.8 4.985 0.585

5 

0.687 0.8165 3.185 0.072 

Bechtesvil

le Gneiss 

51.5

5 

15.3 9.61 5.3 5.945 8.275 1.135 1.435 1.02 0.1155 

Braen 

Franklin 

Carbonate 

1.81 0.58

1 

1.405 71.3 23.7 0 0.572

5 

0 0.058

45 

0.2 

Carbonate 

Dolomite 

12.5 2.97 2.42 55.5 24 0 0.870

5 

0.1795 1.3 0.0668

5 

Dyer 

Quarry 

Diabase 

46.8 17.5 10.65 7.625 7.285 6.795 0.901

5 

1.455 0.594

5 

0.1645 

EI 

Hamburg 

Gneiss 

57.5 14.7 8.34 5.795 2.975 4.115 1.9 1.25 2.86 0.0922

5 

Eureka 

Milford 

Quartzite 

65.9

5 

20.1

5 

4.75 0.99 2.98 1.355 0.474 0.6405 2.285 0.0999 

Fanwood 

Traprock 

43.2 15.9

5 

10.75 8.22 11.25 8.45 0.711

5 

0.889 0.247 0.167 

Hanson 

Glen 

Gneiss 

54.1

5 

13.1

5 

11.85 6.715 3.295 3.205 2.185 1.9 2.215 0.178 

Kingston 

Argillite 

41.4

5 

17.8 12.1 7.32 8.17 8.595 1.003 0.7935 2.11 0.238 

Kingston 

Trap Rock 

45.9

5 

16.7 12.06

5 

10.46

5 

7.275 4.235 0.985 1.161 0.65 0.202 

Lehigh 

Asphalt 

Carbonate 

35.8

5 

7.25 8.885 35.2 3.195 0.775 1.27 1.41 3.965 0.124 

New Hope 

Crushed 

17 6.06

5 

2.05 44.15 26.7 1.445 0.333

6 

0.3395 1.475 0.0858 
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Stone 

Carbonate 

OW 

Traprock 

Orange 

Basalt 

43.2 16.1 10.25 8.575 10.4 9.41 0.676

5 

0.8265 0.254

5 

0.188 

Westfield 

Traprock 

45.3 17.1 12.25 7.88 7.215 7.625 0.728 0.7815 0.786 0.1965 

Pioneer 

Laflin 

Quartzite 

66.2 24.3

5 

3.145 0.377

5 

1.265 0.559

5 

0.379

5 

0.654 2.795 0.0666 

Temple 

Quartzite 

87.8 8.87 0.257

5 

0.136

5 

0.469 0 0.378 0.904 0.931 0 

Atkinson 

Quartzite 

64.8 15.0

5 

9.39 1.21 1.575 0.756 1.64 0.545 3.79 0.245 

Woodboro 

Carbonate 

14.8

5 

5.23 3.055 69.65 3.11 0 0.932 0.5775 1.865 0 

Plumstead 

Argillite 

Belt 

49.7

5 

16.4 12.95 6.955 2.055 3.585 1.795 1.345 4.015 0.2345 

Plumstead 

Argillite 

Stockpile 

47.2

5 

17.6 11.9 8.34 2.93 3.98 1.57 1.17 4.17 0.2195 

Tilcon 

Diabase 

46.9

5 

16.4

5 

13.95 11.4 3.805 3.435 1.53 1.325 0.714

5 

0.195 

Newhope 

Carbonate 

17.9 5.52 3.585 54.45 14.05 0.788

5 

0.943 0.574 1.71 0.118 

Eastern 

Wantage 

Carbonate 

14.5 4.99 1.565 42.45 33.95 0 0.574 0.1875 1.55 0.0295 

Tilcon 

Oxford 

Carbonate 

7.29 1.96 5.755 74.05 8.47 0 0.742 0.356 0.301 0.336 

Plumstead 

Argillite 

Lockatong 

50.1 18.5

5 

10.2 6.93 2.52 4.55 1.48 1.165 3.645 0.186 

Tilcon 

Oxford 

Gneiss 

64.6 13.0

5 

5.545 4.935 1.79 4.98 1.38 0.697 1.83 0.1085 

Eastern 

Hamburg 

Gneiss 

Losee 

70.4 13.9 2.27 4.655 0.847

5 

4.33 1.31 0.255 1.77 0.0457

5 

Moores 

Argillite 

33.5

5 

9.4 32.15 11.85 1.08 0.235

5 

1.27 2.35 6.135 0.516 
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Traprock 

Ind 

Bechtelsvi

lle Gneiss 

15179 

48.6 15.7

5 

9.93 5.005 8.025 8.84 0.605 1.115 1.53 0.1075 

Plumstead 

Argillite 

15165 

49.0

5 

19.7 6.61 4.525 4.995 10.15 0.908 0.6985 2.64 0.1285 

Tarheel 

Quartzite 

77.9 0 8.98 0.461 4.34 1.09 1.505 1.37 3.86 0.186 

Kingston 

Traprock 

15219 

45.1

5 

16.6

5 

9.54 8.49 11.45 6.125 0.803 1.095 0.426

5 

0.165 

Pyramid 

Gneiss 

45.7

5 

0 33 4.985 0.622

5 

0.099 1.33 3.875 7.95 0.439 
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APPENDIX B 

Algorithm, for Split Training and Y-Scaling Model 

plsregress function as per MATLAB 2015 (Copyright 2007-2010 The MathWorks, Inc.) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% function laseranalysis(rock_data, PLS, ncomp_in, mode_custom_thresh) 
% 
% This function handles the training and testing of a PLS model to predict 
% the chemical components of an observed data set. In training mode, this 
% function will take the observed X data and known Y data as well as the 
% number of PLS components to use and train a PLS model, saving the beta 
% matrix for use in testing. In testing mode, the function loads the saved 
% beta matrix and creates a predicted chemical composition for the observed 
% data set. 
% 
% Inputs: 
%   rock_data - struct containing X and Y data with same number of 

%   observations and corresponding rows aligned (training) or a matrix 
%   containing all of the X data (testing) 
% (X - observed data set. In training this contains the spectrometer data 

% for all aggregate stones. In testing, this contains the spectrometer  

% data for just one aggregate stone. 
% 
%       Y - known data set. In training, this contains the known composition 

%   of all aggregate stones. For testing, enter 0 for this input.) 
% 
%   PLS - struct containing PLS generated in training mode. Only used in 
%   testing mode. For training mode, this input will be null. 
% 
%   ncomp - number of PLS components to be used in training the PLS model. 
%   In training mode enter the number of PLS components to use or enter a 
%   number <= 0 to automatically use the maximum PLS components. In testing 
%   mode, enter 0 for this input. 
% 
%   mode - 'train' or 'test' (obtained from GUI) 
% 
% Outputs: 
%   Training mode - Saves the PLS model in a struct; contains beta matrix 
%   necessary for testing. 
%   Testing mode - Saves the predicted chemical composition for the input 
%   observed spectrometer data. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
function laseranalysis(rock_data, PLS, ncomp_in, mode, thresholds, 

resultsFigName, settingsSave_dir, TStamp) 
%% TRAINING MODE %% 
if(strcmp(mode,'train')) 
    w = waitbar(0,'Generating PLS Model...','Name','Please Wait...'); 
    try 
    frames = java.awt.Frame.getFrames(); 
    frames(end).setAlwaysOnTop(1); 
    catch 
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    end 

     
    % LOAD DATA IF FUNCTION IS CALLED FROM GUI 
    if(ischar(rock_data)) 
        disp('Loading Rock Data.') 
        rock_data = load(rock_data); 
        rock_data = rock_data.rock_data; 
        X = rock_data.X; 

         
        disp('Loading Y Data.') 
        Y = rock_data.Y; 
        classer = rock_data.C; 
    end 

     
    %%%%%%%%%%%%%%%%%%%%%%% 
    % PREPROCESSING STAGE % 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    % NOTE % 
    %%%%%%%% 
    % This stage can eventually contain all of the different types of 
    % preprocessing techniques we want to test. This includes the split 
    % training technique, Y-scaling, and normalizing the data to total 
    % light emission. 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

     
    waitbar(1/10,w); 
    % Remove light intensity values less than 0. 
    [m,n]=size(X); 

  
    disp('Removing negative light intensity values.') 
    for i=1:m 
        for j=1:n 
            if X(i,j)<0 
                X(i,j)=0; 
            end 
        end 
    end 
    waitbar(3/10,w); 
    % Normalizing Data to Total Light Emission 
    disp('Normalizing spectra to total light emissions.') 

     
    % Initializing total light intensity. 
        total_light_int=zeros(m,1); 

     
    for i=1:m 
        for j=1:n 
            total_light_int(i) = total_light_int(i) + X(i,j); 
        end 
    end 

     
    % Determine Xnorm 
    Xnorm = zeros(m,n); 
    for i=1:m 
        for j=1:n 
            Xnorm(i,j) = X(i,j)/total_light_int(i); 
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        end 
    end 
    waitbar(4/10,w); 
    % Perform Y Scaling 
    numCol= size(Y,2); 

     
    % Initialize minmax matrix. Currently 2x24, but it can be of varying 
    % size. 
    minmax_base = zeros(2, numCol); 
    for i = 1:numCol 

         
        maxVal = max(Y(:,i)); 
        minVal = min(Y(:,i)); 
        minmax_base(2,i) = minVal; 
        minmax_base(1,i) = maxVal; 
        val_range = maxVal-minVal; 
        if(val_range == 0) 
            Yscaled(:,i) = 0; 
        else 
            Yscaled(:,i) = (Y(:,i) - minVal)/val_range; 
        end 

         
    end 
    waitbar(5/10,w); 
    % NOTE: Do Y scaling for Carb and Nonc models after splitting into 
    % separate matrices 

     
    % Determine pls components if set to 'Auto' 
    % THIS NEEDS TO BE DONE SEPARATELY FOR EACH OF THE SPLIT TRAINING 
    % MODELS 

     
    ncomp_base_in = ncomp_in.Base; 
    if ncomp_base_in<=0; 
        disp('Determining optimal number of PLS components for Base model.') 
        ncomp = 25; 

         
        % Find PLS regression for starting number of ncomp 
        [~,~,~,~,~,PCTVAR] = plsregress(Xnorm,Yscaled,ncomp); 
        pctvar_count = 0; 
        PCTVAR = 100*PCTVAR; 

         
        % Set ncomp to max number that explains >1% of variation 
        for i = 1:ncomp 
            if (PCTVAR(2,i) >= 1) 
                pctvar_count = pctvar_count + 1; 
            else 
                break; 
            end 
        end 
        ncomp = i - 1; 
        disp(['Number of Base PLS components automatically set to ', 

num2str(ncomp),'.']); 
    else 
        ncomp = ncomp_base_in; 
    end 
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    waitbar(7/10,w); 
    % PLS REGRESSION 
    disp('Generating Broad Base PLS Model.') 
    [~,~,~,~,betamat,PCTVAR] = plsregress(Xnorm,Yscaled,ncomp); 

     
    % Creates a structure with all of the PLS Model variables to be saved as 

a 
    % .mat file. 
    PLS_Model_base = struct('Date', date, 'PercentVariation', PCTVAR, 'Beta', 

betamat, 'MinMax', minmax_base); 
    PLS_Model_base.NComp = ncomp; 

     
    % SPLIT TRAINING 
    Ycarb = []; 
    Xcarb = []; 
    Ynonc = []; 
    Xnonc = [];     
    Ytrap = []; 
    Xtrap = []; 
    for i = 1:size(Y,1) 
        switch classer(i) 

             
            case 'c'   
                Ycarb = cat(1,Ycarb,Y(i,:)); 
                Xcarb = cat(1,Xcarb,Xnorm(i,:)); 
            case 'n' 
                Ynonc = cat(1,Ynonc,Y(i,:)); 
                Xnonc = cat(1,Xnonc,Xnorm(i,:)); 
            case 't' 
                Ytrap = cat(1,Ytrap,Y(i,:)); 
                Xtrap = cat(1,Xtrap,Xnorm(i,:)); 
            otherwise 
                error('Error in XRF Sheet used in Calibration. Unknown 

classification') 
        end 
    end 

     
    % Calculate ncomp for carbonate rocks 
    ncomp_carb_in = ncomp_in.Carbonate; 
    if ncomp_carb_in<=0; 
        disp('Determining optimal number of PLS components for Carbonate 

model.') 
        ncomp_carb = 25; 

         
        % Find PLS regression for maximum number of ncomp 
        [~,~,~,~,~,PCTVAR] = plsregress(Xcarb,Ycarb,ncomp_carb); 
        pctvar_count = 0; 
        PCTVAR = 100*PCTVAR; 
        % Set ncomp to max number that explains >1% of variation 
        % Stop searching if two components in a row are found to explain 
        % less than 1%. 
        for i = 1:ncomp_carb 
            if (PCTVAR(2,i) >= 1) 
                pctvar_count = pctvar_count + 1; 
            else 
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                break; 
            end 
        end 
        ncomp_carb = i - 1; 
        disp(['Number of Carbonate PLS Model components automatically set to 

', num2str(ncomp_carb),'.']); 
    else 
        ncomp_carb = ncomp_carb_in; 
    end 

     
    % Perform Y scaling for Carbonate rocks 
    minmax_carb = zeros(2, numCol); 
    for i = 1:numCol 

         
        maxVal = max(Ycarb(:,i)); 
        minVal = min(Ycarb(:,i)); 
        minmax_carb(2,i) = minVal; 
        minmax_carb(1,i) = maxVal; 
        val_range = maxVal-minVal; 
        if(val_range == 0) 
            Yscaled_carb(:,i) = 0; 
        else 
            Yscaled_carb(:,i) = (Ycarb(:,i) - minVal)/val_range; 
        end 

         
    end 
    %------------------------------------------------------------- 
    % Calculate ncomp for noncarbonate rocks 
    ncomp_nonc_in = ncomp_in.Carbonate; 
    if ncomp_nonc_in<=0; 
        disp('Determining optimal number of PLS components for Non-Carbonate 

model.') 
        ncomp_nonc = 25; 

         
        % Find PLS regression for maximum number of ncomp 
        [~,~,~,~,~,PCTVAR] = plsregress(Xnonc,Ynonc,ncomp_nonc); 
        pctvar_count = 0; 
        PCTVAR = 100*PCTVAR; 
        % Set ncomp to max number that explains >1% of variation 
        % Stop searching if two components in a row are found to explain 
        % less than 1%. 
        for i = 1:ncomp_nonc 
            if (PCTVAR(2,i) >= 1) 
                pctvar_count = pctvar_count + 1; 
            else 
                break; 
            end 
        end 
        ncomp_nonc = i - 1; 
        disp(['Number of Non-Carbonate PLS Model components automatically set 

to ', num2str(ncomp_nonc),'.']); 
    else 
        ncomp_nonc = ncomp_nonc_in; 
    end 
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    % Perform Y scaling for NonCarbonate rocks 
    minmax_nonc = zeros(2, numCol); 
    for i = 1:numCol 

         
        maxVal = max(Ynonc(:,i)); 
        minVal = min(Ynonc(:,i)); 
        minmax_nonc(2,i) = minVal; 
        minmax_nonc(1,i) = maxVal; 
        val_range = maxVal-minVal; 
        if(val_range == 0) 
            Yscaled_nonc(:,i) = 0; 
        else 
            Yscaled_nonc(:,i) = (Ynonc(:,i) - minVal)/val_range; 
        end 

         
    end 
    %------------------------------------------------------------ 
    ncomp_trap_in = ncomp_in.Trap; 
    if ncomp_trap_in<=0; 
        disp('Determining optimal number of PLS components for Traprock 

model.') 
        ncomp_trap = 25; 

         
        % Find PLS regression for maximum number of ncomp 
        [~,~,~,~,~,PCTVAR] = plsregress(Xcarb,Ycarb,ncomp_trap); 
        pctvar_count = 0; 
        PCTVAR = 100*PCTVAR; 
        % Set ncomp to max number that explains >1% of variation 
        % Stop searching if two components in a row are found to explain 
        % less than 1%. 
        for i = 1:ncomp_trap 
            if (PCTVAR(2,i) >= 1) 
                pctvar_count = pctvar_count + 1; 
            else 
                break; 
            end 
        end 
        ncomp_trap = i - 1; 
        disp(['Number of Traprock PLS Model components automatically set to 

', num2str(ncomp_trap),'.']); 
    else 
        ncomp_trap = ncomp_trap_in; 
    end 

     
    % Perform Y scaling for Traprocks 
    minmax_trap = zeros(2, numCol); 
    for i = 1:numCol 

         
        maxVal = max(Ytrap(:,i)); 
        minVal = min(Ytrap(:,i)); 
        minmax_trap(2,i) = minVal; 
        minmax_trap(1,i) = maxVal; 
        val_range = maxVal-minVal; 
        if(val_range == 0) 
            Yscaled_trap(:,i) = 0; 
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        else 
            Yscaled_trap(:,i) = (Ytrap(:,i) - minVal)/val_range; 
        end 

         
    end 

  

     
    waitbar(8/10,w); 

     
    % PLS REGRESSION Trap 
    disp('Generating Trap Rock PLS Model.') 
    [~,~,~,~,betamat,PCTVAR] = plsregress(Xtrap,Yscaled_trap,ncomp_trap); 

     
    % Creates a structure with all of the PLS Model variables to be saved as 

a 
    % .mat file. 
    PLS_Model_trap = struct('Date', date, 'PercentVariation', PCTVAR, 'Beta', 

betamat, 'MinMax', minmax_trap); 
    PLS_Model_trap.NComp = ncomp_trap; 

     
    % PLS REGRESSION CARB 
    disp('Generating Carbonate Rock PLS Model.') 
    [~,~,~,~,betamat,PCTVAR] = plsregress(Xcarb,Yscaled_carb,ncomp_carb); 

     
    % Creates a structure with all of the PLS Model variables to be saved as 

a 
    % .mat file. 
    PLS_Model_carb = struct('Date', date, 'PercentVariation', PCTVAR, 'Beta', 

betamat, 'MinMax', minmax_carb); 
    PLS_Model_carb.NComp = ncomp_carb; 

     
    % PLS REGRESSION NONC 
    disp('Generating Non-Carbonate Rock PLS Model.') 
    [~,~,~,~,betamat,PCTVAR] = plsregress(Xnonc,Yscaled_nonc,ncomp_nonc); 

     
    % Creates a structure with all of the PLS Model variables to be saved as 

a 
    % .mat file. 
    PLS_Model_nonc = struct('Date', date, 'PercentVariation', PCTVAR, 'Beta', 

betamat, 'MinMax', minmax_nonc); 
    PLS_Model_nonc.NComp = ncomp_nonc; 

    
    waitbar(8.5/10,w); 

     
    % Create PLS structure that contains PLS models for base, carbonate, 
    % and noncarbonate all together and save. This is the file the user 
    % should load when testing the system as it contains all of the 
    % necessary PLS models. 
    PLS_Model_All = struct('Base', PLS_Model_base, 'Carbonate', 

PLS_Model_carb, 'NonCarbonate', PLS_Model_nonc, 'Trap', PLS_Model_trap); 
    save_dir = check_create_dir('LAT Results\Training Data - PLS 

Models',settingsSave_dir,3);  
    save([save_dir,'\PLS-Model-All-', TStamp, '.mat'], 'PLS_Model_All'); 
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    waitbar(10/10,w); 
    disp(['PLS Model saved to ', settingsSave_dir,'\LAT Results\Training Data 

- PLS Models']) 
    disp('Model calibration complete.') 
    delete(w) 
    waitfor(msgbox(['PLS Model saved to ', settingsSave_dir,'\LAT 

Results\Training Data - PLS Models'],'Model Calibration Complete')) 
end 
%% TESTING MODE %% 
close all; 
if(strcmp(mode,'test')) || (strcmp(mode, 'testset')) 
    w = waitbar(0,'Processing testing data...','Name','Please Wait...'); 
    try 
        frames = java.awt.Frame.getFrames(); 
        frames(end).setAlwaysOnTop(1); 
    catch 
    end 
    setdata = rock_data; 
    sampnum = numel(setdata); 
    save_dir = check_create_dir('LAT Results\Testing Data - 

Analysis',settingsSave_dir,3); 
    means=cell(sampnum+1,25); 
    chem = {'SiO2' 'Al2O3' 'Fe2O3' 'CaO' 'MgO' 'Na2O' 'P2O5' 'TiO2' 'K2O' 

'MnO' 'BaO' 'SO3' 'SrO' 'CuO' 'ZrO2' 'ZnO' 'Y2O3' 'Rb2O' 'Ga2O3' 'Cl' 'Cr2O3' 

'NiO' 'CeO2' 'Nb2O5'}; 
    means(1,2:25)=chem; 
    stddev=means; 
    resultsFigure = figure('WindowStyle', 'normal','NumberTitle','Off'); 
    if(sampnum == 1) 
        set(resultsFigure,'Name',['Single Test: ' resultsFigName ' 

Results']); 
    else 
        set(resultsFigure,'Name',['Set Test: ' resultsFigName ' Results']); 
    end 
    resultsTabGroup = uitabgroup(resultsFigure); 
    resultsTabArray = []; 
    for c = 1:sampnum 
        waitbar((1/15+14/15*(c/sampnum)),w) 
        rock_data = setdata{c}; 
        % LOAD BETA MATRIX     
        dir = pwd; 
        disp([setdata{c},':']) 
        disp('Loading PLS model.') 
        if(ischar(PLS)) 
            load(PLS); 
        end 
        betamat = PLS_Model_All.Base.Beta; 

  
        % Obtain name of rock from rock_data filename. 
        rock_type = rock_data(1:length(rock_data)-4); 

  
        if(ischar(rock_data)) 
            disp('Loading X Data.') 
            rock_data = load([settingsSave_dir '\LAT Results\Testing Data - 

Conversion to mat\' TStamp '\'  rock_data]); 
            X = rock_data.test_rock_data; 
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        end 

  
        % Preprocessing stage 
        % Should use the same techniques as in training. 

  

  
        [m,n]=size(X); 
        % Center Clipping 
        for i=1:m 
            for j=1:n 
                if X(i,j)<0 
                    X(i,j)=0; 
                end 
            end 
        end 

  
        % Normalizing Data to Total Light Emission 
        disp('Normalizing spectra to total light emission.') 

  
        % Initializing total light intensity. 

  
            total_light_int = zeros(1,m); 

  
        for i=1:m 
            for j=1:n 
                total_light_int(i) = total_light_int(i) + X(i,j); 
            end 
        end 

  
        % Initialize Xnorm 
        Xnorm = zeros(m,n); 
        for i=1:m 
            for j=1:n 
                Xnorm(i,j) = X(i,j)/total_light_int(i); 
            end 
        end 

  

  
        % MAKE INITIAL PREDICTION 
        Ypredicted = [ones(size(Xnorm,1),1) Xnorm]*betamat; 

  
        % Obtain beta and minmax from carbonate or non-carbonate models based 
        % on carbonate threshold. Beta is used for prediction, minmax is used 
        % for reverse Y scaling. 

  
        % Edit: Reverse Y scaling has been changed back to just using the 

Base 
        % min_max values rather than split based on Carbonate content. 
        min_max = PLS_Model_All.Base.MinMax; 

  
        numCol = size(Ypredicted,2); 
        for i = 1:numCol 
            val_range = min_max(1,i)-min_max(2,i); 
            Ypredicted(:,i) = (Ypredicted(:,i)*val_range) + min_max(2,i); 



67 

 

        end 

  
        % Use prediction matrix to determine whether the rock is carbonate, 
        % non-carbonate, or trap, and then make another prediction using the 
        % corresponding PLS Model. 

         
        % Ratio for classification 
        threshratio = 

mean((Ypredicted(:,1)./abs(Ypredicted(:,4))).^2.*abs(Ypredicted(:,3))); 
        disp(num2str(threshratio)) 
        if (thresholds == [-1,-1]) 
            carbthresh=150; 
            noncarbthresh=500; 
        else 
            carbthresh=thresholds(1); 
            noncarbthresh=thresholds(2); 
        end 

            
        if(threshratio <= carbthresh) 
             betamat = PLS_Model_All.Carbonate.Beta; 
             min_max = PLS_Model_All.Carbonate.MinMax; 
             disp('Classified as Carbonate') 
        elseif (threshratio<=noncarbthresh) 
            betamat = PLS_Model_All.Trap.Beta; 
            min_max = PLS_Model_All.Trap.MinMax; 
            disp('Classified as Trap') 
        else 
            betamat = PLS_Model_All.NonCarbonate.Beta; 
            min_max = PLS_Model_All.NonCarbonate.MinMax; 
            disp('Classified as Non-Carbonate') 
        end 

  
        % Make new prediction based on split training decision. 
        Ypredicted = [ones(size(Xnorm, 1), 1) Xnorm] * betamat; 

  
        % Perform reverse Y scaling on predicted matrix. 
        numCol = size(Ypredicted,2); 
        for i = 1:numCol 

  
            val_range = min_max(1,i)-min_max(2,i); 
            %if(range == 0) 
            %   Ypredicted(:,i) = 0; 
            %else 
            Ypredicted(:,i) = (Ypredicted(:,i)*val_range) + min_max(2,i); 
            %end 
            YpredLength = length(Ypredicted(:,i)); 
            for j=1:YpredLength 
                if Ypredicted(j,i)<0 
                    Ypredicted(j,i)=0; 
                end 
            end 
        end 

  
        % MEAN AND STD. DEV. CALCULATIONS 
        % Initialize mean and std. dev. variables 
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        Ymean = zeros(1,size(Ypredicted,2)); 
        Ystd = zeros(1,size(Ypredicted,2)); 
        Ymode = zeros(1,size(Ypredicted,2)); 
        Ymedian = zeros(1,size(Ypredicted,2)); 

  
        % Calculate mean and std. dev. for each column. 
        for i = 1:size(Ypredicted,2) 
            Ymean(i) = mean(Ypredicted(:,i)); 
            Ystd(i) = std(Ypredicted(:,i)); 
            Ymedian(i) = median(Ypredicted(:,i)); 
        end 

  
        % DISPLAY RESULTS IN FORMATTED TABLE 
        resultsTabArray(c) = uitab(resultsTabGroup, 'Title',rock_type); 
        Ymstd = cat(1,Ymean,Ystd,Ymedian); 
        t = uitable('Parent', resultsTabArray(c), 'Data', Ypredicted, 

'ColumnName', chem); 
        set(t,'Position',[0 80 560 315]) 
        h = uitable('Parent', resultsTabArray(c), 'Data', Ymstd, 

'ColumnName', chem, 'RowName', {'Mean','Std.','Median'}); 
        set(h,'Position',[0 0 560 80]) 
        %data extraction for excel 
            rockname=setdata{c}; 
            means(c+1,1)= {rockname(1:end-4)}; 
            stddev(c+1,1)= {rockname(1:end-4)}; 

             
            means(c+1,2:25)= num2cell(Ymean); 
            stddev(c+1,2:25)= num2cell(Ystd); 

             
        % COMPILE RESULTS STRUCTURE 
        Gap{1,24} = []; 
        lGap{1,1} = []; 
        ExcelRockSum{c} = 

[chem;num2cell(Ypredicted);Gap;num2cell(Ymean);num2cell(Ystd)]; 
        ERScol = size(ExcelRockSum{c},1) - 3; 
        ExcelRockSumLabels = {} 
        for lblC = 2:ERScol 
            ExcelRockSumLabels{lblC,1} = ['Sample ' num2str(lblC-1)]; 
        end 
        ExcelRockSumLabels = [ExcelRockSumLabels;lGap;'Mean';'Std.']; 
        ExcelRockSum{c} = [ExcelRockSumLabels ExcelRockSum{c}];  
    end 
    delete(w) 
    if exist('actxserver','file') 
        w2 = waitbar(0,'Exporting to Excel...','Name','Please Wait...'); 
        try 
            frames = java.awt.Frame.getFrames(); 
            frames(end).setAlwaysOnTop(1); 
        catch 
        end 
        if(strcmp(mode,'test')) 
            ExcelName = 'Single Test'; 
        elseif(strcmp(mode,'testset')) 
            ExcelName = 'Testing Set'; 
        end 
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        cd(save_dir) 
        warning('off','MATLAB:xlswrite:AddSheet') 
        xlswrite([ExcelName ' Results Summary ' TStamp '.xls'],means,'Mean 

Values') 
        xlswrite([ExcelName ' Results Summary ' TStamp 

'.xls'],stddev,'Standard Deviations') 
        waitbar(3/10,w2) 
        for xw = 1:length(ExcelRockSum) 
            xlswrite([ExcelName ' Results Summary ' TStamp 

'.xls'],ExcelRockSum{xw},setdata{xw}(1:end-4)) 
            waitbar((3/10)+ (6/10)*(xw/length(ExcelRockSum)),w2) 
        end 
        disp(['Prediction report spreadsheet saved to ', save_dir]) 
        fprintf('\n') 
        objExcel = actxserver('Excel.Application'); 

         
        objExcel.Workbooks.Open(fullfile(cd,[ExcelName ' Results Summary ' 

TStamp '.xls'])); % Full path is necessary! 
        try 
          objExcel.ActiveWorkbook.Worksheets.Item(1).Delete; 
        catch 
        end 

         
        try 
            for cc = 1:length(ExcelRockSum)+2 
                

invoke(objExcel.ActiveWorkbook.Worksheets.Item(length(ExcelRockSum)-cc+1), 

'Activate') 
                objExcel.Cells.Select; 
                objExcel.Selection.Columns.AutoFit; 
            end 
        catch 
        end 

         
        % Save, close and clean up. 
        objExcel.ActiveWorkbook.Save; 
        objExcel.ActiveWorkbook.Close; 
        waitbar(1,w2) 
        objExcel.Quit; 
        objExcel.delete; 
        msgbox(['An Excel spreadsheet containing a summary of this test has 

been saved in:' save_dir]) 
    else 
        warning('ActiveX process could not be created, excel summary not 

saved ') 
    end 
    cd(dir); 
    delete(w2) 
end 

 


