NJDEP – GOLDER SUBSURFACE VAPOR INTRUSION RESEARCH PROJECT

Report on:

Year One Soil Vapor Intrusion Research Study at Stafford Township and Egg Harbor Sites, New Jersey

> Submitted to New Jersey Department of Environmental Protection

> > Golder Associates

March 2005

Golder Associates Inc.

1951 Old Cuthbert Road, Suite 301 Cherry Hill, NJ 08034 Tel: (856) 616-8166 Fax: (856) 616-1874

REPORT ON

YEAR ONE SOIL VAPOR INTRUSION RESEARCH STUDY AT STAFFORD TOWNSHIP AND EGG HARBOR SITES, NEW JERSEY

Submitted to:

New Jersey Department of Environmental Protection Div. of Science, Research, and Technology P.O. Box 409 Trenton, NJ 08625

Attention: Dr. Paul F. Sanders

DISTRIBUTION:

5 Copies:	NJDEP, Trenton, NJ
1 Copy:	Dr. Paul Johnson, ASU
1 Copy:	Golder Cherry Hill, NJ, USA,
1 Copy:	Golder Amherst, MA, USA
1 Copy:	Golder Associates Ltd., Burnaby, BC, Canada

March 2005

023-6124.001

SUMMARY

This report, prepared by Golder Associates Inc. (Golder Associates) for the New Jersey Department of Environmental Protection (NJDEP), describes the results of our "Year One" research study of soil vapor intrusion titled "Investigation of Indoor Air Quality in Structures Located Above VOC-Contaminated Groundwater". The purpose of the research program was to evaluate soil vapor intrusion into buildings through field measurements, comparison to existing guidance, and site-specific mathematical modeling of vapor intrusion. An important objective of this study was to obtain supporting information that would assist NJDEP in developing guidance on soil vapor intrusion relevant to conditions in New Jersey. As part of Year One, field monitoring programs were completed at two sites in New Jersey, the Stafford Township ("Stafford") site, where subsurface contamination consists of petroleum hydrocarbons, and the Egg Harbor, Atlantic County site in New Jersey, where contamination consists of chlorinated solvents. This report provides a comprehensive description of the field testing programs conducted at the Stafford and Egg Harbor sites, and presents information previously documented in three separate reports. The field investigation at the Stafford site was conducted in three distinct phases between September 2002 and January 2004. The Egg Harbor field program was conducted in December 2003 and January 2004.

STAFFORD SITE

General

The Stafford site is located in the Coastal Plain area of southern New Jersey. The area under study is near a gasoline station, where removal of a gasoline tank confirmed the presence of soil and groundwater contamination. The neighborhood down gradient from the source consists of a mixture of small commercial and residential structures, with several types of foundations including basements (extending to a depth of 1.7 m below the ground surface), slab-on-grade construction, and crawlspaces. Soil borings indicated the presence of unconsolidated sand throughout the entire vadose zone.

The primary objective of the investigation at the Stafford site was to provide information that could be used to evaluate vapor attenuation factors for various media, specifically the groundwater-to-indoor air, soil vapor-to-indoor air, and subslab vapor-to-indoor air factors. The vapor attenuation factor ("alpha") is defined as the indoor air concentration divided by the vapor concentration at the point of interest. Secondary objectives were to provide information on spatial and temporal (seasonal) variation in groundwater, soil vapor and indoor air concentrations, evaluate vadose zone bioattenuation of hydrocarbon vapors, investigate factors affecting soil vapor intrusion through ancillary testing of environmental and building related conditions, and develop and refine methods for investigation of soil vapor intrusion into buildings.

Methods

Soil vapor intrusion at the Stafford site was evaluated using a staged investigation approach, as follows:

- *Stage One*: Groundwater and deep soil vapor investigation to delineate the groundwater plume and evaluate the potential for soil vapor intrusion (September 2002).
- *Stage Two*: Groundwater, soil vapor and indoor air investigation, and ancillary testing, conducted at five buildings to investigate indoor air quality and vapor attenuation factors (October to November 2002).
- *Stage Three*: Supplementary testing to further investigate attenuation factors and processes at one house where vapor intrusion was reported as part of Stage Two (January 2004).

Stage One consisted of groundwater and deep soil vapor sampling and analysis at seven locations. Collection of shallow groundwater and soil samples for analysis of volatile organic compounds (VOCs), and the installation of soil vapor probe implants were accomplished using the Geoprobe[®] system. Groundwater samples were analyzed for BTEX and MTBE using a mobile laboratory supplied by NJDEP. Soil vapor samples were analyzed on-site using a field GC and for light gases using a multi-gas detector. Additional soil vapor samples were collected using 6-litre Summa canisters and analyzed for VOCs (USEPA Method TO-15).

Stage Two was a coordinated program of groundwater, soil, soil vapor, subslab vapor, indoor air, and outdoor air sampling for three homes (14, 18 and 22 Park Avenue) and two small commercial buildings (63 and 73 East Bay Avenue) located above the contaminated groundwater plume. One of the commercial buildings was a house converted to an antique shop (73 East Bay Avenue, henceforth referred to as 73 Bay Avenue).

The collection and analysis of groundwater, soil and soil vapor samples followed similar protocols to Stage One, except that groundwater and soil vapor (obtained using Summa canisters) were only analyzed by a fixed laboratory (i.e., no mobile laboratory was used). The differential pressure between either the building and outdoor air, or building and subslab soil was measured using a highly sensitive pressure transducer and data logger. Continuous meteorological data, including atmospheric pressure, temperature, wind velocity, wind direction and precipitation were also obtained.

The building construction was as follows:

- 63 Bay Avenue: slab-at-grade
- 73 Bay Avenue: basement with partial crawlspace, plastic sheet on soil
- 14 Park Avenue: basement
- 18 Park Avenue: basement with partial unlined crawlspace
- 22 Park Avenue: complete unlined crawlspace

Stage Three was a coordinated program of groundwater, soil, soil vapor, subslab vapor and indoor air sampling for one house (73 Bay Avenue). To evaluate concentration variability, groundwater and soil vapor samples were obtained on opposite sides of the building perpendicular to the plume axis and direction of groundwater flow. As for Stage 2, differential pressure and meteorological data was obtained. In addition, a ventilation tracer test conducted using carbon dioxide was used to estimate the air change rate in the basement of 73 Bay Avenue.

Results and Discussion

Stage 1

The total BTEX and MTBE concentrations in groundwater at the Geoprobe[®] location adjacent to 73 Bay Avenue were 68 mg/L and 520 mg/L, respectively. Groundwater concentrations decreased with increasing distance from 73 Bay Avenue. The dissolved oxygen (DO) concentrations were at low or non-detect levels within the plume area. Highly elevated hydrocarbon and MTBE concentrations were obtained in deep soil vapor near 73 Bay Avenue. For example, the MTBE vapor concentration was 1,500,000 parts per billion (ppbV) while the benzene and cyclohexane concentrations were both 350,000 ppbV.

A preliminary screening evaluation of the potential for significant indoor air concentrations (i.e., above typical background concentrations) from soil vapor intrusion was completed using the measured deep soil vapor concentration. The indoor air concentrations were estimated using the measured soil vapor concentrations and an empirical vapor attenuation factor (alpha) of 0.001. An alpha value of 0.001 is considered to be conservative (high). The results suggested that elevated indoor air concentrations were possible for 63 and 73 Bay Avenue, but unlikely for other structures.

Stage 2

The *soil* characterization results suggested the presence of residual NAPL above the water table near 63 and 73 Bay Avenue. Soil above the NAPL zone has a low fraction organic carbon, and low moisture-holding capacity. The implication of these results is that relatively high mobility for VOC vapors would be expected, in the absence of biodegradation.

The *groundwater* monitoring results indicated elevated BTEX and MTBE concentrations at Geoprobe[®] locations near 63 and 73 Bay Avenue. The maximum total BTEX (82.5 mg/L) and MTBE concentrations (590 mg/L) were measured west of 73 Bay Avenue. The extent of the MTBE plume was similar to that observed for BTEX, based on the available data.

The *deep soil vapor* monitoring results indicated similar concentrations as Stage 1 above the inferred NAPL zone. For example, the MTBE, benzene, cyclohexane, and 2,2,4trimethylpentane concentrations were 1,600,000 ppbV, 200,000 ppbV, 300,000 ppbV and 400,000 ppbV, respectively. The *soil vapor vertical profiles* above the area of inferred residual NAPL indicated slight attenuation in concentrations between the deep and middepth probes, and significant attenuation between the mid-depth and shallow probes (reduction of between 50 and 1,000 times). The oxygen concentrations in the inferred residual NAPL area were low in deep soil gas (less than 1 percent), slightly higher in mid-depth soil gas, and at moderate levels in shallow soil gas. The vapor attenuation between the mid-depth and shallow probe is inferred to be a result of aerobic biodegradation and is consistent with the observed oxygen levels. The subslab vapor concentrations were at concentrations between the mid-depth and shallow vapor concentrations.

The *vapor concentration attenuation* for the BTEX compounds was significantly greater than for cyclohexane and 2,2,4-trimethylbenzene. This is believed to be, in part, due to the higher solubility of BTEX, which results in greater bioavailability to microorganisms. Reported aqueous phase biodegradation rates for cyclohexane and 2,2,4-trimethylpentane are also lower than for the BTEX compounds.

The *indoor* air monitoring indicated that the MTBE, cyclohexane, and 2,2,4trimethylpentane concentrations were elevated at 73 Bay Avenue, relative to concentrations measured in other buildings, and ranged between 14 ppbV and 150 ppbV for these three compounds. Numerous alkane hydrocarbons were also measured in indoor air at 73 Bay Avenue. The BTEX concentrations in indoor air at all buildings, including 73 Bay Avenue, were relatively low and within reported background levels for indoor air.

The *meteorological* data indicated the temperature ranged between 30°F and 60°F and barometric pressure variations were moderate (1010-1030 mbar) during the few days prior to and during indoor air sampling. All buildings were occupied during the sampling, so doors were periodically opened. Due to the cool weather, windows were largely, but not entirely, closed, and heating systems (natural gas-fueled forced air or oil-fueled hot water radiant) were under moderate use.

The differential *pressure* measurements indicate the basements at 73 Bay Avenue (average of - 0.6 Pa) and 14 Park Avenue (average of - 4.1 Pa) were under negative

pressure relative to atmospheric pressure, indicating an inward (to the structure) gradient for soil gas advection. At 22 Park Avenue, the crawlspace was negatively pressurized relative to indoor air. There was significant variability in differential pressure measurements and no apparent correlation between pressure and meteorological conditions.

Vapor attenuation factors for 73 Bay Avenue calculated using the sampling probes immediately west of this house are presented below:

- Groundwater-to-indoor air:
 - o MTBE: 1.1x10⁻⁵
 - o cyclohexane: 1.3×10^{-6} (one half the detection limit was used for this calculation)
 - BTEX: less than 4.1×10^{-7} to 4.9×10^{-6}
- Soil vapor-to-indoor air:
 - MTBE : 2.2×10^{-5}
 - o cyclohexane: 1.2x10⁻⁴
 - \circ 2,2,4-trimethylpentane: 3.6x10⁻⁴
 - BTEX: less than 4.3×10^{-6} to 6.3×10^{-6}
 - Subslab vapor-to-indoor air:
 - o cyclohexane: 8.4×10^{-3}
 - o 2,2,4-trimethylpentane: 7.3×10^{-3}

The measured vapor attenuation ratios are compared to the relevant semi-site specific attenuation factors (Question 5) in the draft USEPA Subsurface Vapor Intrusion Guidance (USEPA Guidance), which are 1.2×10^{-3} for the groundwater-to-indoor air pathway, and 2.2×10^{-3} for the soil vapor-to-indoor air pathway. The comparisons indicate that the measured alpha's values are 6X to over 100X less than the USEPA values, for compounds that are relatively recalcitrant to biodegradation (cyclohexane, 2,2,4-trimethylpentane).

The Stage 2 program highlighted the effectiveness of volatile tracers such as 2,2,4trimethylpentane and cyclohexane in evaluating potential vapor intrusion. For the BTEX compounds, there was significant vapor bioattenuation and no measurable vapor intrusion. The conclusions drawn are for limited data comprised of testing for one house, and one monitoring round.

Stage 3

A comparison of the October 2002 and January 2004 groundwater concentrations measured at nearby locations west of 73 Bay Avenue indicate similar BTEX and MTBE concentrations. A comparison of the deep vapor results indicated the 2004 concentrations were both higher and lower than those measured in 2002, depending on the compound.

A comparison of groundwater measurements from opposite sides of the house indicated a lateral decrease in BTEX and MTBE concentrations from west to east that ranged from 60X to 3,750X for shallow groundwater samples, and 1.2X to 64X for deep samples. There was also a significant difference in the vapor concentrations, with high concentrations west of 73 Bay Avenue and background levels to the east.

The 2004 vapor attenuation factors were calculated using the west sampling probes ("minimum" alpha's) and average of the west and east sampling probes ("average" apha's):

- Groundwater-to-indoor air:
 - Cyclohexane: 8.3×10^{-6} (min); 1.7×10^{-5} (avg) (one half the detection limit was used for this calculation).
 - BTEX: less than 1.0×10^{-6} to 9.5×10^{-6} (min); 1.5×10^{-6} to 1.4×10^{-5} (avg).
- Soil vapor-to-indoor air:
 - Cyclohexane: 8.0×10^{-5} (min); 1.4×10^{-4} (avg)
 - o 2,2,4-trimethylpentane: 3.4×10^{-4} (min); 6.7×10^{-4} (avg)
 - BTEX: less than 2.7×10^{-6} to 4.1×10^{-5} (min); 5.3×10^{-6} to 8.0×10^{-5} (avg).
 - Subslab vapor-to-indoor air:
 - o Cyclohexane: 3x10⁻²
 - o 2,2,4-trimethylpentane: $4x10^{-2}$

The building ventilation test was successful and indicated that a CO_2 tracer test can be readily implemented to estimate building air change rates. While not expected to become a routine test for vapor intrusion studies, it could provide useful information when a more precise estimate of ventilation rate is required.

The deep vapor measurements are considered the most reliable data for evaluating vapor intrusion since they avoid the partitioning step from groundwater. The subslab vapor alpha's provided above may be biased high as a result of sampling issues, as described in the report. The 2004 soil vapor measurements west of 73 Bay Avenue were similar to those in 2002. In addition, the vapor alpha's using the west vapor probe data were similar for cyclohexane and 2,2,4-trimethylpentane indicating repeatable results were obtained for these compounds, even through the January 2004 monitoring was conducted under colder conditions (13 to 40° F) compared to October 2002 (30 to 60° F).

The groundwater and deep vapor measurements indicate significant lateral variability. The implication is that an evaluation of vapor intrusion potential and health risk could be quite different depending on where samples are obtained. The results indicate the importance of a sound conceptual site model (CSM) for spatial distribution of contamination. One measurement point beside a building may be reasonable if one is relatively certain that the maximum concentrations are determined; however, multiple data points are preferable to characterize concentration variability.

The 2004 light gas monitoring results are consistent with the 2002 results indicating significant BTEX vapor biodegradation within the unsaturated zone as a result of aerobic biodegradation, which reduces BTEX concentrations below the building to low levels.

Site-Specific Modeling Assessment Using Johnson and Ettinger Model

A site-specific modeling assessment of soil vapor intrusion was conducted for the building located at 73 Bay Avenue using the USEPA spreadsheet version of the Johnson and Ettinger (J&E model). The purpose of the assessment was to calculate predicted vapor attenuation factors (alpha's) using input parameters based on site specific measurements and estimated values for the Stafford site, for comparison to measured alpha's and default USEPA semi-site specific alpha's (Question 5, USEPA Guidance).

There is little difference between the alpha's predicted by the J&E model and the semisite specific Question 5 alpha's (less than factor of 2.3). The reason, in this case, was that there was little difference between the site-specific model inputs and US EPA Guidance default model assumptions. However, the J&E alpha's were about ½ to 1 order-ofmagnitude greater than the measured average alpha's (for non-degrading tracers) based on January 2004 data. Although the model comparisons are limited in scope, they suggest for this site that the J&E model would result in slightly conservative predictions. This is consistent with findings presented by Hers et al. (2003).

EGG HARBOR SITE

General

The Egg Harbor site is located in Atlantic County in the Coastal Plain area of southern New Jersey. A dissolved chlorinated solvent plume in groundwater extends below a residential area in Egg Harbor. The source of the chlorinated solvents were releases from a former clothing and glass/mirror making facility. The neighborhood down gradient from the source consists of single family houses and townhouses. Soil borings indicate the presence of unconsolidated sand, silt and clay throughout the entire vadose zone. The depth to the water table in the study area was approximately 7 to 9 feet below ground surface.

NJDEP Study

NJDEP completed two investigations in 2003 at the Egg Harbor site to characterize the contamination source area and to delineate the dissolved plume in groundwater. In the residential area, the main focus of this program was to delineate the vertical and lateral distribution of chlorinated solvents in groundwater through use of the Geoprobe[®] system of sampling. Chemical analyses of groundwater indicated that the main contaminants of potential concern (COPCs) were tetrachloroethene (PCE) and trichloroethene (TCE). Below the residential area, the maximum measured concentrations of PCE and TCE in groundwater were 41,731 μ g/L (45 to 48 feet) and 300 μ g/L (18 to 20 feet).

Important findings of the NJDEP program were as follows:

- The presence of approximately 6 feet of shallow groundwater near to the water table surface with PCE concentrations that were near to or below the analytical reporting limit in the residential area;
- Significant vertical concentration variability suggesting a relatively complex layered geology which influences groundwater flow and chemical transport, and;
- Possible evidence for a freshwater wedge based on near water table concentrations that decreased with increasing distance from the contamination source.

Golder Study

A groundwater and soil vapor monitoring program was completed by Golder in December 2003 and January 2004 at the Egg Harbor site. The objective of the program was to determine the potential for cross-media transfer of volatiles (primarily PCE) from groundwater to soil vapor, and soil vapor intrusion into homes. The groundwater program consisted of Geoprobe[®] sampling of groundwater from multiple depths, installation of one monitoring well, collection and analysis of groundwater samples from multiple depths within this well, and monitoring of the depth to groundwater over a several week period. The soil vapor program consisted of installation of soil gas sampling implants near to the water table to obtain samples for characterization of deep soil vapor quality. Soil vapor samples were obtained using Summa canisters (USEPA Method TO-15).

The Golder study indicated the presence of near-surface interlayered coarse- and finegrained soil up to 8 feet to 10 feet depth below ground surface underlain by sand and silty sand. The groundwater monitoring at three sites indicated that there was about 6 feet of groundwater (from about 8 to 14 feet bgs) near the water table surface with non-detect or low PCE concentrations (less than 1.2 mg/L). The maximum measured PCE concentration (2,600 μ g/L) was in groundwater from 18 to 20 feet bgs. All PCE concentrations obtained from the monitoring well were below the analytical reporting limit. The PCE concentrations in soil vapor near the water table were low (non-detect to 2.5 ppbV) confirming low vapor source strength.

Discussion and Conclusions

The December 2003/January 2004 groundwater concentration trends were similar to those measured by NJDEP earlier in 2003, and suggest there is a layer of non-contaminated groundwater (i.e., fresh-water wedge) that increases in thickness with increasing distance down-gradient from the contamination source.

As was discussed for Stafford, the Egg Harbor case study highlights the importance of a sound CSM and site characterization when evaluating the potential for soil vapor intrusion since significantly different interpretations will result depending on the input groundwater concentrations. This is illustrated through reference to the USEPA Vapor Intrusion Guidance. A groundwater screening level of 11 μ g/L is obtained for the Egg Harbor site using the USEPA Guidance, based on a semi-site specific alpha of 1x10⁻⁴ and a target incremental lifetime cancer risk of 1x10⁻⁶ (Table 3 in Guidance). The measured PCE concentrations in shallow groundwater were less than this screening value, whereas, in deeper groundwater below 15 feet bgs, they were several orders-of-magnitude greater. It would have been interesting to have a thinner wedge of groundwater with low groundwater concentrations for site characterization methodology and interpretation of results. For example, the PCE concentrations in a well with a 10 foot long screen may have shown elevated concentrations compared to a shorter screen positioned higher in the groundwater column.

Although it appears that the potential for soil vapor intrusion into houses from the Egg Harbor chlorinated solvent plume is low, the results for this site highlight the importance of characterization of hydrological conditions, hydrostratigraphic units and vertical groundwater concentration profiles.

ACKNOWLEDGEMENTS

Dr. Paul Sanders, Mr. John Boyer, Ms. Amanda Coombs, Ms. Tracy Grabiak, Ms. Kathy Grimes, Mr. Kevin Schick, Mr. Jerry Schoenleber and Ms. Lynn Vogel of NJDEP provided assistance that was invaluable in completing this research program, and we acknowledge their thoughtful input provided at various stages of the study. We also acknowledge the helpful review comments provided by Dr. Paul Johnson of Arizona State University.

TABLE OF CONTENTS

SECTION

PAGE

1.0	INTR	ODUC ⁻	ΓΙΟΝ	1
2.0	STAF	FORD	STAGE ONE PROGRAM	2
	2.1	Stage	One Objectives	2
	2.2	Stage	One Methods	2
		2.2.1	Soil Sampling and Analysis	2
		2.2.2	Groundwater Sampling and Analysis	3
		2.2.3	Soil Vapor Sampling and Analysis	3
	2.3	Stade	One Results	4
		2.3.1	Soil Sampling and Analysis	4
		2.3.2	Groundwater Sampling and Analysis	4
		2.3.3	Soil Vapor Sampling and Analysis	5
	2.4	Stage	One Data Analysis	6
3.0	STAF	FORD	STAGE TWO PROGRAM	7
0.0	31	Stage	Two Objectives	7
	3.2	Stage	Two Methods	,
	0.2	321	Pre Sampling House Survey	
		322	Soil Sampling and Analysis	9
		323	Groundwater Sampling and Analysis	
		324	Soil Vapor Sampling and Analysis	10
		325	Subslab Vapor Sampling and Analysis	11
		326	Indoor Air Sampling and Analysis	11
		327	House Conditions during Sampling	12
		3.2.8	Outdoor Air Monitoring	12
		3.2.9	Weather Data.	13
	3.3	Stage	Two Results	13
		3.3.1	Pre Sampling House Survey	13
		3.3.2	Soil Sampling and Analysis	14
		3.3.3	Groundwater Sampling and Analysis	15
		3.3.4	Soil Vapor Sampling and Analysis	17
		3.3.5	Subslab Vapor Sampling and Analysis	17
		3.3.6	Indoor Air Sampling and Analysis	18
		3.3.7	House Conditions During Sampling	18
		3.3.8	Outdoor Air Monitoring	20
		3.3.9	Weather Data	20
	3.4	Stage	Two Data Analysis	20
		3.4.1	Comparison of Measured to Background Indoor Air VOC	
			Concentrations	20
		3.4.2	Comparison of Measured to Predicted Source Soil Vapor	
			Concentrations	21
		3.4.3	Soil Vapor Attenuation	23
		3.4.4	Comparison of Subslab Vapor to Indoor Air Concentrations	24
		3.4.5	Comparison of Basement to First Floor Indoor Air Concentration	S
		-		25
		3.4.6	Comparison of Measured Vapor Attenuation Factors to Regulato	ory
		-	Guidance	25
4.0	STAF	FORD	STAGE THREE PROGRAM	26
-	4.1	Stage	Three Objectives	26
				-

	4.2	Stage ⁻ 4.2.1	Three Methods	26 26
		4.2.2	Groundwater Sampling and Analysis	27
		4.2.3	Soil Vapor Sampling and Analysis	28
		4.2.4	Subslab Vapor Sampling and Analysis	29
		4.2.5	Indoor Air Sampling and Analysis	29
		4.2.6	Weather Data	29
		4.2.7	House Conditions during Sampling	30
		4.2.8	Basement Air Exchange Determination	31
		4.2.9	Summa Canister Sampling Issues	32
	4.3	Stage [·]	Three Results	32
		4.3.1	Soil Sampling and Analysis	32
		4.3.2	Groundwater Sampling and Analysis	34
		4.3.3	Soil Vapor Sampling and Analysis	35
		4.3.4	Subslab Vapor Sampling and Analysis	36
		4.3.5	Indoor Air Sampling and Analysis	36
		4.3.6	Weather Data	36
		4.3.7	House Conditions	37
		4.3.8	Basement Air Change Determination	38
	4.4	Stage	I hree Discussion	41
		4.4.1	Comparison of 2002 and 2004 Monitoring Results	41
			Groundwater	41
			Vapor West of 73 Bay Avenue	41
			Subslab Vapor	41
			Indoor Air	42
		4.4.2	Concentration Variability	42
		4.4.3	Vapor Attenuation Ratios	42
			Groundwater to Indoor Air (Basement)	42
			Soil Vapor to Indoor Air (Basement)	43
			Measured Subslab to Indoor Air (Basement)	43
			Comparison 2002 and 2004 Alpha's	43
			Comparison of Basement to First Floor Indoor Air Concentration	ons44
	4.5	Stage	Three Conclusions	44
5.0	STAF	FORD	STAGE FOUR PROGRAM: SITE SPECIFIC ASSESSME	NT
	USING	G JOHN	NSON AND ETTINGER MODEL	.45
6.0	EGG I	HARBC	R PROGRAM	.47
0.0	6.1	Backor	ound Information	.47
	•••	6.1.1	Overview	47
		6.1.2	Summary of NJDEP Program Results	
		6.1.3	Preliminary Hydrogeological Evaluation	49
			Groundwater Flow Velocity	49
			Recharge to Groundwater	49
		6.1.4	Information For Other Sites	
		•••••	Cumberland Farms	50
			South Jersey Gas (SIG)	50
			Fleet National Bank	50
	62	Pation	alo and Approach	
	0.2 6 3	Progra	aic and Αρμιθαση m Ohiectives	
	6.4	Progra	m Scope and Methods	
	0.7	6 <u>4</u> 1	Soil Sampling and Analysis	
		5.1.1		

		6.4.2	Monitoring Well Installation and Groundwater Level	
			Measurements	53
		6.4.3	Groundwater Sampling and Analysis	54
		6.4.4	Soil Vapor Sampling and Analysis	55
		6.4.5	Weather Data	
	6.5	Field I	nvestigation Results	
		6.5.1	Soil Sampling and Analysis	56
		6.5.2	Soil and Groundwater Conditions	57
		6.5.3	Groundwater Sampling and Analysis	58
		6.5.4	Soil Gas Sampling and Analysis	60
		6.5.5	Weather Data	61
		6.5.6	Groundwater Level Data from Pressure Transducer	62
	6.6	Discus	ssion	63
	6.7	Conclu	usions	65
7.0	REFE	RENC	ES	66

LIST OF TABLES

Table 2-1	EnCore TM Test Results for Soil Samples
Table 2-2	Groundwater and Soil Vapor Test Results
Table 2-3	Predicted Deep Soil Vapor Using Groundwater Concentrations
Table 2-4	Predicted Indoor Air Concentrations Using Soil Vapor and Default Alpha
	Value
Table 3-1	Summary of House Characteristics
Table 3-2	Results of October 2002 Field Headspace Vapour Tests
Table 3-3	Results of October 2002 Soil Analyses
Table 3-4	Field Groundwater Testing October 2002
Table 3-5	Results of September and October 2002 Groundwater Testing
Table 3-6	Results of Light Gas Analyses – October to November 2002
Table 3-7	October 2002 Soil Vapor Test Results
Table 3-8	Sample Inventory
Table 3-9	Conversion Between ug/m ³ and ppbV for Common VOCs
Table 3-10	Results of Sub-Slab and Indoor Air Testing October 2002
Table 3-11	Results of Field Duplicate Analyses of Indoor Air Samples
Table 3-12	Results of Outdoor Air Analysis
Table 3-13	Compilation of Background Indoor Air Quality Data
Table 3-14	Compilation of Background Indoor Air Quality Data
Table 3-15	Vapor Pathway Assessment
Table 3-16	Physical-Chemical Parameters for Key Compounds
Table 4-1	Final Summa Canister Pressures Measured at Laboratory
Table 4-2	Soil Moisture Contents January 22, 2004 (In text)
Table 4-3	Groundwater Field Parameter Readings January 19, 2004 (In text)
Table 4-4	Results of January 2004 Groundwater Testing at Stafford Site
Table 4-5	Light Gas Testing Results January 19, 2004 (In text)
Table 4-6	2004 Soil Vapor Results
Table 4-7	2004 Subslab and Indoor Air Testing Results
Table 4-8	Weather Conditions at Atlantic City Airport – January 2004
Table 4-9	2004 Vapor Pathway Assessment 73 Bay Avenue Details
Table 4-10	2004 Vapor Pathway Assessment 73 Bay Avenue Summary

Table 5-1	Johnson and Ettinger Model Input Values for Site-Specific Assessment
Table 5-2	Comparison of Site Specific Alpha's to Measured Alpha's for 73 Bay
	Avenue
Table 6-1	Soil Moisture Contents December 2, 2003 (In text)
Table 6-2	Groundwater Levels Egg Harbor Monitoring Wells (In text)
Table 6-3	Groundwater Field Parameter Readings (In text)
Table 6-4	Groundwater Chemistry Results – Egg Harbor (In text)
Table 6-5	Light Gas Testing Results December 3 and 4, 2003 (In text)

- Table 6-6Soil Vapor Chemistry Results Egg Harbor (In text)
- Table 6-7Measured Precipitation Atlantic City Airport (In text)
- Table 6-8Groundwater Screening Levels for PCE (In text)

LIST OF FIGURES

Sample Locations, Bay Avenue, Manahawkin, Stafford Twp. 0.1-0.4 Miles
Sample Locations, Bay Avenue, Manahawkin, Stafford Twp., 0.6-0.12 Miles
Stafford Township Site Plan
Stafford Site Soil Headspace Vapor Test Results October 2002
Stafford Township Shallow Groundwater Quality (MTEX) – September 2002
Stafford Township Shallow Groundwater Quality (MTBE) – September 2002
Stafford Township Shallow Groundwater Quality (BTEX) – October 2002
Stafford Township Shallow Groundwater Quality (MTBE) – October 2002
Basement to Outdoor Differential Pressure at 73 Bay Avenue-
October 23-24, 2002
Indoor to Crawlspace Pressure Differential at 22 Park, October 23-24,
2002
Basement to Outdoor Differential Pressure at 14 Park - October 29-30, 2002
Basement to Sublab Differential Pressure at 14 Park - October 29-30, 2002
Stafford Township 2,2,4 – Trimethylpentane – October 2002
Stafford Township Benzene – October 2002, 73 Bay Avenue
Stafford Township MTBE – October 2002, 73 Bay Avenue
Stafford Township Cyclohexane – October 2002, 73 Bay Avenue
Soil Vapor and Indoor Air Concentrations, 73 Bay Avenue
Sampling Locations at 73 Bay Avenue
Differential Pressure 73 Bay Avenue
Differential Pressure 73 Bay Avenue
Results of CO ₂ Monitoring Ventilation Tracer Test (In text)
Smoothed CO ₂ Concentration for Data Logger No. 1 (In text)
CO ₂ Ventilation Test Background Corrected Concentration (In text)
Groundwater and Vapor Sampling Locations
Maximum PCE and TCE Concentrations at Selected Wells

Figure 6-3 Groundwater Level Data for MW-Site 1 (In text)

LIST OF APPENDICES

A 1' T	
Appendix I	Stafford Pre-Sampling Survey Results
Appendix II	Stafford Site Photographs
Appendix III	Stafford Results of Organic Matter and Water Retention Testing
Appendix IV	Additional Vapor Attenuation Factor Calculations for Stafford Site
Appendix V	Stafford Grain Size and Moisture Content Testing
Appendix VI	Egg Harbor NJDEP Site Investigation Data
Appendix VII	Egg Harbor Golder Borehole Logs and Groundwater Sampling Forms
Appendix VIII	Egg Harbor Photographs
Appendix IX	Technical paper "Vapor Intrusion in Homes over Gasoline-
	Contaminated Groundwater in Stafford, NJ" by Paul Sanders and Ian
	Hers, accepted for publication in Groundwater Monitoring and
	Remediation.

1.0 INTRODUCTION

Golder Associates Inc. (Golder Associates) is pleased to provide the New Jersey Department of Environmental Protection (NJDEP) with this "Year One" report documenting the results of the site investigation programs at the Stafford Township and Egg Harbor, Atlantic County sites in New Jersey, conducted as part of the NJDEP-Golder research study on "*Investigation of Indoor Air Quality in Structures Located Above VOC-Contaminated Groundwater*".

The purpose of the Year One program was to evaluate the potential for soil vapor intrusion into buildings at sites underlain by groundwater impacted with petroleum hydrocarbons (Stafford Township) and chlorinated solvents (Egg Harbor). Evaluations were made using field measurements, comparison to existing guidance, and site-specific mathematical modeling of vapor intrusion. An important objective of this study was to obtain supporting information that would assist NJDEP in developing guidance on soil vapor intrusion relevant to conditions in New Jersey.

This report provides a comprehensive description of the field testing programs conducted at both sites between 2002 and 2004, and presents information previously documented in three separate reports (Golder 2003, Golder 2005a, Golder 2005b). This report is separated into two main parts presenting the results for the Stafford site (Part I: Sections 2 to 5) and Egg Harbor (Part II: Section 6). Since the field investigation at the Stafford site was conducted in three distinct phases with different objectives for each phase, the complete results for each phase are presented as separate sections of the report. The Phase 1 results are presented in Section 2.0, the Phase 2 results in Section 3.0 and Phase 3 results in Section 4.0. A technical paper summarizing the Phase 1 and 2 study results for the Stafford site is attached in Appendix IX of this report. Laboratory chemistry reports are not included as part of this document, having been previously provided to NJDEP as part of the above-referenced reports.

The "Year Two" research program is in-progress, and currently is comprised of additional field-based research at one new site where there is the potential for vapor intrusion into buildings, and mathematical modeling of vapor intrusion.

PART I: STAFFORD SITE

2.0 STAFFORD STAGE ONE PROGRAM

2.1 Stage One Objectives

The objectives of the Stage One program were to:

- 1. Obtain information on groundwater flow direction and hydraulic gradient.
- 2. Delineate the dissolved BTEX and MTBE concentrations in shallow groundwater downgradient from the source. Obtain information on both the lateral and vertical distribution of dissolved chemicals in groundwater.
- 3. Characterize soil vapor samples directly above the tension-saturated zone (capillary fringe).
- 4. Obtain information that would enable evaluation of whether groundwater and deep soil vapor concentrations are sufficiently elevated to represent a significant source for intrusion of vapors into buildings.

2.2 Stage One Methods

The Stage One program scope was as follows:

- Soil sampling and analysis (two samples);
- Groundwater sampling and analysis (fourteen samples at seven locations), and;
- Soil vapor sampling and analysis (seven samples at seven locations).

The field program was conducted by NJDEP in September 2002. Golder Associates provided input on field methods and sampling locations, and coordinated the collection of soil vapor samples using Summa canisters.

2.2.1 Soil Sampling and Analysis

At seven sampling locations (Figures 2-1 and 2-2), a 1.5-inch diameter soil core was obtained using a "Geoprobe" sampler. Two soil samples were collected using the $EnCore^{TM}$ method (www.ennovativetech.com), and submitted for BTEX and MTBE analysis (USEPA Method 8260B) by STL Laboratories in Edison, NJ.

2.2.2 Groundwater Sampling and Analysis

Groundwater samples were obtained on September 9 to 12, 2002 from seven temporary groundwater probes installed using a Geoprobe sampling system (Figures 2-1 and 2-2). The groundwater sampling and analysis program followed the same methods used by NJDEP on other similar projects.

The groundwater sampling system consisted of $1 \frac{3}{4}$ inch ID steel rods (manufactured by Maverick), $\frac{7}{8}$ inch PVC slotted screen (manufactured by Geoscreen), which was protected by a steel sleeve. When the desired depth was reached, the sleeve was withdrawn to expose the 41-inch long screen. The Geoprobe was advanced until the top of the screen approximately coincided with the water table. At each location, a groundwater sample was obtained from 0 to 2 ft below the water table, and from 2 to 4 feet below the water table.

A peristaltic pump was used to purge water from the probe. Groundwater samples were collected manually using a Waterra check valve and tubing. The intake point of the Teflon tubing used for groundwater sampling was set near the middle of the screen. The purging and groundwater sampling rate was approximately 450 ml/minute. During purging, the pH, conductivity, turbidity, dissolved oxygen (DO) and oxidation-reduction potential (ORP) were measured using a Horiba U-22 field meter. Groundwater samples were analyzed for BTEX and MTBE using a mobile laboratory supplied by NJDEP. The analytical method was similar to USEPA Method 524.

2.2.3 Soil Vapor Sampling and Analysis

Soil vapor samples were obtained on September 9-12, 2002 from seven temporary hollow steel probes installed within 3 feet of the borehole locations (Figures 2-1 and 2-2). Soil vapor samples were obtained within 1.5 ft of the water table. The soil vapor sampling and analysis program followed the same methods used by NJDEP on other similar projects.

The soil vapor probes were approximately ¹/₂ inch diameter ID hollow steel rods with detachable tip. Prior to installation the rods were thoroughly cleaned using a high pressure, hot-water wash. After cleaning, the outside of rod joints were sealed with Teflon tape. The soil vapor probe was pushed to the desired depth, the tip was detached, and the rods were pulled back 4 to 6 inches. The ground surface around the soil vapor probe was sealed using bentonite. A barbed fitting was connected to the rods, which in turn connected to flexible medical-grade sylastic tubing. The flexible tubing was connected to an air-sampling pump.

The probe was purged of two standing air volumes at a rate of 100 to 200 ml/min. Immediately after completion of purging, a soil vapor sample was obtained using a 250 μ l to 500 μ l syringe that was inserted through tubing that was bent over at the top of the probe. The syringe sample was analyzed in the field for BTEX and MTBE using a Photovac 1050 Gas Chromatograph (GC)/Photoionization Detector (PID).

After syringe sampling, a second sample was obtained for laboratory analysis for volatile organic compounds (VOCs). This sampling was coordinated by Golder. A six-litre Summa canister was connected to the probe and filled over a one-hour period, which corresponds to a flow rate of 100 ml/min. Teflon-lined tubing was used to connect the probe to the Tedlar bag. Summa samples were analyzed by ATL Laboratories (Folsom, California) for VOCs by USEPA Method TO-15 (GC/Mass Spectroscopy (MS)).

After obtaining a canister sample, a soil gas sample was collected for field light gas testing at each probe, as follows. A one-litre Tedlar bag was connected to the probe and filled at a rate of 100 ml/min. Teflon-lined tubing was used to connect the probe to the Tedlar bag. The light gas concentrations were measured using a Landtec GEM-2000.

2.3 Stage One Results

2.3.1 Soil Sampling and Analysis

The BTEX concentrations in the soil sample from BH-2 (9 to 9.5 ft depth) were below the analytical reporting limit of between 0.0015 mg/kg and 0.0074 mg/kg, while the MTBE concentration was 0.2 mg/kg (Table 2-1). The benzene and total xylene concentrations in the soil sample from BH-3 (11.5 to 12 ft depth) were 0.68 mg/kg and 0.52 mg/kg, respectively, while the MTBE concentration was 63 mg/kg.

The BTEX concentrations in groundwater at Borehole BH-2 were highly elevated suggesting the presence of a residual NAPL zone at the water table. Concentrations in the soil sample tested from BH-2 were low since the sample was likely collected above the residual NAPL zone.

2.3.2 Groundwater Sampling and Analysis

Groundwater samples were collected from seven locations (Table 2-2). The highest concentrations were measured at BH-2 where the total BTEX and MTBE concentrations were 68 mg/L and 520 mg/L, respectively. The next highest concentrations were measured a short distance down-gradient at BH-3 (total BTEX and MTBE equal to 9.4 mg/L and 238 mg/L, respectively). The BTEX and MTBE concentrations decreased sharply at the monitoring wells located further down-gradient (BH-5 and BH-6).

The hydrocarbon concentrations at BH-6 were higher than at BH-5. This was expected since BH-6 is closer to the hydrocarbon source than BH-5. Also noted for BH-6 was that the hydrocarbon concentrations in the deeper groundwater sample (2 to 4 feet below water table) were about one order-of-magnitude higher than the concentrations in the shallow sample (0 to 2 feet below water table).

The hydrocarbon concentrations at wells BH-1, BH-4 and BH-7, inferred to be crossgradient to the plume based on inferred groundwater flow direction, were low and near to, or below, the analytical laboratory reporting limits.

The dissolved oxygen (DO) concentrations were non-detect at all locations except BH-7 where the DO concentration was 0.79 mg/L. Non-detect DO concentrations were expected at wells within the plume. At wells that are cross-gradient to the plume (BH-1, BH-4, BH-7) detectable DO concentrations were expected since hydrocarbon concentrations were low. However, it is possible that the zone of oxygen depletion extends somewhat further laterally than the zone of hydrocarbon-contaminated groundwater. The ORP results indicated reducing conditions at wells within the plume, as expected.

2.3.3 Soil Vapor Sampling and Analysis

Highly elevated hydrocarbon and MTBE concentrations were obtained at BH-2 (several hundred thousand to million $\mu g/m^3$). The compound with the highest concentration was iso-pentane (15,000,000 $\mu g/m^3$). At BH-6, moderate BTEX concentrations were measured (toluene was highest at 1,400 $\mu g/m^3$). Low ug/m^3 concentrations were measured at the remaining locations.

The Summa canister concentrations were higher than the syringe concentrations (between 2 and 16 times). The difference in concentrations between the two methods was relatively consistent. The reason for the shift in concentrations is not known. The syringe sampling and field GC/PID analysis is a screening method that is probably less reliable than the Summa analysis, which involves a larger volume sample, GC/MS analysis and a fixed laboratory.

The hydrocarbon vapor concentrations at BH-5 were higher than at BH-6 (i.e., in contrast to the trend observed in groundwater). This was unexpected since borehole BH-5 is located further down-gradient than BH-6.

The light gas results indicate that the oxygen concentrations ranged between 9.8 and 21.4 percent at soil gas samples obtained from directly above the water table. The oxygen concentration in the gas sample at BH-2 was 16.1 percent. The oxygen concentration at BH-2 was higher than expected since the consumption of oxygen through biodegradation near the NAPL zone would be expected.

2.4 Stage One Data Analysis

As part of Stage One, preliminary analysis of data was conducted, as described below:

- 1. **Groundwater Flow Direction and Hydraulic Gradient**: These parameters could not be determined based on information collected. The inferred groundwater flow direction is toward the southwest based on surface topography (Figure 2-2).
- 2. **NAPL Extent**: Based on chemistry results and visual indications of hydrocarbon contamination (staining of instruments and well), residual NAPL is likely present at or near borehole BH-2.
- 3. **Dissolved Plume Extent**: The dissolved hydrocarbon plume extends southwest from BH-2. The dissolved concentrations at BH-3, located approximately 150 feet from BH-2, are almost as high as those measured at BH-2. There is a significant decline in concentrations at BH-5 and BH-6. Borehole BH-5 is located approximately 260 feet from BH-2. The dissolved plume appears to be relatively narrow in that hydrocarbon concentrations at wells located east of Park Avenue were near to, or below, the analytical reporting limit.
- 4. **Comparison Predicted Soil Vapor based on Groundwater to Measured Soil Vapor**: When comparing predicted deep soil vapor concentrations to measured concentrations, it is important that these comparisons are based on an appropriate conceptual site model and partitioning model. When there is NAPL present above the water table, as is likely the case at BH-2, a NAPL to vapor partitioning model should be used. In the absence of NAPL, the Henry's Law Constant can be used to predict the soil vapor concentration; however, the measured concentrations will always be lower than predicted as a result of concentration attenuation through the capillary transition zone. In addition, lower measured than predicted concentrations are expected due to non-equilibrium conditions for partitioning.

In areas with dissolved contamination, the ratio between measured and predicted values obtained using the Henry's Law Constant ranged between 1.5×10^{-4} and 5.0×10^{-2} for the BTEX compounds and MTBE (BH-6, Table 2-3). At BH-2, the ratio between measured and predicted values ranged between 0.1 and 0.55 for the BTEX compounds and MTBE. The better agreement between measured and predicted concentrations at BH-2 may be due to the presence of NAPL at this location that provides a consistent source concentration.

It is not possible to quantitatively use a NAPL to vapor partitioning model since the mole fraction is not known for individual chemicals. Nevertheless, an approximate calculation is provided for benzene to provide insight on possible partitioning. It is

assumed that the mole fraction of benzene in the NAPL mixture is one percent. This is a reasonable estimate based on the composition of gasoline. The benzene solubility multiplied by the mole fraction provides an estimate of the local equilibrium aqueous benzene concentration based on partitioning from NAPL. The predicted aqueous benzene concentration is 17.5 mg/L. The measured benzene concentration at BH-2 was 12.3 mg/L. Using a NAPL to vapor partitioning model and mole fraction of one percent, the predicted equilibrium vapor concentration is about 4.0 x 10⁶ µg/m3. The measured vapor concentration was 2.8 x 10⁶. The calculations for BH-2 suggest near equilibrium conditions.

5. Potential for Significant Indoor Air Concentrations from Vapor Intrusion: A preliminary evaluation of the potential for significant vapor-derived indoor air concentrations was conducted using the measured deep soil vapor concentration. Indoor air concentrations were estimated using the measured soil vapor concentrations and an empirical vapor attenuation factor (alpha) of 0.001 (dilution factor of 1,000) (Table 2-4). An alpha value of 0.001 is considered to be conservative (high). The results suggest that elevated indoor air concentrations could be measured at the house located near BH-2 (73 East Bay Avenue, henceforth referred to as 73 Bay Avenue). However, vapor-derived indoor concentrations at other locations were estimated at below background VOC levels. There is some uncertainty in this prediction for BH-3 because relatively high concentrations were measured in groundwater suggesting the potential for vapor intrusion. However, relatively low concentrations were measured in the soil vapor sample obtained directly above the water table at this location.

The implication of the above analysis is that there may only be significant (measurable) vapor intrusion at one building at the Stafford site (73 Bay Avenue).

3.0 STAFFORD STAGE TWO PROGRAM

3.1 Stage Two Objectives

The objectives of the Stage Two work program were to:

- 1. Evaluate whether significant vapor intrusion into homes is occurring.
- 2. Obtain information (soil vapor, indoor air) that would be enable comparisons to screening model predictions.
- 3. Obtain additional information on deep soil vapor concentrations near the water table to assess cross-media transfer between groundwater and deep soil vapor.

- 4. Obtain information on vertical hydrocarbon and light gas concentration profiles to enable evaluation of biodegradation.
- 5. At selected homes, collect comprehensive data on soil vapor concentration profiles adjacent to homes, below homes, and indoor air quality ("vapor pathway analysis"). This information is needed to more rigorously evaluate the potential for vapor intrusion.
- 6. Collect ancillary information on house construction, house conditions at the time of sampling (e.g., depressurization), and weather information. This information will enable evaluation of factors that could be affecting vapor intrusion, and assessment of the significance of background sources of VOCs.

3.2 Stage Two Methods

The Stage Two program scope was as follows:

- Pre-sampling house survey;
- Soil sampling and analysis (two samples);
- Soil vapor sampling and analysis (nine samples);
- Subslab vapor sampling and analysis (four samples);
- Crawlspace sampling and analysis (one sample);
- Indoor air sampling and analyses (nine samples plus two field duplicates);
- Outdoor air sampling and analysis (two samples);
- Monitoring of differential pressure between house and outdoor air (three houses); and
- Obtaining weather data.

3.2.1 Pre Sampling House Survey

A house reconnaissance was conducted by a NJDEP and a Golder representative two to five days before the collection of indoor air samples using the survey form developed by NJDEP. The purpose of the pre-sampling house survey was as follows:

- 1. Obtain permission for indoor air and subslab vapor sampling from owner;
- 2. Inspect home for the storage and use of petroleum products, solvents and other chemicals; and,
- 3. Inspect home for foundation conditions including foundation type, drains, cracks, and other openings.

Photographs of the inside and outside of the house were taken.

3.2.2 Soil Sampling and Analysis

Soil samples were collected using a Geoprobe sampler. Soil cores (1.5 inch diameter) were obtained in 24-inch lengths to minimize the effect of core compression and moisture re-distribution within the sample.

Two soil samples were collected on October 28, 2003 using the EnCoreTM method and analyzed for VOCs (EPA Method 8260B) and MTBE. Soil samples were analyzed by STL Laboratories (Edison, NJ).

The samples were obtained from:

- Borehole VP-9 10.8 to 11.2 ft
- Borehole VP-13 10.3 to 10.7 ft

Several samples per borehole were screened for volatile hydrocarbon contamination using a dry headspace vapor test conducted in the field using a photoionization detector (PID). The test method involved placing about 100 ml of soil in a clean 250-ml jar. The jar was covered with aluminum foil and briefly shaken. After 3 to 5 minutes the peak headspace vapor reading was taken by puncturing the foil with the PID tip.

The samples selected for VOC analyses were obtained from the contaminated soil zone inferred to have highest hydrocarbon concentrations. Additional soil samples were collected and placed in plastic sample bags. The soil samples were sent to the Golder Cherry Hill laboratory for possible geotechnical analysis.

Soil samples collected during Stage One from borehole BH-2 were tested for organic matter by loss on ignition (LOI) (four samples) and six-point water retention (two samples) by Soilcon Laboratories of Richmond, BC. The water retention testing was conducted on compacted soil samples place within standard proctor test moulds.

3.2.3 Groundwater Sampling and Analysis

Groundwater samples were obtained on October 28, 2002 from five locations using a Geoprobe sampler. The Geoprobe groundwater sampling system consisted of a ³/₄ inch PVC slotted screen, protected by a steel sleeve. When the desired depth was reached, the sleeve was withdrawn to expose the 41-inch long screen. The Geoprobe was advanced until the top of the screen approximately coincided with the water table.

A peristaltic pump was used to purge water from the well. Groundwater samples were collected manually using a Waterra check valve and tubing. The intake point of the Teflon tubing using for groundwater sampling was set near the middle of the screen. The

purging and groundwater sampling rate was approximately 450 ml/minute. During purging, the pH, conductivity, turbidity, dissolved oxygen and oxidation-reduction potential were measured using a Horiba U-22 field meter. After the above field parameters had stabilized, groundwater samples were collected in laboratory-supplied glass vials and bottles, and placed in a chilled cooler.

Groundwater samples were analyzed by STL Laboratories (Edison, NJ) for VOCs by USEPA Method 8260B.

3.2.4 Soil Vapor Sampling and Analysis

Geoprobe soil vapor sampling implants (Model AT86) were installed on October 28, 2002. At two locations (VP-9S, 9M, 9D and VP-10S, 10M, 10D), a cluster of three nearby boreholes (within 1 m area) were drilled to facilitate the installation of a deep, mid and shallow soil vapor implant. At three additional locations (VP-11, VP-12 and VP-13), just a deep soil vapor implant was installed above the water table.

The Geoprobe implants were inserted down the bore of the hollow Geoprobe rods once the desired depth had been reached. The implant was rotated to attach it to the anchor point used during driving of the Geoprobe rods. The Geoprobe rods were then removed from the hole leaving the implant and drive point in place. The annulus surrounding the implant was backfilled with clean silica sand. The remainder of the borehole was backfilled with bentonite chips.

The Geoprobe Model AT86 implants are 6 inches long and approximately $\frac{1}{2}$ inch in diameter and have a pore diameter of 0.0057 inch (0.145 mm). High density polyethylene (3/8 inch diameter) tubing extends from the implant to ground surface. The tubing at ground surface was clamped. The end of the tubing was covered by a four inch diameter PVC screw cap and short piece of pipe that was driven into the ground over top of the tubing. The cap was buried just below ground surface using sod. The implant location was surveyed.

Soil gas samples were collected for VOC analyses on October 28, 2002. Soil gas samples were collected for field light gas analyses on October 29, 2002, and November 5, 11 and 22, 2002. Each probe was purged prior to sampling by removing 1.5 probe volumes at a rate of 100 ml/min using a Gillian GilAir sampling pump with low-flow module. Prior to purging, the volume of the soil gas probe (implant and tubing) was estimated.

Samples collected for VOC analyses were obtained as follows. A six-litre Summa canister was connected to the probe and filled over a one-hour period, which corresponds to a flow rate of 100 ml/min. Teflon-lined tubing was used to connect the probe to the Tedlar bag. Summa samples were analyzed by STL Laboratories (Burlington, Vermont) for VOCs by USEPA Method TO-15.

Samples collected for field light gas analyses were obtained as follows. A one-litre Tedlar bag was connected to the probe and filled at a rate of 100 ml/min. Teflon-lined tubing was used to connect the probe to the Tedlar bag. The light gas concentrations were measured using a VRAE Model L-R070406. This instrument measures carbon monoxide, % lower explosive limit (LEL) calibrated to methane (5 percent in air), hydrogen sulfide and oxygen.

The soil vapor sampling was scheduled such that no sampling was performed during and within 12 hours of heavy rainfall.

3.2.5 Subslab Vapor Sampling and Analysis

Subslab vapor probes were installed below four buildings on the following dates:

63 Bay Avenue:	November 4, 2002
73 Bay Avenue:	October 23, 2002
14 Park Street:	October 29, 2002
18 Park Street:	October 23, 2002

The subslab probe was installed near the center of the house. An approximate 3/8 inch diameter hole was drilled through the concrete floor slab using an electric drill. A short length of 3/8 inch diameter Teflon tubing was then inserted to the base of the concrete. The outside of the tubing was wrapped with Teflon tape to create a snug fit when the tubing was twisted into the hole.

Samples were collected over an approximate 24-hour period (over same time period as indoor air samples) using Summa canisters and were analyzed by STL Laboratories (Burlington, Vermont) for VOCs by USEPA Method TO-15.

3.2.6 Indoor Air Sampling and Analysis

Indoor air samples were collected from five buildings on the following dates:

73 Bay Avenue:	October 23, 2002 (basement and first floor)		
18 Park Street:	October 23, 2002 (basement and first floor)		
22 Park Street:	October 23, 2002 (crawlspace and first floor)		
14 Park Street:	October 29, 2002 (basement and first floor)		
63 Bay Avenue:	November 4, 2002 (ground floor, building is		
	slab-on-grade)		

Samples were collected over an approximate 24-hour period using Summa canisters and were analyzed by STL Laboratories (Burlington, Vermont) for VOCs by USEPA Method TO-15. The samples were collected about 18 inches above ground surface.

At 73 Bay Avenue and 14 Park Street, duplicate Summa canister samples were collected. The duplicates were collected approximately 2 feet from each other. The duplicates were submitted "blind" to the laboratory.

3.2.7 House Conditions during Sampling

General house conditions during sampling were noted. This included notation of whether the house was occupied and a qualitative indication of the degree to which windows and doors were open.

The differential pressure between indoor and outdoor air was measured in three homes using an Engineering Solutions Model Omniguard III Differential Pressure Sensor:

73 Bay Avenue:	October 23, 2002
22 Park Street:	October 23, 2002
14 Park Street:	October 29, 2002

The Omniguard differential pressure transducer has data logging capabilities and can measure differential pressure to 0.5 Pascal. One port of the differential pressure transducer was connected to ¹/₄ inch diameter rigid polyethylene tubing that was threaded outside through a small crack in an almost closed window. The tubing end was situated about 2 feet above ground and about one foot away from the house wall. Since wind can effect pressure readings, the end of the tubing was shielded using an approximate 2-foot long 4 inch diameter PVC pipe (open at both ends), as shown below.

3.2.8 Outdoor Air Monitoring

Two outdoor air samples were collected using Summa canisters. The first sample was obtained over a 24-hour period from the back porch at 22 Park Avenue starting on October 22, 2002. The second sample was obtained over a 24-hour period from about 1 m northwest of the house at 73 Bay Avenue starting on November 14, 2002. The samples were collected about 18 inches above ground surface. The above house locations are shown on Figure 3-1.

Samples were analyzed by STL Laboratories (Burlington, Vermont) for VOCs by USEPA Method TO-15.

3.2.9 Weather Data

Weather data (temperature, barometric pressure, wind speed, wind direction and qualitative description of precipitation) for the Atlantic City weather station was obtained on a hourly basis (with a few exceptions) between October 20 and November 5, 2002. The Atlantic City weather station is located approximately 24 miles south of the Stafford site. The Atlantic City weather station is located approximately 10 miles inland from the ocean while the Stafford site is located approximately 6 miles inland from the ocean. The U.S. Department of Energy National Renewable Energy Laboratory (NREL) wind speed map suggests that the Stafford and Atlantic City sites are in the same wind speed regime.

3.3 Stage Two Results

3.3.1 Pre Sampling House Survey

The results of the pre-sampling house survey are attached as Appendix I. House properties and chemical storage and use is summarized in Table 3-1. The key findings of the survey are summarized below:

Address: 63 Bay Avenue Use: Bike Shop Construction: Slab at grade Foundation Base: Concrete slab

Chemical Storage and Use: Use of various chemicals associated with repair and maintenance of bicycles (e.g., oil, kerosene to clean parts)

Address: 73 Bay Avenue

Use: Antique shop

Construction: Approximately 50 % basement and 50 % crawlspace

Foundation Base: Concrete slab (except approximately 2 ft by 2 ft hole in floor); crawlspace about 3 ft high (partial plastic cover on soil), crawlspace open to basement

Foundation Walls: Concrete block

Chemical Storage and Use: Oil tank in basement, some paints and thinners stored in basement.

Address: 14 Park Avenue Use: Residence

Construction: Basement

Foundation Base: Concrete slab (partially covered with carpet), no significant cracking, openings or drains observed in concrete floor slab

Foundation Walls: Concrete block

Chemical Storage and Use: Some paints, thinners and cleaning solvents stored basement.

Address: 18 Park Avenue

Use: Residence

Construction: Approximately 80 % basement and 20 % crawlspace

Foundation Base: Concrete slab (painted), no significant cracking, openings or drains observed in concrete floor slab; unlined crawlspace about 3 ft high, crawlspace open to basement

Foundation Walls: Concrete block

Chemical Storage and Use: Some paints and thinners stored first floor, recently painted first floor.

Address: 22 Park Avenue

Use: Residence

Construction: Crawlspace under the entire house

Foundation Base: Wood floor; unlined crawlspace about 4 ft high, several vents to outside in crawlspace, no significant openings observed in floor between crawlspace and first floor

Foundation Walls: Concrete block

Chemical Storage and Use: Some paints, thinners and cleaning solvents stored first floor, some hobbies which involve use of glues and paints conducted on second floor.

Photographs of the inside and outside of the houses are provided in Appendix II.

3.3.2 Soil Sampling and Analysis

The results of the field headspace vapor tests on soils are presented in Table 3-2 and Figure 3-2. The headspace vapor tests can not be directly related to hydrocarbon concentrations in soil, but provide a relative indication of hydrocarbon concentrations. Elevated headspace vapor concentrations were measured at borehole locations VP-9, VP-10 and VP-13. The highest concentrations were obtained at VP-9. Of note is that relatively high headspace concentrations were measured at VP-9 between about 9 and 12 feet depth. At VP-10 and VP-13, the highest headspace concentrations were between 11 and 12 feet depth. Based on the approximate depth to the water table (see below), the headspace test results suggest that there is a residual non-aqueous phase liquid (NAPL)

smear zone that extends 2 feet above the water table at VP-9, based on the water table level on October 28, 2002. However, at VP-10 and VP-13, the residual NAPL smear zone appears to be limited to just above and below the water table based on headspace test results.

The VOC analysis results for soil samples are presented in Table 3-3. The individual BTEX concentrations at VP-9 (10.8 to 11.2 ft) were between 6.4 mg/kg and 360 mg/kg and are indicative of residual NAPL. The MTBE concentration at VP-9 was 18 mg/kg. Several other VOCs, including cyclohexane and methylcyclohexane, were also present in the sample from VP-9. The VOC concentrations in soil at VP-13 (10.3 to 10.7 ft) were significantly lower than at VP-9.

As part of the Stage One program, soil samples were collected from borehole BH-2 for organic matter content analyses (four samples) and six-point water retention (two samples). The measured total organic matter content was divided by a factor of two to obtain the estimated fraction organic carbon (foc) content. The results are provided in Appendix III and are summarized below:

foc: Ranged between 0.0004 and 0.0068 (i.e., 0.04 to 0.68 percent), and decreased with increasing depth.

Total porosity: Ranged between 0.351 and 0.405.

Water-Filled porosity at field capacity (33 J/kg): Ranged between 0.043 and 0.047 (water filled porosity is volume water divided volume soil).

Water-filled porosity at residual water saturation (1500 J/kg): Ranged between 0.005 and 0.017.

The results indicate low fraction organic carbon, and low moisture-holding capacity for soil. The implication of these results is that relatively high mobility for VOC vapors would be expected, in the absence of biodegradation.

3.3.3 Groundwater Sampling and Analysis

Groundwater samples were collected from five locations from just below the water table. The approximate depth to the water table and screened sampling interval is given below:

Location	Depth to Water Table	Screened Interval
VP-9	11.5 ft	11.5-15 ft
VP-10	10.5 ft	10.5-14 ft
VP-11	10.5 ft	10.5-15 ft
VP-12	10.5 ft	10.5-13 ft
VP-13	10.5 ft	10.5-15 ft

The results of groundwater field testing is provided in Table 3-4. The results indicate slightly acidic groundwater. Low dissolved oxygen concentrations (less than 1 mg/L), indicative of anaerobic conditions, were measured in groundwater samples from sampling points within or near to the residual NAPL zone (VP-10 and VP-13).

Field observations indicated that the bailer used to collect groundwater samples was coated with hydrocarbon product upon removal from sampling points VP-9 and VP-13, suggesting the presence of a thin product layer within these wells (see photograph showing brown NAPL staining of the well screen in Appendix II).

The groundwater chemistry results are provided in Table 3-5. The maximum total BTEX concentration (82.5 mg/L) was measured at VP-9, located northwest of 73 Bay Avenue. The BTEX and MTBE groundwater results for September and October 2002 are provided in Figures 3-3 to 3-6. During September a slightly lower total BTEX concentration (68 mg/L) was measured at BH-2, which was located within 1 m of VP-9. Of note is that the BTEX concentrations decreased two orders of magnitude between VP-10 and VP-11, which are located relatively close to each other on the north and south side of 14 Park Avenue, respectively.

The maximum MTBE concentration was also measured at VP-9 (590 mg/L). The extent of the MTBE plume was similar to that observed for BTEX, based on the available data.

The BTEX concentrations in groundwater measured at VP-9 were slightly higher (up to about 2X) than those expected based on solubility limits using a co-solubility model and expected mole fractions for a gasoline source. This may have resulted from small globules of product in the sample, although none were observed during sampling. Possible elevated BTEX concentrations in groundwater due to product would bias vapor attenuation factors downward; however, the magnitude of a possible bias (up to 2X based on solubility limits), is considered low relative to other sources of uncertainty for soil vapor intrusion. In addition, as discussed in subsequent sections of this report, the focus of the attenuation factor analysis were less degradable chemicals with significant indoor air concentrations (e.g., cyclohexane, 2,2,4-trimethylpentane) and not BTEX; therefore, the above groundwater sampling issues are not addressed as part of the discussion on attenuation factors.

3.3.4 Soil Vapor Sampling and Analysis

The light gas concentrations are presented in 3-6. Low oxygen concentrations and high % LEL values were measured in deep soil gas at VP-9D and VP-13. These probes are in areas of residual NAPL and elevated hydrocarbon concentrations in groundwater; therefore low oxygen concentrations were expected. The oxygen concentrations increased with decreasing depth at VP-9M (0.4 to 1.6 %) and VP-9S (7.4 to 10.2 %). Oxygen readings were not taken for the subslab gas samples.

An elevated oxygen concentration (19.9 %) was measured at VP-10D, which was unexpected based on the likely biogeochemical conditions near the leading edge of the hydrocarbon plume. Since hydrocarbon concentrations were relatively high, a low oxygen concentration at VP-10D was expected. It is possible that the elevated oxygen could have resulted from dilution by ambient air caused by the difficulty in drawing a soil gas sample due to elevated soil moisture content near the water table, although reasonable pre-cautions (low flow sampling, tight fittings) were taken to prevent this from occurring. The oxygen levels at VP-10M and VP-10S were near atmospheric levels, as expected. Further downgradient, the oxygen levels at VP-11 and VP-12 were also near atmospheric levels, which is consistent with low hydrocarbon concentrations measured in groundwater at these locations.

The VOC concentrations in soil vapor samples are provided in Table 3-7. A list of all Summa samples collected at the site is provided in Table 3-8. A conversion factor table $(\mu g/m^3 \text{ to ppbV})$ is provided in Table 3-9. The results reflect the same trends observed for the oxygen test data. In inferred NAPL source zones (VP-9 and VP-13), the soil vapor concentrations were high (several hundred thousand ppbV). At probe cluster VP-9, the mid-depth VOC vapor concentrations at VP-9M were only slightly lower than those measured in the deep probe (VP-9D); however, the VOC vapor concentrations in the shallow probe, and below the house at 73 Bay Avenue were much lower.

3.3.5 Subslab Vapor Sampling and Analysis

The results of subslab vapor analyses are presented in Table 3-10. The MTBE, cyclohexane, and 2,2,4-trimethylpentane concentrations were elevated in subslab vapor below 73 Bay Avenue (ppmV range). Numerous alkane hydrocarbon compounds were also detected at elevated levels at this location. However, individual BTEX concentrations in 73 Bay subslab vapor were below the reporting limit (300 ppbV). The reporting limits for BTEX were raised (diluted sample) since other VOC concentrations were high.

The subslab VOC vapor concentrations at other houses were much lower and were similar to or only slightly higher than the VOC concentrations measured indoors. Subslab vapor concentrations are discussed in greater detail in the analysis section of this report.

3.3.6 Indoor Air Sampling and Analysis

The results of the indoor air analyses are presented in Table 3-10. The MTBE, cyclohexane, and 2,2,4-trimethylpentane concentrations were elevated at 73 Bay Avenue, relative to concentrations measured in other homes, and ranged between 14 ppbV and 150 ppbV for these three compounds. Numerous alkane hydrocarbons were also measured in indoor air at 73 Bay Avenue.

The individual BTEX concentrations in indoor air at 73 Bay Avenue ranged between <0.5 ppbV and 12 ppbV (toluene). The BTEX concentrations at other homes were marginally lower and ranged between <0.5 ppbV and 8.7 ppbV (toluene), measured at 18 Park Avenue.

Methylene chloride and dichlorodifluoromethane were also detected in indoor air in several homes. For example, the methylene chloride concentration was 29 ppbV at 73 Bay Avenue (first floor sample). Based on groundwater and soil sampling, the source of these chlorinated solvents is not believed to be subsurface contamination.

The quality assurance/quality control (QA/QC) testing included analyses of two field duplicate samples. The relative percent difference (RPD) between duplicate concentrations is provided in Table 3-11. For the duplicate from 73 Bay Avenue, the RPD's were less than 17 percent, which indicates a relatively high level of precision in the sampling and analysis. For the duplicate from 14 Park Avenue, the RPD's ranged between 10 and 107 percent. While the variability is somewhat higher than expected, the concentrations were low and close to the detection limit. Analytical results are typically less precise close to the detection limit.

3.3.7 House Conditions During Sampling

All homes were occupied during sampling. A qualitative description of the degree to which doors and windows were open during sampling is provided below for each house:

63 Bay: Outside doors were opened often during daytime hours.

73 Bay: Outside door likely opened a few times during day time hours. Windows in basement were closed.

14 Park Avenue: Outside door likely opened a few times during sampling, and some first floor windows were partially open. It is not known whether the basement windows were closed.

18 Park Avenue: Outside door likely opened a few times during sampling, and some first floor windows were partially open. It is not known whether the basement windows were closed.

22 Park Avenue: Outside door likely opened a few times during sampling, and some first floor windows were partially open. The crawlspace vents were open.

The differential pressure measurements, together with weather data, are presented for 73 Bay Avenue and 14 and 22 Park Avenue in Figures 3-7 through 3-10. The measured high and low range differential pressure reading was recorded every 15 minutes. There was a relatively large difference between the high and low readings and considerable data variability for differential pressure measurements made between the basement and outdoor air at 73 Bay and 14 Park Avenue. Part of this variability is due to pressure fluctuations caused by wind. In contrast, the difference between the high and low readings and the temporal variability in pressure was much lower for the pressure data from 22 Park Avenue. This is likely a result of the relatively stagnant air inside the crawlspace and house. A summary of the results for each house is provided below:

73 Bay Avenue: The averaged high and low pressure readings indicate the basement was generally slightly depressurized relative to outdoor air. The average pressure differential ($\Delta P_{basement-outdoor}$) was approximately -0.6 Pa. This suggests that there was a small positive pressure gradient between the subslab soil and basement, which could cause soil gas advection into the house. There does not appear to be any correlation between weather conditions and pressure readings.

14 Park Avenue: The averaged high and low pressure readings indicate the basement was depressurized relative to outdoor air. The average pressure differential ($\Delta P_{basement-outdoor}$) was approximately -4.1 Pa. At 14 Park Avenue, differential pressure measurements were also made between the basement and subslab soil. The average pressure differential between the basement and subslab ($\Delta P_{basement-subslab}$) was approximately -0.8 Pa meaning that the pressure below the foundation slab is slightly higher than in the basement. Qualitatively, the data also suggests a possible weak positive correlation between wind speed and depressurization.

22 Park Avenue: The averaged high and low pressure readings indicate the crawlspace was negatively pressurized relative to indoor air. The positive gradient between indoor air and the crawlspace means that indoor air would have a tendency to migrate into the crawlspace. The average pressure differential ($\Delta P_{indoor-crawlspace}$) was approximately 0.6 Pa.
3.3.8 Outdoor Air Monitoring

The outdoor air concentrations are presented in Table 3-12. The results indicate that the dichlorodifluoromethane and chloromethane concentrations were 0.58 ppmV and 0.62 ppmV, respectively, in the sample obtained from beside 73 Bay Avenue on November 14, 2002. The toluene and m&p-xylene concentrations were 1.0 ppmV and 1.1 ppmV in the sample obtained from beside 14 Park Avenue on October 23, 2002. All other concentrations were below the analytical laboratory reporting limit.

3.3.9 Weather Data

The weather conditions during soil vapor and indoor air sampling (October 23, 28, 29 and November 4, 2002) can be summarized as follows:

- The daily low temperature ranged between about 30 and 40°F while the daily highs ranged between about 49 and 62°F, except on October 28 when the low and high temperature was 45 and 52°F, respectively.
- The winds were generally light (maximum wind speed recorded at Atlantic City was 15 mph, although locally wind speeds may have been higher).
- The barometric pressure between October 23 and November 4, 2002 ranged between 1010 and 1030 mbar. A pressure variation of 20 mbar is approximately 2 kPA or 2,000 Pa.
- There was significant rainfall (greater than 0.3 inch per day) on October 25 and 26, and on October 29 and 30. During the summer and early fall prior to October 25, there was very little rainfall in the southeast New Jersey area.

The implications of the weather data is that the temperature difference between indoor and outdoor air was likely sufficient to cause some stack effect, which results in the basement (or ground floor level of houses without basements) being depressurized relative to atmospheric air. The rainfall is unlikely to have had adverse effects on the soil vapor survey (conducted on October 28) since heavy rainfall stopped two days before sampling.

3.4 Stage Two Data Analysis

3.4.1 Comparison of Measured to Background Indoor Air VOC Concentrations

A comprehensive compilation of background indoor air quality data for BTEX, n-hexane and n-heptane is provided in Table 3-13 ($\mu g/m^3$) and Table 3-14 (ppbV). Comparison to this background data set indicates that the measured indoor BTEX concentrations at the Stafford site were not elevated above typical background levels.

Based on our review, there is little, if any, data on background MTBE, cyclohexane and 2,2,4-trimethylpentane concentrations in indoor air. However, the NJDEP has recently reviewed data from a number of sources including several studies not included in Table 3-13. There is one study (RIOPA) involving 100 urban homes in NJ where the median MTBE concentration in indoor air was 6 μ g/m3. Edwards (2001) reported that indoor cyclohexane concentrations measured in Helsinki Finland (183 samples) were below the detection limit 80 percent of the time (<2 μ g/m³), and the 90th percentile concentration was 2.73 μ g/m³.

3.4.2 Comparison of Measured to Predicted Source Soil Vapor Concentrations

A comparison of measured and predicted source soil vapor concentrations (near water table) is provided in Table 3-15. The predicted soil vapor concentrations are obtained using the Henry's Law constant. Physical-chemical parameters used for the analysis are provided in Table 3-16. As indicated below, the predicted concentration obtained using the Henry's Law Constant is calculated for both monitoring wells within the dissolved plume area and within the inferred NAPL area. It is noted that the vapor partitioning model based on Henry's Law applies to dilute dissolved concentrations, and is less accurate when there are high dissolved concentrations or non-aqueous phase liquid (NAPL). Nevertheless, the Henry's Law constant model is used for this analysis since it is commonly used for regulatory guidance.

Monitoring Well Locations within Dissolved Plume

VP-10D: The measured toluene and MTBE vapor concentrations were 0.2 and 1.7 percent, respectively, of the predicted concentrations.

VP-11: The measured benzene and toluene vapor concentrations were 0.04 and 0.2 percent, respectively, of the predicted concentrations.

VP-12: Comparisons can not be directly made since vapor concentrations were below the reporting limit. If half the detection limit is used for the vapor concentrations, the measured MTBE and benzene concentrations were about 0.0.8 percent of the predicted concentrations.

Monitoring Well Locations within NAPL Zone

VP-9D: The measured benzene, toluene and MTBE vapor concentrations were 1 to 50 percent of the predicted concentrations.

VP-13: The measured benzene, toluene and MTBE vapor concentrations were 4 to 23 percent of the predicted concentrations.

When evaluating comparisons between predicted deep vapor concentrations and measured concentrations, it is important to recognize that the measured concentrations will always be lower than predicted as a result of concentration attenuation through the capillary transition zone, as discussed in Section 2.4 of this report. The concentration attenuation would tend to be least for coarse soils with small capillary fringes and greatest for fine-grained soils. In addition, lower measured than predicted concentrations are expected due to non-equilibrium conditions for partitioning.

For the dissolved plume area, the ratio of the measured to predicted vapor concentrations appear to decrease with increasing distance from the contamination source along the flow path. This may be a result of the formation of a fresh-water wedge on top of the water table and absence of contamination in the capillary fringe.

There is little published data comparing measured deep vapor concentrations with predicted concentrations. At one site in Canada with coarse sand and gravel deposits, the measured to predicted ratio for TCE varies widely but is typically between 10 and 25 percent. At the Lowry Air Force Base, where soil at the water table consists primarily of silty sand, there is limited data for TCE and PCE indicating the range in ratio ranges from 8 to 77 percent, with an average ratio of 17 percent.

Since NAPL is present at the water table at VP-9 and VP-13, for comparison purposes the vapor concentrations are also predicted using a NAPL to vapor partitioning model, which utilizes the vapor pressure and mole fraction to estimate the equilibrium vapor concentration. It is not possible to quantitatively use a NAPL to vapor partitioning model since the mole fraction is not known for individual chemicals. Nevertheless, approximate calculations are provided below based on typical gasoline composition. According to Johnson et al. (2000), conventional gasoline contains about one percent benzene and five percent toluene. In the State of New Jersey, the MTBE content in recent years has been about 11 percent. The vapor concentrations estimated using the NAPL to vapor model are compared below to those predicted using the Henry's Law constant for VP-9, based on October 2002 groundwater data (Table 3-15).

	Vapor Pressure (mm Hg)	Molecular Weight (g/mole)	% Compo -sition	Mole Frac- tion	NAPL Model Vapor Conc. (mg/m ³)	Dissolved Model Vapor Conc. from Henry's Constant (VP-9 (Oct-02 data) (mg/m ³)	Measure d Vapor Conc. at VP-9D (mg/m ³)
MTBE	250	88.2	11	13.3	163,300	12,000	5,900
Benzene	95	78	1	1.4	5,800	2,700	660
Toluene	28	92.1	5	5.8	8,300	11,700	1,100

The measured vapor concentrations were between 4 and 13 percent of those predicted using the NAPL to vapor model.

3.4.3 Soil Vapor Attenuation

The vapor pathway assessment is summarized for each house in Table 3-15, and in Figures 3-11 through 3-15 for 73 Bay Avenue. Additional details are provided in Appendix IV.

The measured vapor concentration profile at VP-9 indicates only slight attenuation between the deep (D) and mid-depth (M) probe (generally by a factor of two); however, there is significant attenuation between the mid-depth (M) and shallow (S) probe (generally by a factor between 50 and 1,000) (Table 3-15). The attenuation between the mid-depth and shallow probe is inferred to be a result of aerobic biodegradation and is consistent with the observed oxygen levels. The subslab vapor concentrations were at concentrations between the mid-depth and shallow vapor concentrations.

The concentration attenuation for the BTEX compounds was significantly greater than for cyclohexane and 2,2,4-trimethylbenzene. This is believed to be, in part, due to the higher solubility of BTEX, which results in greater bioavailability to microorganisms (Table 3-16). Additionally, reported aqueous phase biodegradation rates are less for cyclohexane and 2,2,4-trimethylpentane. For example, Kjeldsen et al. (2003) report first order biodegradation rates measured for column experiments (at 26°C) were 0.2 day⁻¹ for isooctane (2,2,4-trimethylpentane), compared to 0.25 day⁻¹ for benzene, 0.8 day⁻¹ for toluene and 1.95 day⁻¹ for m-xylene. Hohener et al. (2003) report first order biodegradation rates measured as part of vapor transport through column tests (at 23°C) of 0.07 day⁻¹ for cyclohexane and 0.09 day⁻¹ for isooctane, compared to 1.31 day⁻¹ for toluene and 3.28 day⁻¹ for m-xylene. Olson et al. (1999) report batch test results where the relative degradation rate were n-alkanes > aliphatics (composite solution light fraction) > aromatics > branched and cyclic alkanes > aromatics (composite solution heavier fraction).

The source (deep) vapor concentrations at VP-10 were relatively low; therefore, evaluation of concentration attenuation is not meaningful for this location.

At VP-13, the source (deep) vapor concentrations were similar to those measured at VP-9. The attenuation between deep and subslab vapor concentrations at 63 Bay Avenue is four to five orders of magnitude. Aerobic biodegradation is the likely reason for the significant attenuation and low vapor concentrations below the building. Several site-specific conditions make it relatively easy for air to migrate below 63 Bay Avenue: (i) slab-at-grade construction, (ii) small building size, and (iii) gravel parking lot beside building.

3.4.4 Comparison of Subslab Vapor to Indoor Air Concentrations

The subslab vapor and indoor air concentrations are compared for each home.

63 Bay: The m&p-xylene concentration in subslab vapor was 12 ppbV, compared to 0.65 ppbV in indoor air. The MTBE concentration in subslab vapor was 0.71 ppbV, compared to 0.77 ppbV in indoor air. The subslab concentrations were below the analytical laboratory reporting limit for most other VOCs.

73 Bay: The MTBE, cyclohexane, 2,2,4-trimethylpentane and several alkane compound concentrations were significantly higher in subslab vapor than indoor air. The indoor air concentrations for these compounds were also elevated relative to levels measured in other homes at the Stafford site indicating the indoor air at 73 Bay was impacted by soil vapor. The attenuation factors between subslab vapor and indoor air for the above compounds varied between 3.9×10^{-3} to 8.4×10^{-3} (average of 6.1×10^{-3}). The fact that the range in attenuation factor was fairly small is further corroborating evidence that soil vapor intrusion is the cause of the elevated indoor air concentrations.

14 Park Avenue: The BTEX concentrations in subslab vapor were consistently about four times higher than in indoor air. For example, the toluene concentration in subslab vapor was 9.4 ppbV, compared to 2.4 ppbV in indoor air. The m&p-xylene concentration in subslab vapor was 12 ppbV, compared to 3.1 ppbV in indoor air. The subslab concentrations were below the reporting limit for most other VOCs. The subslab vapor concentrations for several BTEX compounds appear to be elevated relative to indoor air concentrations; however, since the indoor VOC concentrations are within reported background limits it is not possible to determine whether vapor intrusion is occurring, and it is not meaningful to estimate vapor attenuation factors.

18 Park Avenue: The benzene, toluene, MTBE, n-hexane, n-heptane, cyclohexane and 2,2,4-trimethylpentane concentrations in subslab vapor and indoor air were at similar levels. In contrast, the m&p-xylene and o-xylene concentrations in subslab vapor appear to be elevated relative to indoor air. For example, the m&p-xylene concentration in subslab vapor was 16 ppbV, compared to 4.4 ppbV in indoor air. Since the indoor VOC concentrations are within reported background limits it is not possible to determine whether vapor intrusion is occurring, and it is not meaningful to estimate vapor attenuation factors.

22 Park Avenue: The VOC concentrations in crawlspace and indoor air were at similar levels.

3.4.5 Comparison of Basement to First Floor Indoor Air Concentrations

There was a consistent decrease in the MTBE, cyclohexane, 2,2,4-trimethylpentane and alkane concentrations between the basement and first floor at 73 Bay Avenue. The average ratio between the basement and indoor air concentrations was 3.2 (Table 3-15).

3.4.6 Comparison of Measured Vapor Attenuation Factors to Regulatory Guidance

Three different vapor attenuation factors were estimated based on the data for 73 Bay Avenue (Table 3-15):

- 1. **Groundwater to Indoor Air**: The deep soil vapor concentration was predicted using the measured groundwater concentration and Henry's Law Constant.
- 2. Soil Vapor to Indoor Air: The source (deep) soil vapor concentration was directly used to estimate the vapor attenuation ratio.
- 3. **Subslab Vapor to Indoor Air**: The subslab vapor concentration was used to estimate the vapor attenuation ratio.

The measured vapor attenuation ratios are compared to the draft USEPA Subsurface Vapor Intrusion Guidance (2003) Question 5 semi-site specific attenuation factors for a depth to vapor source of 5 feet (this is the approximate distance between the underside of the 73 Bay foundation to water table) and US SCS Sand soil (this the type of soil at the Stafford site). The comparisons are provided in the table below.

Vapor Attenuation Ratio	Measured Values	USEPA Values
Groundwater to Indoor Air	1.3x10 ⁻⁶ to 1.1x10 ⁻⁵ (avg. 6.1x10 ⁻⁶)	1.2×10^{-3}
Soil Vapor to Indoor Air	2.2x10 ⁻⁵ to 3.6x10 ⁻⁴ (avg. 1.3x10 ⁻⁴)	2.2×10^{-3}
Subslab Vapor to Indoor Air	3.9x10 ⁻³ to 8.4x10 ⁻³ (avg. 6.1x10 ⁻³)	1x10 ⁻¹

The comparisons indicate that the average measured values are at least one order-ofmagnitude less than the USEPA values, for compounds that are relatively recalcitrant to biodegradation (in contrast there did not appear to be vapor intrusion for BTEX). It should be cautioned that the above comparisons are for limited data (one house, one monitoring round).

4.0 STAFFORD STAGE THREE PROGRAM

4.1 Stage Three Objectives

The objectives of the Stage Three program were to:

- 1. Monitor vapor intrusion under winter conditions;
- 2. Obtain additional data on vertical attenuation of hydrocarbon vapors;
- 3. Obtain data on the lateral variation in groundwater and vapor hydrocarbon concentrations;
- 4. Obtain data on the spatial variability of subslab vapor concentrations
- 5. Compare subslab vapor concentrations to vapor samples adjacent to a house, obtained at same elevation;
- 6. Obtain soil moisture data to enable input into models, as needed;
- 7. Develop methods for measurement of air change rate inside building; and,
- 8. Develop methods for measuring differential pressure between house and ambient air, and obtain additional data from Stafford site.

It is noted that approximately two days after completion of the Stage Three field program, a subslab depressurization (SSD) system was installed at 73 Bay Avenue to mitigate soil vapor intrusion. Golder Associates was not involved in any aspects relating to the installation of the SSD system.

4.2 Stage Three Methods

The Stage Three program consisted of testing in and nearby the antique shop (converted house) at 73 Bay Avenue. The scope was as follows:

- Soil testing for moisture content and grain size distribution (five samples);
- Soil vapor sampling and analysis (four samples);
- Subslab vapor sampling and analysis (three samples);
- Indoor air sampling and analyses (two samples plus one field duplicate);
- Conduct carbon dioxide (CO₂) tracer test to measure air change rate (ventilation rate) inside basement of house;
- Monitoring of differential pressure between basement and subslab soil, and basement and outdoor air; and,
- Obtaining weather data.

4.2.1 Soil Sampling and Analysis

One soil boring (BH-EAST) was advanced on January 19, 2004 to a depth of 12 feet below ground surface (ft-bgs) on the eastern side of the house (Figure 4-1). The soil boring was advanced using a direct-push technology (DPT) rig. Continuous 4-foot long

soil samples were collected from the ground surface to the bottom of the boring using a nominal 2-inch outer-diameter Geoprobe steel macro-core sampler with dedicated inner polyethylene sleeves. After removal of the macro-core sampler from the ground, the dedicated inner polyethylene sleeve with the soil core was extracted from the steel sampler. The polyethylene tube was cut lengthwise to expose the soil core for lithologic description and collection of field screening or laboratory samples.

Soil samples above the water table were screened every 6 inches for the presence of VOCs using a dry headspace vapor test conducted in the field using a photoionization detector (PID). The headspace test involved placing about 100 ml of soil in a clean 250-ml jar. The jar was covered with aluminum foil and briefly shaken. After 3 to 5 minutes, the peak headspace vapor reading was taken by puncturing the foil with the PID tip. The PID, a Photovac MiniRae 2000, was calibrated in accordance with the manufacturer's specifications to a 100 parts per million (ppm) isobutylene reference gas. Soil samples were not submitted for chemical analysis as no elevated PID readings and/or visual or olfactory indications of contamination were observed. Several soil samples were collected for possible geotechnical analysis.

Four samples obtained from borehole BH-EAST, and one near-surface sample obtained from the crawlspace (i.e., below the plastic sheet) beside the basement at 73 Bay Avenue, were analyzed for moisture content and grain size distribution.

4.2.2 Groundwater Sampling and Analysis

Groundwater samples were obtained on January 19, 2004 from two temporary groundwater probes installed using a "Geoprobe" sampling system on the eastern and western sides of 73 Bay Avenue (Figure 4-1). The groundwater sampling system consisted of 1 ³/₄ inch ID steel rods (manufactured by Maverick), ⁷/₈ inch PVC slotted screen (manufactured by Geoscreen), which was protected by a steel sleeve. The Geoprobe was advanced until the top of the screen approximately coincided with the water table. When the desired depth was reached, the sleeve was withdrawn to expose the 41-inch long screen.

A peristaltic pump was used to purge water from the probe and obtain groundwater samples for chemical analyses. The polytheylene tubing used for groundwater sampling was threaded down through the PVC screen and the intake point was set near the middle of the screen. The purging and groundwater sampling rate was approximately 250 ml/minute. Since the depth to groundwater was only about 11 feet, peristaltic sampling at low flows should not have introduced air bubbles in the sample. During purging, the pH, conductivity, turbidity, dissolved oxygen and oxidation-reduction potential were measured using a Horiba U-22 field meter.

Severn Trent Laboratories of Edison, New Jersey (STL-E) supplied Golder Associates with certified clean sample bottles, blank bottle labels, custody seals, coolers, and chainof-custody documents for the investigation. The bottles were labeled prior to sample collection using a permanent-marking pen. Once purging was completed, samples were collected for volatile organic compounds (VOCs) analysis. Sampling was conducted by stopping the pump and removing the intake line from the screened interval, while leaving the discharge attached to the pump. Groundwater was then forced back through the tubing by reversing the pump flow direction. This way, the groundwater never passed through the silicon tubing at the peristaltic pump. Bottles were filled by allowing the water to flow gently down the inside of the bottle with minimal agitation. Each bottle was capped as it was filled taking steps to eliminate all headspace in the vials. The samples were preserved according to method-specific requirements, carefully packed into standard sample coolers with ice at approximately 4 degrees Celsius, and couriered under chain-of-custody procedures by Golder field personnel to STL Laboratories (Edison, New Jersey) for VOC analysis by USEPA Method 8260B.

4.2.3 Soil Vapor Sampling and Analysis

Geoprobe soil gas sampling implants (Model AT86) were installed on January 21, 2004 east and west of the house as shown on Figure 4-1. A shallow (2.5-3 feet), mid (6-6.5 feet) and deep (9 to 9.5 feet) probe were installed east of 73 Bay Avenue since no soil gas probes were previously installed east of the house. Only a deep probe was installed west of the house since multiple depth probes (VP-9S, M, D) were previously installed at this location (see Section 3.0).

The implants were attached to the drive point prior to pushing of the rods. Once the desired depth was reached, tubing was lowered to the bottom of the rod, and the tubing was attached to the implant by rotating the tubing. The Geoprobe rods were then removed from the hole leaving the implant and drive point in place. After rod extraction, high density polyethylene ($\frac{3}{8}$ inch diameter) tubing was installed to the surface and connected to a short piece of silicon tubing that was clamped to pinch off the tubing. The annulus surrounding the implant was backfilled with clean silica sand to six inches above the screen, and the remainder of the annulus was filled with a bentonite slurry.

Soil vapor samples were collected for VOC analyses on January 22, 2004 using evacuated six-litre Summa canisters. Prior to sampling, each probe was purged by removing 1.5 probe volumes at a rate of 100 ml/min using a Gillian GilAir sampling pump with low-flow module. The volume of the soil gas probe (implant and tubing) was calculated based on field measurements. The canister was then connected to each probe. The canisters were filled over a one-hour period, which corresponds to a flow rate of 100 ml/min. Teflon-lined tubing was used to connect the probe to the canister. Summa canister samples were sent under chain-of-custody procedures by via courier to STL Laboratories (Burlington, Vermont) for VOC analysis by USEPA Method TO-15.

Samples were collected for field light gas analyses on January 23, 2004 after removal of 1.5 probe volumes from each implant following procedures outlined above. A one-liter Tedlar bag was connected to the probe and filled at a rate of 100 ml/min. Teflon-lined tubing was used to connect the probe to the Tedlar bag. The light gas concentrations were measured using a Landtec GEM-2000, which measures methane, oxygen and carbon dioxide.

The soil vapor sampling was scheduled such that no sampling was performed during or within 12 hours of heavy rainfall.

4.2.4 Subslab Vapor Sampling and Analysis

Subslab vapor samples were obtained from three locations on January 22, 2004 (Figure 4-1). Sample Subslab #1 was obtained near the center of basement within one foot of the location of the subslab sample collected in October 2002. Consistent with procedures used in October 2002, subslab vapor samples were collected by drilling a ³/₈-inch hole through the subslab, then connecting a ³/₈-inch OD piece of Teflon-lined tubing from a six-liter Summa canister through the hole in the concrete. The outside of the tubing was wrapped with Teflon tape to create a snug fit when the tubing was twisted into the hole. The canisters were filled over a 24-hour period. Summa canister samples were sent under strict chain-of-custody procedures by via courier to STL Laboratories (Burlington, Vermont) for VOC analysis by USEPA Method TO-15.

4.2.5 Indoor Air Sampling and Analysis

Indoor air samples were obtained from the basement and first floor (bathroom) of 73 Bay Avenue on January 22, 2004. Two basement air samples (primary and field duplicate) were obtained from near to the center of the room within two feet of sample Subslab #1. The two basement Summa canisters were placed beside each other. The first floor sample was obtained in the bathroom. The canisters were filled over a 24-hour period. Summa canister samples were sent under chain-of-custody procedures by via courier to STL Laboratories (Burlington, Vermont) for VOC analysis by USEPA Method TO-15.

4.2.6 Weather Data

Weather data (temperature, barometric pressure, wind speed, wind direction and qualitative description of precipitation) for the Atlantic City Airport weather station was obtained on an approximate hourly basis between January 15 and 24, 2004.

4.2.7 House Conditions during Sampling

General house conditions during sampling were noted. This included notation of whether the house was occupied and a qualitative indication of the degree to which windows and doors were open.

The differential pressures between indoor and outdoor air, and indoor and subslab air were measured in the basement of 73 Bay Avenue using an Engineering Solutions Model Omniguard III Differential Pressure Sensors (Omniguard), which has data logging capabilities and can measure differential pressure to 0.5 Pascal.

The first differential pressure sensor was set up with one port connected to ¹/₄-inch diameter tubing which led to a "dampening" device, which in turn was connected to tubing that was threaded through a crack in the window. The design of the dampening device followed recommendations in CGSB (1986). The purpose of the dampening device was to reduce variation in pressure caused by wind and consisted of a 3-foot long, 4-inch diameter PVC tube with sealed end caps. Two holes were drilled into each side of the cylinder. Quarter-inch ID tubing was used between the Omniguard and dampening cylinder, and ¹/₁₆ inch ID tubing was used from the dampening tube to outside. The small diameter tubing is used to minimize the volume of air, which according to CGSB (1986) will dampen small variations in pressure. Normally, tubing will extend from the dampening cylinder to all four sides of the house to obtain a more precise estimate of the mean difference in pressure between indoor and outdoor air. However, at 73 Bay Avenue, there were only windows along the east wall of the basement; therefore, only one tube was extended outside.

The second differential pressure sensor was connected to tubing inserted into a drilled hole located two feet from Subslab #1. A pressure dampening device was not used at this location since no tubing is subject to forces caused by wind.

4.2.8 Basement Air Exchange Determination

On January 22, 2004, the air change rate of the basement at 73 Bay Avenue was estimated using carbon dioxide as a tracer in accordance with the test procedure described in ASTM E 741-00. The test involves measuring the decline in carbon dioxide concentration over a several hour period.

The basement windows and doors were closed, with the exception of one window that was opened a crack to enable the pressure monitoring tubing to go outside. Starting at about 16:00 on January 22, carbon dioxide from a tank was released into the basement. To disperse carbon dioxide evenly throughout the basement, the field technician walked around the basement holding the tank. Carbon dioxide was released until the concentration reached about 2,000 ppm. The Golder field technician then left the basement. No one entered the house until the next morning. The test was not conducted in the first floor of the house due to time constraints and occupant concerns.

Two air quality monitoring instruments (AQ-5000 by Quest Technologies Inc., Wisconsin) were set-up in the north and south half of the basement. These instruments measured concentrations of carbon dioxide and carbon monoxide, along with temperature and relative humidity over time.

4.2.9 Summa Canister Sampling Issues

A list of all Summa samples collected at the Site and the pressures measured in the canisters, upon receipt by STL, are provided in Table 4-1. During and shortly after deployment of some Summa canisters, it was noted that the connection between the canister and pressure regulator was not completely tight. Normal practice is for STL to provide canisters with a tight-fitting connection. Once noted, the nut between the canister and flow regulator was tightened; however, for canisters used for subslab vapor, the mid-depth vapor, and indoor air sampling, a portion of the sample may have been collected without a tight fitting. The implication is that the subslab vapor samples may have been diluted by indoor air. For the indoor air samples, the canisters may have filled over a shorter duration. Due to scheduling constraints, it was not possible to re-sample the indoor air and subslab vapor probes.

The pressures measured in canisters ranged from -7.4 in Hg to 0.4 in Hg. Typically, a negative pressure is measured in the canister upon completion of sampling and receipt by the laboratory. Neutral pressure could be a result of a leak in the connection between the canister and flow regulator. However, a positive pressure is unusual. STL was requested to comment on acceptable criteria for canister pressures and why there were positive pressures measured in some canisters. Aside from possible differences between the temperature during sampling and measurement in the laboratory, STL could not identify possible causes for the positive pressures measured. STL indicated that there is no criteria in USEPA Method TO-15 for acceptable pressures, although STL uses a range of -1 in. Hg to -5 in. Hg as a guide. Temperature changes are unlikely to be a cause for the positive pressures since samples collected from inside the building at room temperature were also positively pressured.

Other quality control indicators (duplicate sample, blanks) indicated acceptable data quality.

4.3 Stage Three Results

4.3.1 Soil Sampling and Analysis

There were no indications of hydrocarbon staining or odors noted in soil samples obtained from borehole BH-EAST. The results of the headspace vapor tests indicated all PID concentrations were below the instrument detection limit (1 ppm). Borehole BH-EAST was located east of 73 Bay Avenue, and laterally further away from the center-line of the hydrocarbon plume than previous boreholes completed on the west side of 73 Bay Avenue.

Five soil samples were analyzed for moisture content and grain size distribution (Appendix V, Table 4-2). Using the measured gravimetric moisture contents, the water-filled porosity was estimated, as follows:

$$\theta_{\rm w} = M_{\rm c} * B / \rho_{\rm w}$$

where θ_w is the water-filled porosity, M_c is the moisture content, B is the dry bulk density and ρ_w is the density of water. The dry bulk density used for the calculation was 1648 kg/m³, which was the average bulk density measured as part of the Stage 2 program. (see Section 3.0)

	BH-EAST (0-4')	BH-EAST (4-8')	BH-EAST (8-11.4')	BH-EAST (11.4-12')	73 Bay Avenue Dirt Floor Crawlspace TP-1 (0-0.3')
Moisture Content (%)	9.68	3.14	7.02	15	0.4
Water-filled Porosity (-)	0.159	0.052	0.116	0.247	0.007

 Table 4-2.
 Soil Moisture Contents January 22, 2004

The grain size distributions for the samples from BH-EAST indicated sandy soil, with decreasing fines (i.e., silt or clay) content with increasing depth. The grain size distributions are similar to those measured for Stage 2 samples.

Two water retention tests were conducted as part of the Stage 2 program using samples with similar grain size gradation to those obtained for BH-EAST (4-8') and BH-EAST (8-11.4'). The water retention tests indicated the field capacities in two Stage 2 samples were 0.043 to 0.047. The estimated water-filled porosity in the four samples obtained on January 22, 2004 exceeded the field capacity.

The default water-filled porosity used to develop the Draft USEPA Vapor Intrusion Guidance (2003) semi-site specific attenuation charts (Figure 3 in USEPA guidance) for unsaturated zone sand is 0.055. The January 2004 water-filled porosities exceeded the USEPA default value in samples collected from adjacent to the building, which is likely a result of surface water infiltration. The water-filled porosity in one sample collected below the crawlspace below a plastic sheet was much lower; however, this sample was obtained from near the ground surface. Considerable drying of this soil would be expected.

4.3.2 Groundwater Sampling and Analysis

Groundwater samples were collected from two Geoprobe locations from just below the water table. The approximate depth to the water table and screened sampling interval is given below:

Location	Depth to Water Table	Screened Interval
EAST-S	11 ft.	11 - 13 ft.
EAST-D	11 ft.	13 - 15 ft.
WEST-S	11 ft.	11 - 13 ft.
WEST-D	11 ft.	13 - 15 ft.

The results of groundwater field testing is provided in Table 4-3.

Location	Date	Sample Collection Time	Temp.	pН	Specific Conductance	Dissolved Oxygen	Redox Potential	Turbidity	Volume Purged	Depth Interval
			[°C]	[std]	[ms/cm]	[mg/L]	[mV]	[ntu]	[gal]	[ft-bgs]
EAST-S	1/19/2004	1150	11.2	5.76	0.251	0.68	2	600	1	11-13'
EAST-D	1/19/2004	1210	11.7	5.88	0.544	0	-80	>999	1	13-15'
WEST-S	1/19/2004	1100	10.1	6.39	1.45	0	-107	546	1	11-13'
WEST-D	1/19/2004	1125	11.8	5.68	0.551	0	-27	442	1	13-15'

 Table 4-3. Groundwater Field Parameter Readings January 19, 2004

The results indicate slightly acidic groundwater. Low dissolved oxygen concentrations (less than 1 mg/L), indicative of anaerobic conditions, were measured in all groundwater samples.

The groundwater chemistry results are provided in Table 4-4. The results are summarized as follows:

- VOCs measured in groundwater, including compounds with detectable concentrations less than the quantification limit (J-flag samples), were BTEX, cyclohexane, isopropylbenzene, methylcyclohexane, and MTBE;
- The maximum total BTEX and MTBE concentrations in groundwater were 57.5 mg/L and 140 mg/L, respectively;
- Comparison of the groundwater quality west and east of 73 Bay Avenue indicated:
 - (i) Shallow sample the western well concentrations were between 600 and 3,160 times higher than eastern well;

- (ii) Deeper sample the western well concentrations were between 1.2 and 64 times higher than eastern well;
- Comparison of the shallow (11-13 feet) and deeper (13-15 feet) groundwater samples indicated that similar concentrations were measured west of 73 Bay Avenue, but east of 73 Bay, the concentrations in the deeper sample were much higher.

The groundwater quality results indicated that there was a lateral decrease in concentration from west to east of 73 Bay Avenue; however, the decline in concentration varied depending on the sample depth and compound. The largest decline was observed for toluene and MTBE, while the smallest decline was observed for benzene, ethylbenzene and xylenes.

The lateral decrease in concentration from west to east reflects transverse dispersion and attenuation along the edges of the plume (i.e., the plume centerline is off-set and located west of 73 Bay Avenue).

4.3.3 Soil Vapor Sampling and Analysis

The light gas concentrations are presented in Table 4-5. At the West VP-D probe, the oxygen concentration was depleted (4.6 percent) while the carbon dioxide concentration was elevated (10.8 percent) indicating hydrocarbon biodegradation. At the East VP probes, the light gas concentrations were close to atmospheric levels.

	Location				
Parameter	Background	EAST VP-S	EAST VP-M	EAST VP-D	WEST VP-D
		2.5-3'	6-6.5'	9.5-10'	9.5-10'
CO ₂ (%)	0.1	0.7	1.3	1.4	10.8
CH ₄ (%)	0	0.3	0.2	0.2	N/A
O ₂ (%)	21.8	22	21.4	21.3	4.6

 Table 4-5. Light Gas Testing Results January 19, 2004

The oxygen concentration at West VP-D (4.6 percent) was slightly higher than that measured in October 2002 at VP-9D (1 percent), which was located about 1 m from West VP-D. The oxygen concentration at the West VP-D was higher than expected based on typical levels in soil where active biodegradation is occurring, although it is noted that the West VP-D probe (9.5 to 10 feet) was slightly shallower than VP-9D (10.5 to 11 feet).

The VOC concentrations measured in soil vapor samples are provided in Table 4-6. The vapor concentrations at the WEST VP-D (deep) were relatively high. The 2,2,4-trimethylpentane concentration at 890,000 ppbV followed by toluene at 700,000 ppbV

were the maximum concentrations. In contrast, the vapor concentrations in the EAST vapor probes were low. Even in EAST VP-D (deep), the vapor concentrations appear to be near to or slightly above background levels. For example, the cyclohexane and 2,2,4-trimethylpentane concentrations at EAST VP-D were 18 ppbV and less than 2.3 ppbV, respectively. As indicated earlier, the 90th percentile cyclohexane concentration in residential indoor air for one study was reported to be 2.73 μ g/m3 (0.77 ppbV) (Edwards et al., 2001).

4.3.4 Subslab Vapor Sampling and Analysis

Three subslab vapor samples were obtained from below the basement slab concurrent with indoor air sampling (Figure 4-1). The results are presented in Table 4-7. The maximum subslab vapor concentrations were measured at Subslab #3, located near the north end of the building. The cyclohexane and 2,2,4-trimethylpentane concentrations at this location were 1,550 ppbV and 7,500 ppbV, respectively. The subslab vapor concentration at samples Subslab #2 and #3 were significantly lower than at Subslab #1 (about 50 times for cyclohexane and 2,2,4-trimethylpentane). This may have been caused by non-compliant Summa canisters provided by STL. Since the Subslab #3 result is more consistent with expected results based on previous testing, it is used for subsequent analysis in this report, recognizing that the result is approximate based on sampling issues described in Section 2.9 of this report.

4.3.5 Indoor Air Sampling and Analysis

The indoor air testing results are presented in Table 4-7. The cyclohexane and 2,2,4-trimethylpentane concentrations were elevated in basement air (47 ppbV and 300 ppbV, respectively). Slightly lower concentrations were measured in first floor air (39 ppbV and 190 ppbV). With the exception of toluene, which was detected at low levels, the benzene, ethylbenzene and xylenes concentrations were below the detection limit in air samples.

4.3.6 Weather Data

The weather conditions between January 14 and 23, 2004 at the Atlantic City Airport are provided in Table 4-8. The weather conditions on January 22 and 23 (IAQ sampling dates) can be summarized as follows:

- The temperature ranged between about 13 and 40°F;
- The winds were moderate to strong (8 to 25 MPH), and;

• The barometric pressure was relatively static (about 1005 mbar) on January 22 until about 6 PM, and then rose steadily to about 1015 mbar by 7 AM on January 23. A pressure variation of 10 mbar is approximately 1 kPa or 1,000 Pa.

There was no precipitation between January 19 and 23.

4.3.7 House Conditions

During sampling, the antique shop at 73 Bay Avenue was occupied between about 10 AM and 4 PM. During this time, doors were periodically opened and closed. One window in the basement was opened a crack.

The differential pressure measurements and weather monitoring results are presented in Figures 4-2 and 4-3. The results presented are the average differential pressure readings recorded every 15 minutes. The pressure in the basement was, on average, 0.67 Pascal lower than the pressure in soil below the slab. As indicated in Figure 4-2, there are variations in pressure that span both positive and negative pressures. The cause for the pressure fluctuations are not known but may be related to operation of the building heating system (hot-water radiant heat) or meteorological conditions (wind, temperature, barometric pressure). The difference between the indoor and outdoor temperature was 25 to 30°F; therefore, a negative pressure in the basement relative to atmospheric air and subslab soil would be expected due to the stack effect. The barometric pressure began to steadily rise near the end of the pressure monitoring period. Since rapid pressure equilibration between pressure outside, inside and below the house would be expected (on the order of a few minutes), it is unlikely that barometric pressure changes had a significant effect on the differential pressures. A rise in barometric pressure would tend to result in downward movement of soil gas, although analysis using the ideal gas law indicates such movement would be limited to a few centimeters, at most, based on the relatively small depth to water table (about 11 feet).

The pressure monitoring results indicate a lower pressure in the basement than in subslab soil. However, no discernable pressure difference was measured between the basement and outdoor air. This is not consistent with the expected pressure difference based on the pressure gradient between subslab soil and the basement. The results suggest that the dampening cylinder, as implemented (see Section 2.7), was not effective. A possible cause could have been a leak in the cylinder. Even a very small leak would result in pressure differences being dissipated. As indicated in Section 5.0 of this report, additional testing of the pressure dampening concept is recommended as part of future field work.

4.3.8 Basement Air Change Determination

The carbon dioxide (CO_2) monitoring results are provided in Figure 4-4. One data logger (No. 1) collected data over a 4 hour period, while the second (No. 2) was limited to 34 minutes. Since the data from logger No. 1 was collected over a longer time span, it was used for the estimation of air change rate.

The data analysis involved smoothing CO_2 concentrations obtained for data logger No.1 (Figure 4-5). The smoothing was conducted by hand-plotting the data. Next, the smoothed CO_2 concentrations were corrected by subtracting the background CO_2 concentration, which was estimated to be 650 ppm (see Figure 4-5). The natural logarithm of the CO_2 was plotted against time, and the air change rate (0.59 air changes per hour (ACH)) was estimated from the slope (Figure 4-6).

The estimate of air change rate for the basement represents ventilation and infiltration with outside air and soil gas, and also mixing of air within the house (i.e., between basement and first floor). Since a tracer test was not performed in the first floor of the house, it is not possible to separate out natural ventilation and infiltration, from mixing or exchange of air within the house. During the test, the door at the top of the basement stairs was closed. Since the stairs are the only direct connection between the basement and first floor, most of the air change was likely due to ventilation from outdoor air.

DATA LOGGER ONE

DATA LOGGER TWO

Figure 4-4. Results of CO₂ Monitoring Ventilation Tracer Test

Figure 4-5. Smoothed CO₂ Concentrations for Data Logger No. 1

Figure 4-6. CO₂ Ventilation Test Background Corrected Concentrations

- 40 -

4.4 Stage Three Discussion

4.4.1 Comparison of 2002 and 2004 Monitoring Results

Groundwater

The total BTEX and MTBE concentrations in groundwater have been measured at nearby locations west of 73 Bay Avenue on three occasions:

September 2002:	Total BTEX: MTBE:	68 mg/L 521 mg/L
October 2002:	Total BTEX: MTBE:	82.5 mg/L 590 mg/L
January 2004:	Total BTEX: MTBE:	57.5 mg/L 140 mg/L

The groundwater monitoring results indicate similar BTEX concentrations, but a slight decline in the MTBE concentration (about 3X) between 2002 and 2004.

Vapor West of 73 Bay Avenue

For most compounds, the January 2004 concentrations at the WEST-VP were variable and within one order-of-magnitude from those measured at VP-D in October 2002. For example, the cylcohexane concentrations were 300,000 ppbV (2002) and 590,000 ppbV (2004), the 2,2,4-trimethylpentane concentrations were 400,000 ppbV (2002) and 890,000 ppbV (2004) and benzene concentrations were 200,000 ppbV (2002) and 53,000 ppbV¹ (2004).

However, the 2004 MTBE vapor concentration (56,000 ppbV) was significantly (28X) lower than the 2002 concentration (1,600,000 ppbV).

Subslab Vapor

The maximum January 2004 subslab vapor concentrations (Subslab #3) were lower than those measured in October 2002. For example, the cylcohexane concentrations were 4,300 ppbV (2002) and 1,550 ppbV (2004), while the 2,2,4-trimethylpentane

The benzene concentration in WEST VP-D were 61,000 ppbV and 45,000 ppbV (diluted sample). Since both sample results were within the calibration range, the average concentration is provided. The average concentration was taken whenever there were two valid results for a single sample (i.e., initial test run and test run on diluted sample).

concentrations were 20,000 ppbV (2002) and 7,500 (2004). However, Subslab #3 was located near the north east corner of the building, whereas the 2002 subslab location was near the center of the basement. Higher concentrations near the center of the basement would be expected based on concentration variability observed in vapor probes adjacent to the house, as described in Section 3.3.

Indoor Air

The 2004 indoor air testing indicated similar results to 2002. The 2,2,4-trimethylpentane concentration in basement air was about 2X higher in 2004 (300 ppbV compared to 145 ppbV), while the cyclohexane concentration was only slightly higher (47 ppbV compared to 36 ppbV).

The ratio of 2004 to 2002 deep vapor concentrations (at west probe) and ratio of 2004 to 2002 indoor air concentrations were similar for 2,2,4-trimethylpentane (2.22 for vapor and 2.07 for indoor air). This indicates similar vapor intrusion rates and mixing inside the building.

4.4.2 Concentration Variability

The January 2004 groundwater results indicated a lateral decrease in BTEX concentrations from west to east 73 Bay Avenue that ranged from 60X to 3,750X for shallow samples (i.e., for individual BTEX compounds), and 1.2X to 64X for deep samples. It is not known why there was such significant chemical-dependent variation in the west to east concentration ratios. One possibility is that differences in biodegradability and chemical solubility contributed to this difference.

There was also a significant difference in the vapor concentrations, with high concentrations west of 73 Bay Avenue and background levels to the east. The results highlight the importance of adequate site characterization when evaluating the vapor intrusion pathway.

4.4.3 Vapor Attenuation Ratios

Groundwater to Indoor Air (Basement)

The vapor attenuation ratios are presented in Tables 4-9 (summary) and 4-10 (details). The groundwater to indoor air vapor attenuation factor (alpha) was calculated using the vapor concentration predicted using the Henry's Law constant. The groundwater alpha for cyclohexane was calculated using half the detection limit at the west groundwater monitoring well. Both a minimum alpha (using just the concentration for the west well) and an average alpha (average of east and west wells) were calculated for cyclohexane, and were as follows:

- Minimum alpha: 8.3x10⁻⁶
- Average alpha: 1.7x10⁻⁵

The upper bound alpha's for BTEX ranged from 1.0×10^{-6} to 9.5×10^{-6} (minimum) and 1.5×10^{-6} to 1.4×10^{-5} (average).

Soil Vapor to Indoor Air (Basement)

The soil vapor alpha's obtained using measured soil vapor concentrations were also calculated both using the vapor concentration at the west vapor probe, and the average of the east and west probes. The alpha's were as follows:

- Minimum alpha: 8.0×10^{-5} (cyclohexane) and 3.4×10^{-4} (2,2,4-trimethylpentane), and;
- Average alpha: 1.6×10^{-4} (cyclohexane) and 6.7×10^{-4} (2,2,4-trimethylpentane).

The upper bound alpha's for BTEX ranged from 2.7×10^{-6} to 4.1×10^{-5} (minimum) and 5.3×10^{-6} to 8.0×10^{-5} (average).

Measured Subslab to Indoor Air (Basement)

The subslab to indoor air alpha's were calculated using the maximum subslab vapor concentration (Subslab #3), and were $3x10^{-2}$ (cyclohexane) and $4x10^{-2}$ (2,2,4-trimethylpentane).

Comparison 2002 and 2004 Alpha's

The comparisons below are for cyclohexane and 2,2,4-trimethylpentane:

- 1. The groundwater alpha calculated based on 2004 data was 5X (using west well) to 10X (using average east and west well) higher than the 2002 alpha's; however, the 2004 analysis used an estimated concentration of half the detection limit for cyclohexane.
- 2. The 2004 vapor alpha's were similar to the 2002 alpha's, when only the west vapor probe data was used. When the average vapor concentrations was used, the 2004 alpha's were slightly higher.
- 3. The 2004 subslab alpha's are about 4X to 5X higher than those obtained in 2002.

Comparison of Basement to First Floor Indoor Air Concentrations

The 2004 monitoring indicated that the first floor concentrations were 1.2X to 1.6X lower than basement concentrations, for cyclohexane and 2,2,4-trimethylpentane, respectively. A larger decline was observed in 2002 where the basement to first floor ratios were 4.7 and 4.3 for these chemicals.

4.5 Stage Three Conclusions

In January 2004, additional monitoring was conducted at 73 Bay Avenue to further investigate vapor intrusion processes and address data gaps in the 2002 program. Although not all the 2004 program objectives could be met due to unavoidable scheduling constraints and sample collection issues, the 2004 program results were useful.

The building ventilation test was successful and indicated that a CO_2 tracer test can be readily implemented to estimate building air change rates. While not expected to become a routine test for vapor intrusion studies, it could provide useful information when a more precise estimate of ventilation rate is required. This information is used as input to site specific modeling in Section 5 of this report.

The building depressurization monitoring indicating that the 73 Bay Avenue basement was likely under negative pressure during the January 2004 sampling. As for 2002, there again was significant short-term temporal variability in the pressure data. There was no significant difference between the indoor and outdoor air pressures; however, the readings may have been affected by the pressure dampening cylinder. Further testing of the pressure dampening device is recommended as part of future field research studies.

The 2004 vapor measurements west of 73 Bay Avenue were similar to those in 2002. In addition, the vapor alpha's using the west vapor probe data were similar for cyclohexane and 2,2,4-trimethylpentane indicating repeatable results were obtained and little difference between October and January conditions. The deep soil vapor measurements are considered the most reliable data for evaluating vapor intrusion since they avoid the partitioning step from groundwater, and are close to the contamination source. Subslab vapor concentrations are taken closer to the receptor and therefore can also be useful for evaluating vapor intrusion, but there were sampling issues that may have affected results for the Stafford program. There can also be greater variation in subslab vapor concentrations as a result of the influence of the building and foundation subsoil variability on vapor transport.

The groundwater and deep vapor measurements indicate significant lateral variability. The implication is that evaluation of vapor intrusion potential and health risk could be quite different depending on where samples are obtained. The results indicate the importance of a sound conceptual site model for contamination distribution. One

measurement point adjacent to a building may be reasonable if one is relatively certain that the maximum concentrations are determined; however, multiple data points are preferable to characterize concentration variability.

The 2004 light gas monitoring results are consistent with the 2002 results indicating significant BTEX vapor biodegradation within the unsaturated zone as a result of aerobic biodegradation, which reduces BTEX concentrations below the building to non-significant levels.

5.0 STAFFORD STAGE FOUR PROGRAM: SITE SPECIFIC ASSESSMENT USING JOHNSON AND ETTINGER MODEL

A site-specific modeling assessment of vapor intrusion was conducted for the building located at 73 Bay Avenue using the Johnson and Ettinger (J&E model). The purpose of the assessment was to calculate vapor attenuation factors (alpha's) using input parameters based on site specific measurements and estimated values for the Stafford site, for comparison to measured alpha's and default USEPA Vapor Intrusion Guidance semi site specific alpha's (Question 5 charts).

The site specific modeling was conducted for MTBE (groundwater-to-indoor air pathway) and 224-trimethylpentane and cyclohexane (soil vapor-to-indoor air pathway). The USEPA Superfund spreadsheet (version 031403) was used to calculate the alpha's (selected print-outs are included in Appendix IV).

The input parameters used for the modeling exercise are provided in Table 5-1. The rationale for key input parameters are provided below:

- 1. The soil between the base of the building foundation and water table was divided into two equal thickness layers (each 0.84 m) for estimation of soil moisture. For the top layer (Layer One), the water-filled porosity was the mid-point between the measured residual saturation and field capacity from water retention tests (consistent with US EPA default value). A relatively low water-filled porosity was also considered reasonable based on the low soil moisture content measured in the sample obtained from below the crawlspace. For the bottom layer (Layer Two), the water-filled porosity was assumed to be equivalent to the field capacity. The rationale for the higher deep water-filled porosity is the lateral migration of soil moisture will be significant within the lower portion of the unsaturated zone since the building footprint is relatively small.
- 2. The air exchange rate input in the model (0.47/hr) was based on the results of the January 2004 ventilation tracer test using carbon dioxide (CO₂). The apparent measured air exchange rate for the basement was 0.59/hr; however, some of this exchange was likely due to migration of CO₂ to the rest of the house. It was arbitrarily assumed that 80 percent of the apparent exchange rate was due to air

exchange with outside air, which is the relevant input parameter for the box mixing model used for the J&E model. A more precise measurement of air exchange rate would have required additional CO_2 measurements throughout the house.

- 3. The building crack ratio was estimated by combining the area of an assumed 1 mm wide edge crack and the approximately 2 foot by 2 foot dirt opening in the concrete floor slab.
- 4. The soil gas advection rate into the building was estimated using two different methods. The first method involved adjusting the Q_{soil} (2 L/min) such that the Q_{soil}/Q_{build} ratio was equivalent to the default US EPA ratio (0.0033) used to develop the Question 5 charts. Since the 73 Bay Avenue basement is relatively small, it would not have been appropriate to use a Q_{soil} of 5 L/min. The second method involved the use of the Perimeter Crack Model and measured depressurization (0.6 Pa) to calculate the Q_{soil} (0.6 L/min). The corresponding Q_{soil}/Q_{build} was 0.001. Although the Q_{soil} is uncertain, based on the measured basement depressurization, the lower Q_{soil} value may be the more accurate value.

The use of the default Q_{soil}/Q_{build} ratio to scale Q_{soil} is conceptually correct when the building volume to subsurface foundation area and ventilation rate of the building under consideration is similar to the default building assumed for the USEPA defaults. For the 73 Bay Avenue building, these parameters are reasonably close to the defaults, considering the overall uncertainty in estimation of Q_{soil} . It is noted that there are other, potentially more robust scaling methods, which under some scenarios should be considered. These methods include the ratio of the building perimeter crack length to the default perimeter length, or ratio of the building subsurface area to default area. If, for example, Q_{soil} was estimated based on scaling of perimeter crack length, a Q_{soil} of 3.2 L/min would have resulted.

The results of the site-specific modeling are presented in Table 5-2. As shown, there is little difference between the site specific and USEPA semi-site specific alpha's. The reason, in this case, was that there was little difference between the site-specific model inputs and USEPA Guidance default model assumptions, and since chemical-specific physico-chemical properties have little effect on the calculated alpha's. A limited sensitivity analysis (not shown) suggests that alpha is most sensitive to Q_{soil} for the soil vapor-to-indoor air pathway.

The "best estimate" alpha's predicted using the J&E model were about $\frac{1}{2}$ to 1 order-ofmagnitude greater than the measured average alpha's based on January 2004 data. The measured average alpha's were based on the deep soil vapor concentrations on both sides of the building, and are considered appropriate values to use for site-specific comparison purposes. Although the model comparisons are limited in scope, they suggest for this site the J&E model would result in slightly conservative predictions. This is consistent with findings presented by Hers et al. (2003).

PART II: EGG HARBOR SITE

6.0 EGG HARBOR PROGRAM

6.1 Background Information

The purpose of the background section is to provide an overview of the investigation conducted by NJDEP at the site. For additional information, the reader is referred to a report by NJDEP Bureau of Environmental Measurements and Site Assessment (BEMSA) "*Site Investigation Pembroke Clothing, 801 Atlantic Avenue, Egg Harbor City, Atlantic County, New Jersey*" (no date given in report provided), henceforth referred to as the BEMSA report.

6.1.1 Overview

A dissolved chlorinated solvent plume in groundwater extends below a residential area in Egg Harbor (Figure 6-1). The source of the chlorinated solvents were releases from a former clothing and glass/mirror making facility known as the Pembroke Clothing site. There is a second groundwater plume, located a short distance west of the chlorinated solvent plume, comprised of monocyclic aromatic hydrocarbons (MAH) (primarily benzene) and polycyclic aromatic hydrocarbons (PAH). This MAH plume appears to be separate from the chlorinated solvent plume in the study area, which is between White Horse Pike (Route 30) (Agassiz Street) and Beethoven Street.

In March 2003, NJDEP investigated groundwater quality at the Egg Harbor site using a Geoprobe sampler. Groundwater samples were obtained for VOC analyses from multiple depths at eight locations (Figure 6-1). Three Geoprobe sampling locations were in the chlorinated solvent contamination source area while five were in the residential area. In general, groundwater samples were obtained over 3 foot intervals.

In June 2003, NJDEP completed an additional investigation of groundwater quality in the contamination source area that consisted of collection of Geoprobe groundwater samples from nine locations, irrigation well water from one location, and building drain water from two locations. In addition, soil samples from nine boreholes in the source area were obtained for chemical analysis.

There is also information on soil and groundwater quality from other investigations where wells were installed on private property including the Cumberland Farms site (corner White Horse Pike and Chicago Avenue), the South Jersey Gas Site (corner of White Horse Pike and Buffalo), and wells installed at the Fleet Bank site (near Arago Street and Cincinnati Avenue).

6.1.2 Summary of NJDEP Program Results

The NJDEP program chemistry results (March and June 2003) are provided in Appendix VI. Chemical analyses of groundwater indicate that the main contaminants of potential concern (COPCs) are tetrachloroethene (PCE) and trichloroethene (TCE). The maximum PCE and TCE concentrations measured in groundwater, as documented in the BEMSA report, are summarized below:

- In the contamination source area near the former Pembroke Clothing site, the maximum measured concentrations of PCE and TCE in groundwater were $84,000 \ \mu g/L$ (15 to 18 feet) and $1,717 \ \mu g/L$ (15 to 18 feet), respectively.
- Below the residential area, the maximum measured concentrations of PCE and TCE in groundwater were 41,731 μ g/L (45 to 48 feet) and 300 μ g/L (18 to 20 feet) (Figure 6-2).

For comparison, the solubility of PCE in water is approximately 150,000 μ g/L. There is significant vertical concentration variability suggesting a relatively complex layered geology which influences groundwater flow and chemical transport.

Based on a qualitative evaluation, there appears to be a correlation between PCE and TCE concentrations in shallow groundwater. In the deep groundwater, the ratio of TCE to PCE concentrations decrease. Cis-1,2-Dichloroethene (cis-DCE) was detected at concentrations up to 133 μ g/L below the residential area. Trace levels of other chlorinated solvents were also detected in groundwater.

At Geoprobe location AT-2 (contamination source area), the first groundwater sample was collected from 4 feet to 7 feet suggesting that the water table was about 4 feet below ground surface in this area. At locations BF-1 through BF-4, the first groundwater sample was obtained from 9 feet to 12 feet. An e-mail from Ms. Lynn Vogel of NJDEP, dated January 12, 2004, indicated that during the March 2003 sampling program, the depth to the water table was approximately 8 feet below ground surface, and that the first sample was collected at 9 feet for ease of sample collection.

At AT-2, the PCE concentrations in groundwater from 4 to 7 feet and 9 to 12 feet were below 5 μ g/L. At 15 to 18 feet, the PCE concentration was 19,716 μ g/L. At BF-2, the PCE in groundwater from 9 to 12 feet was non-detect, while from 15 to 18 feet was 1,945 μ g/L. At BF-3, the PCE in groundwater from 9 to 12 feet was non-detect, while from 15 to 18 feet was 159 μ g/L. There is some evidence that, as one moves further away from the contamination source, the near water table groundwater concentrations decrease (i.e., increased thickness of a possible freshwater wedge). However, this interpretation could be affected by the wells proximity to the plume centerline, since the plume is relatively narrow.

6.1.3 Preliminary Hydrogeological Evaluation

A preliminary hydrogeological assessment was performed for the Egg Harbor Site.

Groundwater Flow Velocity

New Jersey Geological Survey (NJGS) hydrogeologists have estimated hydraulic conductivities and the average linear groundwater velocity for a number of aquifers and regions in New Jersey. For the Egg Harbor area, there are two estimates of groundwater velocity:

- *Estimate #1*: A groundwater velocity of 1.5 meter/year was obtained using new NJGS hydraulic conductivity estimates, and hydraulic gradients based on measured and interpolated water table elevations. This estimate takes aquifer pumping into account, but the data is collected over many years. The measurement time span brings into question the consistency between measurements at different locations.
- *Estimate #2*: A groundwater velocity of 19 meter/year was obtained using new hydraulic conductivity estimates, and assuming the hydraulic gradient (aquifer slope) is equal to ¹/₂ of the ground surface gradient. This is a rule of thumb that NJGS employs for the coastal plain. This estimate does not take groundwater pumping into account.

Estimate #1 seems very low since this at this groundwater velocity it would take about 1,000 years to result in a mile-long plume (assuming no retardation). This estimate is not consistent with the plume length observed in Egg Harbor. Therefore, Estimate #2 is more reasonable.

Recharge to Groundwater

Dr. Paul Sanders conducted preliminary modeling of recharge using the NJGS model. The following inputs were entered into the NJGS worksheet:

Land-use:	2
Soil: 97:	Klej (same as Galloway loamy sand)
Municipality:	7 (Egg Harbor City)

Land use 2 corresponds to $1/8 - \frac{1}{2}$ acre lots, single units, and medium density, which corresponds to 2 - 5 units per acre. The estimated recharge, based on the above, is 9.1 inches/year. If lower density housing, or unpaved surfaces are assumed, the recharge goes up to 11 to 14 inches per year. A GIS map of groundwater recharge for New Jersey counties indicates 10.5 inches/year recharge for the Buffalo Avenue area. This estimate

appears to assume a low density development (lots between $\frac{1}{2}$ - 1 acre). NJGS geologists note that recharge can be affected to a significant degree by extreme weather events (e.g., tropical storms) when there can be several inches of rainfall in a day.

6.1.4 Information For Other Sites

Cumberland Farms

The Cumberland Farms study is documented in a report by the Environmental Evaluation Group (EEG) (1995). Regionally, the site is located within the Cohansey Formation of the Outer Coastal Plain Physiographic Province. According to EEG, soils in this area of Egg Harbor City consist of fine to medium grained sand, coarse sand, and clayey silt, in stratigraphic order. The water table is perched over the clay, and the water table rises readily during periods of abnormally heavy rainfall. The depth to groundwater on May 2, 1995 ranged from 4.71 to 7.3 feet below ground surface. Low concentrations of PCE were detected in groundwater, the maximum concentration being 16 μ g/L at MW-4, located near the southwest corner of the Cumberland Farms site (Appendix VI). The wells at the Cumberland Farms sites were decommissioned.

South Jersey Gas (SJG)

The SJG site information (NJDEP Division of Water Resources Permit 36-14527) obtained for this study consisted of a well log for well P3, located near the northeast corner of the site, and water levels for a number of monitoring wells (Appendix VI). The driller's well log for P3 indicates the following: 0-2 ft silty sand; 2-6.6 ft medium sand, some gravel; 6.6-8 ft coarse sandy clay, some gravel; 8-9 ft silty sand; 9-11 ft sandy clay; 11-14 ft fine to medium sand. The static water level after drilling at this location on April 17, 1991 was 4 feet below ground surface.

Fleet National Bank

The Fleet National Bank site information is reported in Groundwater and Environmental Services, Inc. (GESI) (2002). Well logs, water levels and groundwater chemistry is available in this report (Appendix VI). Dr. Paul Sanders of NJDEP indicates wells MW-4 and MW-5 are accessible. The boring logs for this site indicate soils consist predominantly of sand with some clay or clayey sand layers. On March 2, 2001, the depth to groundwater ranged between 5.55 and 8.29 ft below ground. One February 15, 2002, the depth to groundwater ranged between 10.7 and 12.82 ft below ground surface.

6.2 Rationale and Approach

Available information for the Egg Harbor site indicates that PCE and TCE concentrations in groundwater near to the water table are relatively low. Consequently, the PCE and TCE concentrations in soil vapor will also likely be relatively low resulting in a vapor source strength that is insufficient to affect indoor air quality in homes. It is anticipated that the cross-media transfer between groundwater and soil vapor, and more specifically, the VOC mass flux rate through groundwater near the water table and capillary fringe will be critical in terms of whether there is a significant vapor source. Geological information indicates interlayered coarse and fine-grained soil deposits. There may be perched water during relatively wet periods, which would have a significant impact on vapor transport.

The approach was to conduct a relatively detailed investigation of groundwater and deep soil vapor concentrations. Sampling was performed at a number of locations where dissolved groundwater concentrations were expected to be at their highest levels. Precipitation and groundwater levels in wells were monitored over a several month period. The work scope included re-sampling of soil vapor above the water table if there were indications of a dropping water table. However, monitoring indicated only small fluctuations in groundwater levels and therefore no additional soil vapor testing was conducted. Since chlorinated solvent concentrations in soil vapor near the water table were low, no indoor air quality testing was performed, as discussed with NJDEP.

The groundwater characterization program was designed to compare the results of Geoprobe sampling over short intervals to sampling from a conventional monitoring well screened over a longer vertical interval. The purpose of this testing was to evaluate whether different sampling methods might bias the results of vapor intrusion risk assessment.

6.3 **Program Objectives**

The objectives of the Egg Harbor program were to:

- 1. Characterize the vertical profile of the groundwater concentrations.
- 2. Obtain additional information to delineate the lateral extent of the groundwater plume.
- 3. Evaluate whether deep vapor concentrations above the water table are significant.
- 4. Compare different methods for the characterization of dissolved groundwater concentrations.

5. Obtain information on seasonal water table fluctuations and weather, and investigate whether water table changes affect the groundwater and soil vapor regime.

6.4 **Program Scope and Methods**

The field investigation consisted of sampling from three locations (Figure 6-1):

Site 1: Near 124 Buffalo Avenue;

Site 2: Near corner of Buffalo Avenue and Arago Street (near 205 Buffalo), and;

Site 3: Beethovan Street near lane between Buffalo and Cincinnati Avenue.

The sampling locations were influenced by access considerations and the objective of being close to the plume centerline. The plume centerline cuts across Buffalo Street and therefore the houses are located at varying distances from the plume centerline.

The field investigation scope was as follows:

- Geoprobe groundwater testing (12 samples);
- Installation of one monitoring well (Site 1);
- Groundwater level monitoring at monitoring wells and nearby wells installed by others;
- Soil testing for moisture content and grain size distribution (two samples);
- Installation of soil vapor probes and soil vapor sampling and analysis (two samples);
- Obtain weather data.

All field work was monitored by a Golder field technician (Ms. Marie Lewis or Mr. Jim McLauglin).

6.4.1 Soil Sampling and Analysis

Three soil borings (GP-Site 1, 2 and 3) were advanced on December 2, 2003 to depths of 16 to 20 feet below ground surface (ft-bgs) (Figure 6-1). The soil boring was advanced using a direct-push technology (DPT) rig. Continuous 4-foot long soil samples were collected from the ground surface to the bottom of the boring using a nominal 2-inch outer-diameter Geoprobe steel macro-core sampler with dedicated inner polyethylene

sleeves. After removal of the macro-core sampler from the ground, the dedicated inner polyethylene sleeve with the soil core was extracted from the steel sampler. The polyethylene tube was cut lengthwise to expose the soil core for lithologic description and collection of field screening or laboratory samples.

Soil samples above the water table were screened every 2 to 3 feet for the presence of VOCs using a dry headspace vapor test conducted in the field using a photoionization detector (PID). The headspace test involved placing about 100 ml of soil in a clean 250-ml jar. The jar was covered with aluminum foil and briefly shaken. After 3 to 5 minutes, the peak headspace vapor reading was taken by puncturing the foil with the PID tip. The PID, a Photovac MiniRae 2000, was calibrated in accordance with the manufacturer's specifications to a 100 parts per million (ppm) isobutylene reference gas. Soil samples were not submitted for chemical analysis since PID readings were either relatively low or below the instrument detection limit, and no visual or olfactory indications of contamination were observed. Several soil samples were collected for possible geotechnical analysis.

Two samples obtained from borehole GP-Site 1 were tested for moisture content and grain size distribution.

6.4.2 Monitoring Well Installation and Groundwater Level Measurements

One soil boring was advanced using a Mobile B61 auger drill rig on January 12, 2004. At the completion of drilling, a monitoring well (MW-Site 1) was installed within the township right-of-way (ROW) between the street and the sidewalk (Figure 6-1). Drilling was conducted using 6-inch diameter hollow stem augers (HSAs). Split spoon soil samples were collected on a continuous basis from the ground surface to the total depth of the borehole, and the soil logged by the Golder field staff. The well was constructed to 14 feet below ground surface (ft bgs) and consisted of a 10-foot length of 2-inch diameter schedule 40 PVC with 0.010-inch slot screen, set at 4 feet bgs to 14 feet bgs. A sand (filter) pack, comprised of clean guartz sand, was placed in the annulus from 6 inches below to approximately 2 foot above the well screen interval. A primary sandpack of Morie #1 Sand was installed from the bottom of the borehole to 2 feet above the top of the well screen. The primary sandpack was topped with one foot of a finer-grained (Morie #00 Sand) secondary sandpack. A 2 foot seal of bentonite powder was placed above the secondary sandpack. Grout was placed above the bentonite seal to the ground surface. The well was completed with a flush mount box having a locking inner cap and brass padlock. The monitoring well log is provided in Appendix VII.

The monitoring well was developed prior to the initiation of groundwater chemistry sampling and hydraulic testing. The well was developed using a surge block and continuous cycles of over-pumping and recovery. Development continued until

relatively clear water was produced, and field parameters (pH, specific conductance and turbidity) stabilized, indicating good hydraulic communication with the surrounding water bearing zone. Well development forms are included in Appendix VII.

The depth to the groundwater in the well was measured on January 12, 2004. To measure groundwater levels over time, a SP-4000 Minitroll (In-situ Inc.) pressure transducer was placed in the well between January 12 and March 4, 2004. The pressure transducer has a vent tube for pressure compensation.

6.4.3 Groundwater Sampling and Analysis

Groundwater samples were obtained on December 2, 2003 from three temporary groundwater probes installed using a Geoprobe sampling system at Sites 1, 2 and 3 (Figure 6-1). The groundwater sampling system consisted of 1 ³/₄ inch ID steel rods (manufactured by Maverick), ⁷/₈ inch PVC slotted screen (manufactured by Geoscreen), which was protected by a steel sleeve. When the desired depth was reached, the sleeve was withdrawn to expose the 41-inch long screen. The Geoprobe was advanced until the top of the screen approximately coincided with the water table.

Groundwater samples were also obtained from monitoring well MW-Site 1 on January 12, 2004. Three groundwater samples were obtained from different depths within this well. The well at MW-Site 1 was developed only a few hours before sampling. Fast-tracking of sampling was conducted for initial screening purposes, but it is recognized that this does not meet requirements documented in the NJDEP Field Sampling Procedures Manual. Consideration could be given to re-sampling of groundwater from this well, if desired, as discussion in Section 6.7 of this report.

A peristaltic pump was used to purge water from the well and obtain groundwater samples. Polytheylene tubing was used to collect groundwater samples. For geoprobe samples, the tubing was threaded down through the PVC screen and the intake point was set near the middle of the Geoprobe screen. For the monitoring well, samples were obtained with the tubing intake point set at 9 feet, 11 feet and 13 feet below ground surface. The purging and groundwater sampling rate was approximately 250 ml/minute. Since the depth to groundwater was only about 8 to 10 feet, peristaltic sampling at low flows should not have introduced air bubbles in the sample. During purging, the pH, conductivity, turbidity, dissolved oxygen and oxidation-reduction potential were measured using a Horiba U-22 field meter.

Severn Trent Laboratories of Edison, New Jersey (STL-E) supplied Golder with certified clean sample bottles, blank bottle labels, custody seals, coolers, and chain-of-custody documents for the investigation. The bottles were labeled prior to sample collection using a permanent-marking pen. Once purging was completed, samples were collected

for volatile organic compounds (VOCs) analysis. Sampling was conducted by stopping the pump and removing the intake line from the screened interval, while leaving the discharge attached to the pump. Groundwater was then forced back through the tubing through the original inlet by reversing the pump flow direction. This way, the groundwater never passed through the silicon tubing at the peristaltic pump. Bottles were filled by allowing the water to flow gently down the inside of the bottle with minimal agitation. Each bottle was capped as it was filled taking steps to eliminate all headspace in the vials. The samples were preserved according to method-specific requirements, carefully packed into standard sample coolers with ice at approximately 4 degrees Celsius, and couriered under strict chain-of-custody procedures by Golder field personnel to STL Laboratories (Edison, New Jersey) for VOC analysis by USEPA Method 8260B.

6.4.4 Soil Vapor Sampling and Analysis

Geoprobe soil gas sampling implants (Model AT86) were installed on December 2, 2003 at Sites 1, 2 and 3 (Figure 6-1). The probes were installed between 6.5 and 7 feet below ground surface. The implants were attached to the drive point during pushing of the rods. Once the desired depth was reached, tubing was lowered to the bottom of the rod, and the tubing was attached to the implant by rotating the tubing. The Geoprobe rods were then removed from the hole leaving the implant and drive point in place. High density polyethylene (³/₈ inch diameter) tubing was installed to the surface and connected to a short piece of silicon tubing that was clamped to pinch off the tubing. The annulus surrounding the implant was backfilled with clean silica sand to six inches above the screen, and the remainder of the annulus was filled with a bentonite slurry.

Soil vapor samples were collected for VOC analyses on December 4, 2003 using evacuated six-litre Summa canisters. Prior to sampling, each probe was purged by removing 1.5 probe volumes at a rate of 100 ml/min using a Gillian GilAir sampling pump with low-flow module. The volume of the soil gas probe (implant and tubing) was calculated based on field measurements. The canister was then connected to each probe. The canisters were filled over a one-hour period, which corresponds to a flow rate of 100 ml/min. Teflon-lined tubing was used to connect the probe to the canister. Summa canister samples were sent under strict chain-of-custody procedures by via courier to STL Laboratories (Burlington, Vermont) for VOC analysis by USEPA Method TO-15.

Samples were collected for field light gas analyses on December 3, 2003 after removal of 1.5 probe volumes from each implant following procedures outlined above. A one-liter Tedlar bag was connected to the probe and filled at a rate of 100 ml/min. Teflon-lined tubing was used to connect the probe to the Tedlar bag. The light gas concentrations were measured using a VRAE multi-gas detector, which measures combustible gas levels, oxygen, hydrogen sulfide and carbon monoxide.
The soil vapor sampling was scheduled such that no sampling was performed during and within 12 hours of heavy rainfall.

6.4.5 Weather Data

Weather data was obtained for NOAA National Weather Service station at the Atlantic City International Airport. Egg Harbor City is located approximately 6 miles from the Atlantic City Airport. The weather data obtained consisted of precipitation data for selected dates in December 2003 and January 2004, and the daily average barometric pressure for January, February and March 2004. The precipitation data was used to evaluate possible trends in groundwater depths since the potential for cross-media transfer of volatiles from groundwater to soil vapor could increase if the water table decreased, although as described in subsequent sections of this report, there is a significant thickness of non-contaminated groundwater near the surface of the water table, which reduces the potential for water table variation to affect volatilization.

6.5 Field Investigation Results

6.5.1 Soil Sampling and Analysis

The borehole logs for GP-Site 1, 2 and 3, including headspace vapor test results, are provided in Appendix VII. There were no indications of chlorinated solvent odours noted in soil samples obtained from boreholes. The results of the headspace vapor tests indicated PID concentrations were all less than 3.1 ppm.

Two soil samples were analyzed for moisture content and grain size distribution (Appendix VII, Table 6-1). Due to poor soil core recovery, the second sample was a composite sample from 7.5 to 16 feet depth bgs. Using the measured gravimetric moisture contents, the water-filled porosity was estimated, as follows:

$$\theta_{\rm w} = M_c * B / \rho_{\rm w}$$

where θ_w is the water-filled porosity, M_c is the moisture content, B is the dry bulk density and ρ_w is the density of water. The dry bulk density used for the calculation was 1600 kg/m³, which is an assumed value.

	GP-Site 1 (5-6')	GP-Site 1 (7.5-16')
Moisture Content (%)	8.1	16
Water-filled Porosity (-)	0.130	0.256

 Table 6-1. Soil Moisture Contents December 2, 2003

The grain size distributions for the samples from GP-Site 1 indicated the following:

- 5-6 feet: poorly graded sand, with silt (11 percent)
- 7.5-16 feet: fine sand, some fines (clay and silt comprised of 23 percent), trace gravel

Detailed examination of the soil core from Site 1 indicated significant heterogeneity and layering in soil. The grain size distributions therefore represent the approximate average soil properties over the depth interval.

Only samples from Site 1 were tested for the above geotechnical parameters.

6.5.2 Soil and Groundwater Conditions

The borehole logs are provided in Appendix VII. The generalized stratigraphic profile at Sites 1, 2 and 3 consists of interlayed near-surface sand, silty sand to sandy clay to 8 to 10 feet depth bgs, underlain by a somewhat more uniform silty sand to sand unit that extended to the base of the boreholes (16 to 20 feet bgs). The surface soils between ground surface and 10 feet below ground surface are highly variable.

Observations during drilling at Sites 1, 2 and 3 suggest that soils were saturated below about 8 feet below ground surface.

The measured depths to groundwater from the top of well casings (TOC) (approximate ground surface) on January 12, 2004 are presented in Table 6-2.

Monitoring Well ID	Reference Elevation (feet MSL)	Depth to Ground water from TOC Jan. 12, 2004 (feet bgs)	Groundwater Elevation (feet MSL)	
Fleet Bank MW-2	54.43	6.74	47.69	
Fleet Bank MW-3	54.87	7.34	47.53	
Fleet Bank MW-4	54.27	6.60	47.67	
Fleet Bank MW-5	54.54	6.97	47.57	
South Jersey Gas Site P-3	53.80	4.84	48.96	
Golder MW-Site 1		5.26		

Table 6-2. Groundwater Levels Egg Harbor Monitoring Wells

TOC = Top of casing

The completion interval for monitoring well MW-Site 1 was 4 to 14 feet below ground surface. The depth to groundwater from the TOC (approximate ground surface) was 5.26 feet. However, during drilling, saturated soil was not encountered until about 8 feet depth bgs at this location.

6.5.3 Groundwater Sampling and Analysis

Groundwater samples were collected from three Geoprobe locations (Sites 1, 2 and 3) and from one monitoring well (Site 1). The results of field testing of groundwater samples is provided in Table 6-3.

Location	Temperature [°C]	pH [std]	Specific Conductance [ms/cm]	Dissolved Oxygen [mg/L]	Redox Potential [mV]	Turbidity [ntu]	Approximate Boring Volume ¹ [liters]	Volume Purged [liters]	Depth Interval [ft-bgs]
Site 1A	9.9	4.48	1.59	1.56	131	>999	0.71	0.95	12-14
Site 1B	11.5	4.59	0.39	7.8	164	>999	0.95	0.95	14-16
Site 1C	9.4	4.61	0.281	12.6	174	>999	1.18	0.95	16-18
Site 1D	16.3	4.75	0.431	4.09	176	>999	1.42	0.95	18-20
Site 2A	11.5	4.51	0.676	4.32	198	>999	0.24	0.95	8-10
Site 2B	11.2	4.6	0.704	4.07	223	>999	0.47	0.95	10-12
Site 2C	11	4.81	0.256	5.57	183	156	0.71	0.95	12-14
Site 2D	11.7	4.76	0.321	4.09	182	>999	0.95	0.95	14-16
Site 2E	10.9	4.48	0.51	4.02	225	>999	1.18	0.95	16-18
Site 3A	7.8	6.24	0.427	0.4	110	NT	0.24	0.95	8-10
Site 3B	9.9	4.5	0.362	5	250	36.6	0.47	0.95	10-12
Site 3C	11.2	4.49	0.303	6.52	267	880	0.71	0.95	12-14
Site 3D	10.5	4.43	0.159	4.26	276	>999	0.95	0.95	14-16
MW-Site 1	11.0	4.3	0.145	0	269	NT	N/A	N/A	N/A

Groundwater Field Parameter Readings

Notes:

1. Boring volume calculated using $V=\pi r^2h$, assuming that depth to groundwater = 96 inches-bgs, h=Bottom Depth interval in inches, and r=0.875".

2. Although Sites 1C, 1D, and 2E have greater approximate boring volumes than purged volumes, the upper interval boring samples were purged prior to these. Therefore, the real volume purged for deeper intervals is the sum of all lesser depth intervals and that interval.

The results indicate acidic groundwater. The dissolved oxygen concentrations range between 0.4 mg/L and 12.6 mg/L while the redox potential was between 110 mV and 276 mV. The dissolved oxygen levels and redox potential indicate generally aerobic groundwater conditions.

The Geoprobe obtained groundwater chemistry results are provided in Table 6-4. The results are summarized as follows:

- VOCs measured (via Geoprobe) in groundwater, including compounds with detectable concentrations less than the quantification limit (J-flag samples), were tetrachloroethene or perchloroethylene (PCE), trichloroethene (TCE), cis-1,2-dichloroethene (cis-DCE), chloroform and MTBE;
- The PCE, TCE and cis-DCE concentrations in shallow groundwater (less than 14 feet depth) were close to or less than the reporting limit. The maximum PCE concentration in shallow groundwater was 1.2 µg/L;
- At Site 1, the PCE concentrations increased with increasing depth. The maximum PCE concentration was 2,600 µg/L measured in the 18 to 20 foot depth sample. At Site 2, a slight increase in the PCE concentration was observed.

The groundwater results, obtained as part of this investigation, are inconclusive as to whether there is an increasing thickness of groundwater along the flow path with low or non-detect PCE concentrations since deeper samples were not analyzed. It is noted that the objective of this program was to characterize groundwater concentrations near the water table to evaluate vapor intrusion potential. However, the results of shallow and deeper groundwater analyses conducted by NJDEP in March 2003 suggest a possible increasing thickness of the fresh-water wedge.

				cis-1.2-						
Sample ID	Sample Interval	Tetrachloro ethene	Trichloroe thene	Dichloroe thene	Choloro- form	МТВЕ				
Geoprobe Sa	mpling Resul	ts								
GP-Site-1A GP-Site 1B GP-Site-1C GP-Site-1D	12-14' bgs 14-16' bgs 16-18' bgs 18-20' bgs	ND 19 28 2600	ND 3.2 4.7 300	ND 2.3 J 3.1 170	ND ND ND ND	ND ND ND ND				
GP-Site-2A GP-Site-2B GP-Site-2C GP-Site-2D GP-Site-2E	8-10' bgs 10-12' bgs 12-14' bgs 14-16' bgs 16-18' bgs	0.5 J ND 0.6 J 0.4 J 9.1	ND ND ND 1	ND ND ND ND 0.6 J	ND ND ND ND ND	ND ND ND ND ND				
GP-Site-3A GP-Site-3B GP-Site-3C GP-Site-3D	8-10' bgs 10-12' bgs 12-14' bgs 14-16' bgs	1.2 0.6 J 0.9 J 0.5 J	ND ND ND ND	ND ND ND ND	1.1 J ND ND ND	ND ND ND 1.2 J				
Monitoring W	Monitoring Well Sampling Results									
MW-Site-1 MW-Site-1 MW-Site-1	intake @ 9' intake @ 11' intake @ 13'	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND				

Table 6-4Groundwater Chemistry Results – Egg Harbor

Notes:

1. Results as reported by STL-Edison. Data not validated by Golder Associates.

2. All results in ug/L, only detectable results reported for Geoprobe sampling, for monitoring well samples, all concentrations were below the detection limit

3. Geoprobe samples collected December 2-3, 2003; monitoring well samples collected January 12, 2004.

3. ND = Non Detect

4. J = Mass spectral data indicates presence compounds that meets identification criteria. Result is less than specified detection limit but greater than zero. The concentration is approximate.

The VOC concentrations in the samples from the monitoring well were all below the analytical reporting limit.

6.5.4 Soil Gas Sampling and Analysis

The light gas concentrations are presented in Table 6-5. The oxygen concentrations at all three locations were near atmospheric levels. The percent lower explosive level (LEL) concentrations ranged from non-detect levels to 2 percent.

	Location							
Parameter	Site 1 12/3/2003 6.5-7 ft		Site 2 12/3/2003 6.5-7 ft	Site 3 12/3/2003 6.5-7 ft				
CO (ppm)	8		504	30				
% LEL	1		2	0				
H ₂ S (ppm)	0		0	0				
O ₂ (%)	19.1		21.3	21.8				
N. (

Table 6-5Light Gas Testing Results December 3 and 4, 2003

Notes:

1. All gas readings measured using a VRAE model PGM7800

The VOC concentrations measured in soil vapor samples are provided in Table 6-6. A conversion factor table (μ g/m³ to ppbV) is provided in Table 3-9. Chlorinated solvent concentrations in vapors were low. PCE was only detected in the sample from VP-Site 1 (2.5 ppbV).

Chemical	VP-Site 1	VP-Site 2
Chloroform	< 0.58	0.74
Methylene Chloride	2.6	2
Benzene	0.74	< 0.58
Toluene	10	0.75
Tetrachloroethene	2.5	< 0.58
Ethylbenzene	2.2	< 0.58
m&p-xylene	7.5	< 0.58
o-xylene	3.2	< 0.58
1,3,5-trimethylbenzene	0.85	< 0.58
1,2,4-trimethylbenzene	1	< 0.58
Acetone	13	17
Cyclohexane	33	19
Methyl ethyl ketone	1.2	0.89
4-Ethyltoluene	2.1	< 0.58
n-Hexane	2.3	< 0.58
n-Heptane	2.4	4.1
MTBE	87	< 0.58

Table 6-6Soil Vapor Chemistry Results – Egg Harbor

Note: All results in ppbV, only detectable concentrations reported

6.5.5 Weather Data

The monthly precipitation data for 2003 and 2004 at the Atlantic City Airport is provided in Table 6-7. The data indicates that 2003 was wetter than normal while to-date, 2004 has been slightly dryer than normal.

	2003 Precipitation (inches)	2004 Precipitation (inches)	Normal Precipitation (inches)	2003 Departure (inches)	2004 Departure (inches)
January	3.01	1.55	3.60	-0.59	-2.05
February	5.39	2.15	2.85	2.54	-0.70
March	3.96	3.45	4.06	-0.10	-0.61
April	2.79	4.71	3.45	-0.66	1.26
May	2.58	3.31	3.38	-0.80	-0.07
June	6.99	1.81	2.66	4.33	-0.85
July	4.06	5.31	3.86	0.20	1.45
August	1.68	3.82	4.32	-2.64	
September	2.95		3.14	-0.19	
October	4.82		2.86	1.96	
November	4.39		3.26	1.13	
December	5.74		3.15	2.59	
Total	48.36	26.11	40.59	7.77	-1.57

Table 6-7Measured Precipitation Atlantic City Airport

Note: August 2004 data to August 17

6.5.6 Groundwater Level Data from Pressure Transducer

The groundwater level data is shown in Figure 6-3. The depth to the apparent groundwater level ranged between about 3.6 feet and 5.5 feet below top of casing (approximate ground surface). The apparent groundwater levels indicate variability that that may be related to barometric pressure (Figure 6-3). For example, between January 30 and February 2 the barometric pressure rose about 10 inches (equivalent water column). During this time period, there was an apparent 7 inch decrease in the depth to groundwater, which in part could be attributed to increased barometric pressure. As expected, the apparent groundwater levels also appear to be influenced by precipitation. For example, the groundwater depth in February decreased after heavy rainfall events in early February.

Figure 6-3. Groundwater Level Data for MW-Site 1

6.6 Discussion

The groundwater monitoring at Sites 1, 2 and 3 indicated that there was about 6 feet of groundwater near the water table surface with non-detect or low PCE concentrations (less than 1.2 mg/L). The Golder December 2003 and NJDEP March 2003 program results are compared below:

- Golder Site 1 is located near NJDEP Geoprobe location BF-1. Measured PCE concentrations were similar at both locations (BF-1 at 2,011 μg/L, Site 1 at 2,600 μg/L) for groundwater samples collected from similar depths (BF-1 21-24 feet bgs, Site 1 18 to 20 feet).
- Golder Site 2 and NJDEP Geoprobe location BF-2 are located near to the plume centerline. A comparison of groundwater quality from these two locations indicates the measured PCE concentrations were higher at BF-2 for groundwater samples collected from similar depths (BF-2 15 to 18 feet at 4,000 μ g/L:, Site 2 16 to 18 feet at 9.1 μ g/L).
- Golder Site 3 is situated near NJDEP location BF-4. PCE was not detected in the NJDEP samples until 29 to 32 feet bgs where the concentration was 1,693 µg/L. The PCE concentrations at Site 3 were low; however, the maximum sampling depth was 14 to 16 feet.

Golder Associates

The comparison between the NJDEP and Golder program results for BF-2 and Site 2 indicated that the depth to elevated groundwater concentrations at Site 2 was somewhat greater than that at BF-2. This may be a result of a thicker freshwater lens in December 2003 due to greater than normal rainfall in 2003. Alternately, BF-2 may have been located closer to the centre-line of the PCE plume. Although the distribution of PCE in the contamination source area and the plume geometry has not been accurately mapped, there may be variation in vertical concentrations based on the location within the plume.

The soil vapor monitoring indicated several VOCs were detected in samples obtained from near to the water table. The concentrations of VOCs detected, including PCE, were similar to background VOC concentrations. For example, the maximum PCE concentration (2.5 ppbV, 17.4 μ g/m³) is within the range of reported background PCE concentrations in indoor air (Hers *et al.*, 2001, USEPA, 2003, Kurtz and Folkes, 2003, Foster *et al.*, 2003).

The Egg Harbor case study highlights the importance of a sound conceptual site model (CSM) and site characterization when evaluating the vapor intrusion potential. Significantly different interpretation results depending on the input groundwater concentrations used for the vapor intrusion evaluation. This is illustrated through reference to the Draft USEPA Vapor Intrusion (VI) Guidance. For PCE, the groundwater screening levels for a 1×10^{-6} incremental cancer risk (Table 3 in Guidance) are given in Table 6-8.

Alpha	Groundwater Screening Level for PCE (µg/L)
1x10 ⁻³	5 ^t
$7x10^{-4}$	5 ^t
$5x10^{-4}$	5 ^t
$3x10^{-4}$	5 ^t
$2x10^{-4}$	5.4
1×10^{-4}	11

 Table 6-8. Groundwater Screening Levels for PCE

t = Groundwater screening level for vapor intrusion less than MCL of 5 μ g/L

While concentrations in groundwater obtained from less than 14 feet bgs were less than the USEPA groundwater screening levels, they were much higher in groundwater below 15 feet bgs. It would have been interesting to have a thinner wedge of groundwater with low groundwater concentrations (e.g., 2 to 4 feet). In this case, there would have been significant implications for site characterization methodology and interpretation of results. For example, it is likely that the PCE concentrations in a well with a 10 foot long screen may have shown elevated concentrations compared to a shorter screen positioned higher in the groundwater column.

Golder Associates

6.7 Conclusions

A groundwater and soil vapor monitoring program was implemented in December 2003 and January 2004 at the Egg Harbor site. The objective of the program was to determine the potential for cross-media transfer of volatiles (primarily PCE) from groundwater to soil vapor, and soil vapor intrusion into homes. As discussed with NJDEP, as the data review and investigation process proceeded, the work scope was reduced since initial data indicated low potential for vapor intrusion. The December 2003/January 2004 monitoring program indicated the presence of near-surface interlayered coarse and finegrained soil up to 8 feet to 10 feet depth bgs, underlain by a possibly semi-confined aquifer consisting of sand to silty sand. Groundwater monitoring in the residential area (Sites 1, 2 and 3) indicated there was at least 6 feet of groundwater (from about 8 to 14 feet bgs) with low or non-detect PCE groundwater concentrations. Previous data obtained by NJDEP suggested there is an increasing thickness of non-contaminated groundwater (e.g., fresh-water wedge) with increasing down-gradient distance from the contamination source. The PCE concentrations in soil vapor near the water table were low (non-detect to 2.5 ppbV) confirming low vapor source strength.

Although the December 2003 monitoring was conducted at the end of a year with higher than normal precipitation, it is unlikely that there will be water table fluctuations sufficient to cause significant cross-media volatilization even during extended dry periods. Therefore, no further monitoring is recommended at the Egg Harbor site for the purposes of this research program.

Although it appears that the potential for soil vapor intrusion into houses from the Egg Harbor chlorinated solvent plume is low, the results for this site highlight the importance of characterization of hydrological conditions, hydrostratigraphic units and vertical groundwater concentration profiles.

The relative potential for soil vapor intrusion is likely highest in commercial buildings located near to the contamination source area and residences located near the corner of Buffalo Avenue and White Horse Pike (Route 30). Further investigation at these buildings may be warranted, but is beyond the scope of this research program. In addition, consideration could be given to re-sampling of groundwater at MW-Site 1, and soil vapor at MW-Sites 1 and 2.

GOLDER ASSOCIATES LTD.

Todd H. Rees, Ph.D., P.E. Principal

Ian Hers, Ph.D., P.Eng. Associate, Senior Environmental Engineer

THR/IH/jc 023-6124.001 N:\Final\6000\2003\023-6124C\Year 1 Report\rep 0303 Year 1 Report.doc

Golder Associates

7.0 REFERENCES

- ASTM E-741-00. 2000. Standard Test Method for Determining Air Change in a Single Zone by Means of a Tracer Gas Dilution
- Canadian General Standards Board (CGSB) (1986). Determination of the Airtightness of Building Envelopes by the Fan Depressurization Method. CAN/CGSB-149.10-M86.
- Edwards, R.D., Jurvelin, J., Saarela, K. and Jantunen, M. 2001. VOC Concentrations measured in personal samples and residential indoor, outdoor and workplace microenvironmenta in EXPOLIS-Helinki, Finland. Atmospheric Environment 35, 4531 to 4543.
- Golder, 2003. Results of First- and Second-Stage Subsurface Vapor Intrusion Investigation, Stafford Township, New Jersey. January.
- Golder, 2005a. Results of Third-Stage Subsurface Vapor Intrusion Investigation, Stafford Township, New Jersey. January.
- Golder, 2005b. Results of Subsurface Vapor Intrusion Investigation, Egg Harbor, New Jersey. January.
- Hers, I., Zapf-Gilje, R., Johnson, P.C. and Li, L. 2003. Evaluation of the Johnson and Ettinger model for prediction of indoor air quality. *Ground Water Monitoring and Remediation*, Summer 2003.
- Hohener, P., Duwig, C., Pasteris, G., Kaufmann, K., Dakhel, N. and Harms, H. 2003. Biodegradation of petroleum hydrocarbon vapors: laboratory studies on rates and kinetics in unsaturated alluvial soil. J. of Contaminant Hydrology. 66, pp. 93-115.
- Johnson, R.L., J.F. Pankow D. Bender, C. Price and J. Zogorski. To What Extent Will Past MTBE Releases Contaminate Community Water Supply Wells? Environ. Science and Technol. (2000) 34, 2A-7A.
- Kjeldsen, P. Christophersen, M., Broholm, M., Hohener, P., Aravena, R and Hunkeler, D. Biodegradation of fuel vapours in the vadose zone at Airbase Vaerlose, Denmark. Proceedings of the 2nd International Workshop on Groundwater Risk Assessment at Contaminated Sites and Integrated Soil and Water Protection, Tuebingen, March 20-21, 2003. Tubinger Geowissenschaftliche Arbeiten Vo. 69, pp. 31-39.

- Olson, J.J., Mills, G.L., Herbert, B.E. and Morris, P.J. 1999. Biodegradation Rates of Separated Diesel Components. Environmental Toxicology and Chemistry, 18, pp. 2448-2453.
- Solano-Serena, F., Marchal, R., Lebeault, J.-M. and Vandecasteele, J.P. 2000. Distribution in the environmental of degradative capacities for gasoline attenuation. Biodegradation. Vol. 11, No. 1, pp. 29-35.

USEPA 2003. Draft USEPA Vapor Intrusion Guidance, November 2003.

Table 2-1 EnCore[™] Test Results for Soil Samples Stafford Site

	BH-2 9	- 9.5'	BH-3 11.5 - 12'			
Parameter	Analytical Resluts Units: ug/kg (Dry Weight)	Quantitation Limit Units: ug/kg	Analytical Results Units: ug/kg (Dry Weight)	Quantitation Limit Units: ug/kg		
Benzene	ND	1.5	680	480		
Toluene	ND	7.4	ND	2400		
Ethylbenzene	ND	6.0	ND	1900		
Xylene (Total)	ND	7.4	520 J	2400		
TBA	NT	NT	ND	48000		
MTBE	200	7.4	63000	2400		

Notes:

NT = Not tested

ND = Not detected

Table 2-2Groundwater and Soil Vapor Test ResultsStafford Site, September 9-12, 2002

	SOIL VAPOR CONCENTRATION													
Location	BH-1 (10.5-11')	BH-1 (10.5-11')	BH-2 (11-11.5')	BH-2 (11-11.5')	BH-3 (11-11.5')	BH-3 (11-11.5')	BH-4 (9-9.5') BH-4 (9-9.5')	BH-5 (5-5.5')	BH-5 (5-5.5')	BH-6 (9.5-10')	BH-6 (9.5-10')	BH-7 (9.5-10.3')	BH-7 (9.5-10.3')
	(ppbV)	(ug/m3)	(ppbV)	(ug/m3)	(ppbV)	(ug/m3)	(ppbV)	(ug/m3)	(ppbV)	(ug/m3)	(ppbV)	(ug/m3)	(ppbV)	(ug/m3)
Soil Vapor Syringe	Sample & Field	GC (NJDEP P	hotovac 10S50)										
Benzene	ND	ND	BR	BR	109.3	347.8	ND	ND	15.6	49.6	0.325	1.03	0.54	1.72
Toluene	ND	ND	BR	BR	ND	ND	ND	ND	73.31	285	6.24	24.3	5.63	21.9
Ethylbenzene	33.65	145	BR	BR	ND	ND	ND	ND	31.31	135	2.99	12.9	5.81	25.1
O-Xylene	ND	ND	BR	BR	ND	ND	ND	ND	102.4	452	1.96	8.66	ND	ND
Soil Vapor Summa	Canister Samp	le & GC/MS (A	ir Toxics Ltd.)											
Benzene	NT	NT	350000	1100000	NT	NT	NT	NT	44	140	5.1	17	NT	NT
Toluene	NT	NT	1200000	4800000	NT	NT	NT	NT	360	1400	43	160	NT	NT
Ethylbenzene	NT	NT	49000	22000	NT	NT	NT	NT	51	220	7.4	33	NT	NT
O-Xylene	NT	NT	43000	190000	NT	NT	NT	NT	86	380	13	58	NT	NT
M&P-Xylene	NT	NT	180000	800000	NT	NT	NT	NT	240	1100	32	140	NT	NT
MTBE	NT	NT	1500000	5500000	NT	NT	NT	NT	70	260	8.1	130	NT	NT
Isopentane	NT	NT	5200000	15000000	NT	NT	NT	NT	65	190	ND	ND	NT	NT
Pentane	NT	NT	3100000	9300000	NT	NT	NT	NT	26	78	ND	ND	NT	NT
Hexane	NT	NT	2100000	7600000	NT	NT	NT	NT	41	150	4.8	17	NT	NT
Cyclohexane	NT	NT	350000	1200000	NT	NT	NT	NT	14	48	ND	ND	NT	NT
Heptane	NT	NT	540000	2200000	NT	NT	NT	NT	22	91	3.2	14	NT	NT
Octane	NT	NT	ND*	ND*	NT	NT	NT	NT	9.1	43	ND	ND	NT	NT
Nonane	NT	NT	ND*	ND*	NT	NT	NT	NT	ND*	ND*	ND	ND	NT	NT
Decane	NT	NT	ND*	ND*	NT	NT	NT	NT	ND*	ND*	ND	ND	NT	NT
1,3,5 TMB	NT	NT	ND*	ND*	NT	NT	NT	NT	18	88	2.7	13	NT	NT
1,2,4 TMB	NT	NT	ND*	ND*	NT	NT	NT	NT	56	280	12	61	NT	NT
Acetone	NT	NT	ND*	ND*	NT	NT	NT	NT	21	52	36	86	NT	NT
MEK	NT	NT	ND*	ND*	NT	NT	NT	NT	ND*	ND*	6	18	NT	NT
Methylene Chloride	NT	NT	ND*	ND*	NT	NT	NT	NT	ND*	ND*	0.9	3.2	NT	NT
4-Ethyltoluene	NT	NT	ND*	ND*	NT	NT	NT	NT	49	240	7.8	39	NT	NT
Ethanol	NT	NT	ND*	ND*	NT		NT	NT	ND*	ND*	4.6	8.9	NT	NT
Location	GW1 (BH-1)	GW2 (BH-1)	GW3 (BH-2)	GW4 (BH-2)	GW5 (BH-3)	GW6 (BH-3)	GW7 (BH-4)	GW8 (BH-4)	GC/MS EPA	024) GW10 (BH-5)	GW11 (BH-6)	GW12 (BH-6)	GW13 (BH-7)	GW14 (BH-7)
	11.0 - 13.0	13.0 - 15.0	11.5 - 13.5	13.5 - 15.5	11.5 - 13.5	13.5 - 15.5	10.0 - 12.0	12.0 - 14.0	5.5 - 7.5	7.5 - 9.5	10.5 - 12 5	12.5 - 14 5	11.0 - 13.0	13.0 - 15.0
	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
Benzene	ND	ND	12286	8720	4518	2786	0.39 J	ND	ND	21.76	498	4771.89	29	30.81
Toluene	ND	ND	31981	4008	301	20.97 J	ND	ND	ND	0.44	17	79.9	ND	0.26 J
Ethyl-benzene	ND	ND	2869	1159	1597	130.7	ND	ND	ND	1.78	51	606.91	ND	0.74
o-Xylene	ND	ND	6118	780	20	0.24 J	ND	ND	ND	ND	4	43.65	ND	0.82
m,p-Xylene	ND	ND	14,629	5,306	2970	58	ND	ND	ND	ND	68	605.65	ND	0.54
MTBE	ND	ND	520086	314142	237563	1267	112	ND	0.35 J	11.36	16885	171678	17	175.2
Naphthalene	ND	ND	997	445	485	192.9	ND	ND	ND	0.23 J	9	209.67	ND	0.85
1,3,5 TMB	ND	ND	965.71	379.9 J	301.06	46.4	ND	ND	ND	ND	ND	42.76	ND	ND
1,2,4 TMB	ND	ND	3552.54	1190	1483.42	328.3	ND	ND	ND	0.81	29.65	436.38	0.28 J	1.66
isopropylbenzene	ND	ND	255.47	49.5	93.3	13.3	ND	ND	ND	ND	2.92 J	29.78	ND	0.87
n-propylbenzene	ND	ND	364.9	85.2	227.51	36.14	ND	ND	ND	ND	3.42 J	21.42	ND	ND
n-butylbenzene	ND	ND	289.33	86.1	ND	5.64	ND	ND	ND	ND	0.31 J	3.79	ND	ND

Notes:

 BR = Beyond Range
 MEK = Methyl Ethyl Ketone
 NT = not tested

 Groundwater not analyzed for aliphatics (iso-pentane through decane), MEK, 4-Ethyltoluene, Ethanol

ND* = raised detection limit

023-6124C

023-6124	С
----------	---

	MEASURED SOIL VAPOR												
Location		BH-1 (10.5-11')	BH-2 (11-11.5')	BH-3 (11-11.5')	BH-4 (9-9.5')	BH-5 (5-5.5')	BH-6 (9.5-10')	BH-7 (9.5-10.3')					
		(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)					
Measured Soil Vapo	or Syringe Sam	ple & Field GC (I	NJDEP Photova	c 10S50)									
Benzene		ND	BR	3.48E+02	ND	4.96E+01	1.03E+00	1.72E+00					
Toluene		ND	BR	ND	ND	2.85E+02	2.43E+01	2.19E+01					
Ethylbenzene		1.45E+02	BR	ND	ND	1.35E+02	1.29E+01	2.51E+01					
O-Xylene		ND	BR	ND	ND	4.52E+02	8.66E+00	ND					
Measured Soil Vapo	or Summa Canis	ster Sample & G	C/MS (Air Toxic	s Ltd.)									
Bonzono			1 10E+06	NT	NT	1 405 02	1 705 01	NIT					
Toluene		NT	1.10E+00			1.40E+02	1.70E+01						
Fthylbenzene		NT	2 20E+04	NT	NT	2 20E+02	3 30E+01	NT					
O-Xvlene		NT	1.90E+05	NT	NT	3.80E+02	5.80E+01	NT					
M&P-Xvlene		NT	8.00E+05	NT	NT	1.10E+03	1.40E+02	NT					
MTBE		NT	5.50E+06	NT	NT	2.60E+02	1.30E+02	NT					
Iconontano		NIT	1 50 5 107	NT	NT	1.005.02		NT					
Pontane			0.30E+07			7.90E+02							
Hevane		NT	5.50L+00	NT	NT	1 50E+01	1 70E±01	NT					
Cyclohexane		NT	1 20E+06	NT	NT	4 80E+02		NT					
Hentane		NT	2 20E+06	NT	NT	9.10E+01	1 40E+01	NT					
Octane		NT	ND*	NT	NT	4.30E+01	ND	NT					
Nonane		NT	ND*	NT	NT	ND*	ND	NT					
Decane		NT	ND*	NT	NT	ND*	ND	NT					
1 3 5 TMB		NT	ND*	NT	NT	8 80F±01	1 30F±01	NT					
1,3,3 TMB		NT	ND*	NT	NT	2 80E+01	6 10E+01	NT					
		NT	ND*	NT	NT	5 20E+02	8 60E±01	NT					
MEK		NT	ND*	NT	NT	0.202+01 ND*	1 80E+01	NT					
Methylene Chloride		NT	ND*	NT	NT	ND*	3.20E+00	NT					
4-Ethyltoluene		NT	ND*	NT	NT	2 40E+02	3 90E+01	NT					
Ethanol		NT	ND*	NT	NT	ND*	8.90E+00	NT					
			M										
Location -		GW1 (BH-1)	GW3 (BH-2)	GW5 (BH-3)	GW7 (BH-4)	GW9 (BH-5)	GW11 (BH-6)	GW13 (BH-7)					
Looution		11.0 - 13.0	11.5 - 13.5	11.5 - 13.5	10.0 - 12.0	5.5 - 7.5	10.5 - 12.5	11.0 - 13.0					
		(ua/L)	(ua/L)	(ua/L)	(ua/L)	(ua/L)	(ua/L)	(ua/L)					
Benzene		ND	12286	4518	0.39.1		498	29					
Toluene		ND	31981	301	0.00 U	ND	17						
Ethyl-benzene		ND	2869	1597	ND	ND	51	ND					
o-Xvlene		ND	6118	20	ND	ND	4	ND					
m.p-Xvlene		ND	14.629	2970	ND	ND	68	ND					
MTBE		ND	520086	237563	112	0.35 J	16885	17					
Naphthalene		ND	997	485	ND	ND	9	ND					
1,3,5 TMB		ND	965.71	301.06	ND	ND	ND	ND					
1,2,4 TMB		ND	3552.54	1483.42	ND	ND	29.65	0.28 J					
isopropylbenzene		ND	255.47	93.3	ND	ND	2.92 J	ND					
n-propylbenzene		ND	364.9	227.51	ND	ND	3.42 J	ND					
n-butylbenzene		ND	289.33	ND	ND	ND	0.31 J	ND					
	P	REDICTED SOIL	VAPOR CONC	ENTRATIONS N	EAR WATER 1	ABLE (USING	HENRY'S LA	W)					
Location	Henry's Law	BH-1 (10.5-11')	BH-2 (11-11.5')	BH-3 (11-11.5')	BH-4 (9-9.5')	BH-5 (5-5.5')	BH-6 (9.5-10 [°])	BH-7 (9.5-10.3')					
	Constant (-)	(ug/iiis)	(ug/iiis)	(ug/ms)	(ug/iiis)	(ug/iii3)	(ug/iiis)	(ug/ms)					
Benzene	2.28E-01	N/A	2.80E+06	1.03E+06	N/A	N/A	1.14E+05	6.61E+03					
Toluene	2.72E-01	N/A	8.70E+06	8.19E+04	N/A	N/A	4.62E+03	N/A					
Ethyl-benzene	3.23E-01	N/A	9.27E+05	5.16E+05	N/A	N/A	1.65E+04	N/A					
o-Xylene	2.90E-01	N/A	1.77E+06	5.80E+03	N/A	N/A	1.16E+03	N/A					
m,p-xylene	2.90E-01	N/A	4.24E+06	8.61E+05	N/A	N/A	1.97E+04	N/A					
IVI I BE Naphthalana	2.04E-02	N/A	1.06E+07	4.85E+06	2.28E+03	N/A	3.44E+05	3.47E+02					
	1.98E-02	N/A	1.97E+04	9.60E+03	N/A	N/A	1.78E+02	N/A					
	3.20E-01	N/A	3.09E+03 8 17E-05	3.03E+04	N/A		11/71 6 82E1 02	N/A N/A					
isonronylbenzene	2.30E-01	N/A	1 25F±07	4 57E±06	N/A	N/A	0.02E+03	N/A					
n-propylbenzene	5 40F-01	N/A	1.23C+07	1 23E±05	N/A	N/A	N/A	N/A					
n-butylhenzene	5.40F-01	N/A	1.56E+05	N/A	N/A	N/A	N/A	N/A					
	0.102 01												
		BH-1 (10.5-11')	BH-2 (11-11.5')	BH-3 (11-11.5')	BH-4 (9-9.5')	BH-5 (5-5.5')	BH-6 (9.5-10')	BH-7 (9.5-10.3')					
Benzene		N/A	3.9E-01	N/A	N/A	N/A	1.5E-04	N/A					
Toluene		N/A	5.5E-01	N/A	N/A	N/A	3.5E-02	N/A					
Ethyl-benzene		N/A	2.4E-02	N/A	N/A	N/A	2.0E-03	N/A					
o-Xylene		N/A	1.1E-01	N/A	N/A	N/A	5.0E-02	N/A					
m,p-Xylene		N/A	1.9E-01	N/A	N/A	N/A	7.1E-03	N/A					
МТВЕ		N/A	5.2E-01	N/A	N/A	N/A	3.8E-04	N/A					

O:\Active\6000\023-6124C NJDEP Soil Vapor Research\Year 1 Report\ Round1_Data_Sept2002(Oct14) - Year 1 Jan 25 Table 2-2 to 2-4

Table 2-4

Predicted Indoor Air Concentrations Using Soil Vapor and Alpha Equal to 0.001 Stafford Site, September 9-12, 2002

Location	BH-1 (10.5-11') (ug/m3)	BH-2 (11-11.5') (ug/m3)	BH-3 (11-11.5') (ug/m3)	BH-4 (9-9.5') (ug/m3)	BH-5 (5-5.5') (ug/m3)	BH-6 (9.5-10') (ug/m3)	BH-7 (9.5-10.3') (ug/m3)
Measured Soil Vapo	or - Syringe Sam	ple & Field GC	(NJDEP Photova	ac 10S50)			
Benzene	ND	BR	347.8	ND	49.6	1.03	1.72
Toluene	ND	BR	ND	ND	285	24.3	21.9
Ethylbenzene	145	BR	ND	ND	135	12.9	25.1
O-Xylene	ND	BR	ND	ND	452	8.66	ND
Predicted Indoor Ai	r Concentration	Using Field GC	Results (ug/m3) (using alpha	a = 0.001)		
Benzene	N/A	N/A	0.35	N/A	0.050	0.001	0.002
Toluene	N/A	N/A	N/A	N/A	0.285	0.024	0.022
Ethylbenzene	0.15	N/A	N/A	N/A	0.135	0.013	0.025
O-Xylene	N/A	N/A	N/A	N/A	0.452	0.009	N/A
Measured Soil Vapo	or - Summa Can	ister Sample & (GC/MS (Air Toxi	cs Ltd.)			
Benzene	NT	1100000	NT	NT	140	17	NT
Toluene	NT	4800000	NT	NT	1400	160	NT
Ethylbenzene	NT	22000	NT	NT	220	33	NT
O-Xvlene	NT	190000	NT	NT	380	58	NT
M&P-Xvlene	NT	800000	NT	NT	1100	140	NT
MTBF	NT	5500000	NT	NT	260	130	NT
Isopentane	NT	15000000	NT	NT	190	ND	NT
Pentane	NT	9300000	NT	NT	78	ND	NT
Hexane	NT	7600000	NT	NT	150	17	NT
Cyclohexane	NT	1200000	NT	NT	48	ND	NT
Heptane	NT	2200000	NT	NT	91	14	NT
Octane	NT	ND*	NT	NT	43	ND	NT
Nonane	NT	ND*	NT	NT	40 ND*	ND	NT
Decane	NT		NT	NT			NT
1 3 5 TMB	NT		NT	NT	88	13	NT
1.3,3 TMB			NT	NT	280	61	NT
			NT	NT	200 52	86	NT
MEK			NT	NT	52 ND*	18	NT
Methylene Chloride			NT			3.2	NT
			NT	NT	240	30	NT
Fthanol	NT	ND*	NT	NT	240 ND*	89	NT
Predicted Indoor Ai	r Concentration	Using Summa	Results (ug/m3)	(using alpha	= 0.001)	0.0	
Benzene	NT	1100	NT NT	NT	0.14	0.017	NT
Toluene	NT	4800	NT	NT	1 /	0.16	NT
Ethylbenzene	NT	22	NT	NT	0.22	0.10	NT
	NT	190	NT	NT	0.22	0.058	NT
M&P-Xylene	NT	800	NT	NT	1 1	0.000	NT
		5500	NT	NT	0.26	0.14	NT
Isopentane		15000	NT	NT	0.20	0.13 N/A	NT
Dentane		0300	NT	NT	0.19	N/A	NT
Hevane		7600	NT	NT	0.076	0.017	NT
Cyclobeyane		1200	NT	NT	0.13	0.017 N/A	NT
Hontono		2200	NT		0.040	0.014	
Octopo		2200			0.091	0.014	
Nenene		IN/A			0.043	N/A	
Nonane		IN/A			IN/A	N/A	
		IN/A			IN/A	IN/A	
		IN/A			0.088	0.013	
1,2,4 IIVIB		IN/A			0.28	0.061	
Acetone		N/A			0.052	0.086	
	NI	N/A	NI	NI	N/A	0.018	NI
ivietnylene Chloride	NI	N/A	NI	NI	N/A	0.0032	NI
4-Ethyltoluene	NI	N/A	NI	NI	0.24	0.039	NI
Ethanol	NI	N/A	NI	NI	N/A	0.0089	NI

Note:

1. Bolded indoor air concentration are above typical background.

Location	Type of Building	Number Levels	Base- ment?	Crawl- space?	Depth bgs base founda-tion slab (m)	Height crawl- space (m)	Foundation base con- struction	Subsurface foundation walls con- struction	Type fuel used	Type heating system	Summary foundation conditions ⁴	Summary chemical use and storage ⁴
63 E. Bay Avenue	Bike Shop	1	NO	NO	1.68	N/A	Concrete ³	N/A	Natural Gas	Forced Air	Concrete slab on grade	Use kerosene and oil as part of bicycle maintenance
73 E. Bay Avenue	Antique Store ¹	2 1/2	YES ²	YES ²	1.68	Variable	Concrete ³	Concrete Block	Oil Furnace	Hot water radiant	Approximately 50% basement concrete slab, 50% raised crawlspace with dirt floor partially covered with plastic, approximately 2 ft by 2 ft hole in concrete floor exposed to dirt	Some paints and thinners stored in basement, fuel oil tank in basement
14 Park Avenue	House	2	YES	NO	1.68	N/A	Concrete ³	Concrete Block	Oil Furnace	Hot water radiant	Concrete basement foundation, floor mostly covered, concrete in uncovered areas appears uncracked	Some paints, thinners and cleaning solvents stored basement, occupants have noticed diesel odour
18 Park Avenue	House	2	YES	NO	1.68	N/A	Concrete ³	Concrete Block	Natural Gas	Forced air	Approximately 80% basement concrete slab, 20% raised crawlspace with dirt floor, concrete appears uncracked	Some paints and thinners stored first floor, recently painted first floor
22 Park Avenue	House	2	NO	YES	1.68	~1.2	Concrete ³	Concrete Block	Oil Furnace	Hot water radiant	Crawlspace below entire house, dirt floor, several vents in crawlspace to outside, no gaps observed in floor separating crawlspace & first floor	Some paints, thinners and cleaning solvents stored first floor, some hobbies which involve use of glues and paints second floor

Notes:

1 Converted house

2 Partial basement and crawlspace, see report for additional details

3 Poured concrete

4 See questionaires for additional information

Location	VP-9	VP-10	VP-11	VP-12	VP-13
Date	10/28/2002	10/28/2002	10/28/2002	10/28/2002	10/28/2002
Depth	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
0.1	16	0	0.4	0.4	1 2
0-1	1.0	9	0.4	0.4	1.5
1-2	1.2	9.1	0.4	0.4	0.6
2-3	2.5	9.2	0.4	0.2	1.6
3-4	32	2.2	0.4	0.5	89.2
4-5	56	3.9	0.4	0.5	8.3
5-6	75	16.7	0.5	0.6	28
6-7	33.1	10.5	0.4	0.4	88.6
7-8	289	11.8	0.4	0.6	3.8
8-9	420	7.9	0.8	0.3	94.6
9-10	3928	6.9	0.5	0.5	116
10-11	1017	3.3	1.3	0.8	248
11-12	3398	1045	0.8	0.8	3305

Table 3-2Results of October 2002Field Headspace Vapour Tests, Stafford Site

Note: All headspace vapour readings obtained using PID with 10.2 eV lamp

Date Printed:2/8/2005

Table 3-3Results of October 2002 Soil Analyses, Stafford Site

Sample ID	VP	-9	VP-13			
Sample Date	10/28/	2002	10/28/2002			
Laboratory ID	3868	390	386894			
Method	826	0B	826	60B		
Depth	10.8 to	11.2 ft	10.3 to	10.7 ft		
Analysis Date	10/28/2002	11/1/2002	10/28/2002	10/30/2002		
	Concentra-	Reporting	Concentra-	Reporting		
	tion (ug/kg)	Limit	tion (ug/kg)	Limit		
Chloromethane	U	7500	U	18		
Bromomethane	U	7500	U	18		
Vinyl Chloride	U	7500	U	18		
Chloroethane	U	7500	U	18		
Methylene Chloride	U	4500	U	11		
Acetone	U	7500	U	18		
Carbon Disulfide	U	7500	U	18		
Trichlorofluoromethane	U	7500	U	18		
1,1-Dichloroethene	U	3000	U	7.2		
1,1-Dichloroethane	U	7500	U	18		
trans-1,2-Dichloroethene	U	7500	U	18		
cis-1,2-Dichloroethene	U	7500	U	18		
Chloroform	U	7500	U	18		
1,2-Dichloroethane	U	3000	U	7.2		
2-Butanone	U	7500	U	18		
1,1,1-Trichloroethane	U	7500	U	18		
Carbon Tetrachloride	U	3000	U	7.2		
Bromodichloromethane	U	1500	U	3.6		
1,2-Dichloropropane	U	1500	U	3.6		
cis-1,3-Dichloropropene	U	7500	U	18		
Trichloroethene	U	1500	U	3.6		
Dibromochloromethane	U	7500	U	18		
1,1,2-Trichloroethane	U	4500	U	11		
Benzene	6400	1500	U	3.6		
trans-1,3-Dichloropropene	U	7500	U	18		
Bromoform	U	6000	4.0 J	14		
4-Methyl-2-Pentanone	U	7500	U	18		
2-Hexanone	U	7500	U	18		
Tetrachloroethene	U	1500	U	3.6		
1,1,2,2-Tetrachloroethane	U	1500	U	3.6		
Toluene	150000	7500	2.2 J	18		
Chlorobenzene	U	7500	U	18		
Ethylbenzene	56000	6000	3.4 J	14		

Table 3-3Results of October 2002 Soil Analyses, Stafford Site

Sample ID	\/P.	.9	VP-13			
Sample Date	10/28/	2002	10/28	/2002		
Laboratory ID	3868	2002	386894			
Method	826	NB	8260B			
Denth	10.8 to	11 2 ft	10 3 to	10 7 ft		
Analysis Date	10/28/2002	11/1/2002	10/28/2002	10/30/2002		
Analysis Date	Concentra-	Reporting	Concentra-	Reporting		
	tion (ug/kg)	Limit	tion (ug/kg)	Limit		
	tion (ug/kg)		tion (ug/kg)	LIIIII		
Styrene	U	7500	U	18		
Xylene (Total)	360000	7500	18 J	18		
Freon TF	U	7500	U	18		
МТВЕ	18000	7500	63	18		
Cyclohexane	39000	7500	U	18		
1,2-Dibromoethane	U	7500	U	18		
1,3-Dichlorobenzene	U	7500	U	18		
1,4-Dichlorobenzene	U	7500	U	18		
1,2-Dichlorobenzene	U	7500	U	18		
Dichlorodifluoromethane	U	7500	U	18		
1,2,4-Trichlorobenzene	U	7500	U	18		
1,2-Dibromo-3-chloropropane	U	7500	U	18		
Isopropylbenzene	13000	7500	U	18		
Methyl acetate	U	7500	U	18		
Methylcyclohexane	34000	7500	U	18		

J=Quantiation is approximate due to limitations identified during the quality assurance review (data validation) U=Compound was not detected

			Specific	Dissolved	Redox	
Location	Temperature	рН	Conductance	Oxygen	Potential	Turbidity
	[° C]	[std]	[ms/cm]	[mg/L]	[mV]	[ntu]
VP-9	15.60	6.55	0.901	Note 1	-59	990
VP-10	17.60	6.54	0.664	0.43	-107	990
VP-11	17.00	6.04	0.635	2.27	32	100
VP-12	16.40	6.67	0.166	2.00	-54	630
VP-13	20.00	6.23	0.547	0.63	-78	290

Notes:

1. Insufficient recharge to purge using low flow method.

Dissolved oxygen value invalid due to aeration of flow cell.

Sample ID	GW1 (BH-1)	GW/2 (BH-1)	GW/3 (BH-2)	GW/4 (BH-2)	GW5 (BH-3)	GW7	GW6 (BH-3)	GW/7 (BH-4)
Sample Data	0/0/2002	0/0/2002	10/0/2002	10/0/2002	10/0/2002	0111	10/0/2002	11/0/2002
Sample Date	9/9/2002	9/9/2002	10/9/2002	10/9/2002	10/9/2002		10/9/2002	NUDED Mahila
Laboratory	NJDEP MODIIE	NJDEP MODIle	NJDEP WODIIE	NJDEP WODIIE	NJDEP MODILE	NJDEP MODIle	NJDEP MODIle	NJDEP WODIIE
			BAY115.D, 189.D,	BAY114.D,	BAY 132.D, 154.D,		BAY 177.D,	09240226.D,
Laboratory ID	BAY108.D	BAY109.D	173.D	188.D, 174.D	187.D, 172.D		136.D, 190.D	BAY135.D
Method	GC/MS EPA 524	GC/MS EPA 524	GC/MS EPA 524	GC/MS EPA 524	GC/MS EPA 524	GC/MS EPA 524	GC/MS EPA 524	GC/MS EPA 524
Analysis Date	17/9/2002	17/9/2002	17/9/2002	21/9/2002	19/9/2002		18/9/2002	25/9/2002
Depth								
Benzene	ND	ND	12286	8720	4518	0.39 J	2786	0.39 J
Toluene	ND	ND	31981	4008	301	ND	20.97 J	ND
Ethylbenzene	ND	ND	2869	1159	1597	ND	130.7	ND
o-Xvlene	ND	ND	6118	780	20	ND	0.24 J	ND
m p-Xvlene	ND	ND	14 629	5 306	2970	ND	58	ND
Xylenes	NT	NT	NT	NT	NT	NT	NT	NT
MTRE	ND	ND	520096	21/1/2	227562	112	1067	112
NIT DE	ND	ND	520060	314142	237303	11Z	1207	
Naphthalene	ND	ND	997	445	485	ND	192.9	ND
1,3,5 TMB	ND	ND	965.71	379.9 J	301.06	ND	46.4	ND
1,2,4 TMB	ND	ND	3552.54	1190	1483.42	ND	328.3	ND
isopropylbenzene	ND	ND	255.47	49.5	93.3	ND	13.3	ND
n-propylbenzene	ND	ND	364.9	85.2	227.51	ND	36.14	ND
n-butylbenzene	ND	ND	289.33	86.1	ND	ND	5.64	ND
				NT				NT
Chloromethane	NI	NI	NI	NI	NI	NI	NI	NI
Bromomethane	NT	NT	NT	NT	NT	NT	NT	NT
Vinyl Chloride	NT	NT	NT	NT	NT	NT	NT	NT
Chloroethane	NT	NT	NT	NT	NT	NT	NT	NT
Methylene Chloride	NT	NT	NT	NT	NT	NT	NT	NT
Acetone	NT	NT	NT	NT	NT	NT	NT	NT
Carbon Disulfide	NT	NT	NT	NT	NT	NT	NT	NT
Trichlorofluoromethane	NT	NT	NT	NT	NT	NT	NT	NT
1 1-Dichloroothono	NT	NT	NT	NT	NT	NT	NT	NT
1,1-Dichloroethere								
1,1-Dichloroethane	IN I	IN I	NI	IN I	IN I	N I	IN I	IN I
trans-1,2-Dichloroethene	NI	NI	NI	NI	NI	NI	NI	NI
cis-1,2-Dichloroethene	NT	NT	NT	NT	NT	NT	NT	NT
Chloroform	NT	NT	NT	NT	NT	NT	NT	NT
1,2-Dichloroethane	NT	NT	NT	NT	NT	NT	NT	NT
2-Butanone	NT	NT	NT	NT	NT	NT	NT	NT
1.1.1-Trichloroethane	NT	NT	NT	NT	NT	NT	NT	NT
Carbon Tetrachloride	NT	NT	NT	NT	NT	NT	NT	NT
Bromodichloromethane	NT	NT	NT	NT	NT	NT	NT	NT
1.2 Dichloropropana	NT	NT	NT	NT	NT	NT	NT	NT
cis-1,3-Dichloropropene	NI	NI	NI	NI	NI	NI	NI	NI
Irichloroethene	NI	NI	NI	NI	NI	NI	NI	NI
Dibromochloromethane	NT	NT	NT	NT	NT	NT	NT	NT
1,1,2-Trichloroethane	NT	NT	NT	NT	NT	NT	NT	NT
trans-1,3-Dichloropropene	NT	NT	NT	NT	NT	NT	NT	NT
Bromoform	NT	NT	NT	NT	NT	NT	NT	NT
4-Methyl-2-Pentanone	NT	NT	NT	NT	NT	NT	NT	NT
2-Hexanone	NT	NT	NT	NT	NT	NT	NT	NT
Tetrachloroethene	NT	NT	NT	NT	NT	NT	NT	NT
1 1 2 2-Tetrachloroethane	NT	NT	NT	NT	NT	NT	NT	NT
Chlorobonzono	NT	NT	NT	NT	NT	NT	NT	NT
Childroberizerie								
Styrene	IN I	IN I	IN I	IN I	IN I	IN I	IN I	IN I
Freon IF	NI	NI	NI	NI	NI	NI	NI	NI
1,2-Dibromoethane	NT	NT	NT	NT	NT	NT	NT	NT
1,3-Dichlorobenzene	NT	NT	NT	NT	NT	NT	NT	NT
1,4-Dichlorobenzene	NT	NT	NT	NT	NT	NT	NT	NT
1,2-Dichlorobenzene	NT	NT	NT	NT	NT	NT	NT	NT
Dichlorodifluoromethane	NT	NT	NT	NT	NT	NT	NT	NT
1.2.4-Trichlorobenzene	NT	NT	NT	NT	NT	NT	NT	NT
1 2-Dibromo-3-chloropropage	NT	NT	NT	NT	NT	NT	NT	NT
	NT	NT	NT	NT	NT	NT	NT	NT
Method Quelet	N I	N I	N I			N I	N I	IN I
iviethyl Cyclonexane	NI	NI	NI 	NI	NI	N I	NI	N I
I OTAL BIEX	ND	ND	67883	19973	9406	ND	2975	ND

J=Quantiation is approximate due to limitations identified during the quality assurance review (data validation) U=Compound was not detected ND = Not detected NT = Not tested All concentrations in ug/L

Table 3-5 Results of September and October 2002 Groundwater Testing Stafford Site

Sample ID	GW8 (BH-4)	GW9 (BH-5)	GW10 (BH-5)	GW11 (BH-6)	GW12 (BH-6)	GW13 (BH-7)	GW14 (BH-7)
Sample Date	11/9/2002	11/9/2002	11/9/2002	12/9/2002	12/9/2002	12/9/2002	12/9/2002
Laboratory	NJDEP Mobile	NJDEP Mobile	NJDEP Mobile	NJDEP Mobile	NJDEP Mobile	NJDEP Mobile	NJDEP Mobile
-							
				BAY112.D, 151.D,	BAY113.D, 152.D,		
Laboratory ID	HAR105.D	BAY110.D	BAY111.D	175.D	191.D. 171.D	BAY148.D. 134.D	BAY149.D
Method	GC/MS EPA 524	GC/MS EPA 524	GC/MS FPA 524	GC/MS EPA 524	GC/MS EPA 524	GC/MS EPA 524	GC/MS EPA 524
Analysis Date	23/0/2002	17/9/2002	17/9/2002	17/9/2002	17/9/2002	19/9/2002	19/9/2002
Dopth	20/0/2002	11/3/2002	11/3/2002	11/3/2002	11/3/2002	13/3/2002	13/3/2002
Deptil							
Benzene	ND	ND	21.76	498	4771.89	29	30.81
Toluene	ND	ND	0.44	17	79.9	ND	0.26 J
Ethylbenzene	ND	ND	1.78	51	606.91	ND	0.74
o-Xylene	ND	ND	ND	4	43.65	ND	0.82
m,p-Xylene	ND	ND	ND	68	605.65	ND	0.54
Xylenes	NT	NT	NT	NT	NT	NT	NT
MTBE	ND	0.35 J	11.36	16885	171678	17	175.2
Naphthalene	ND	ND	0.23.1	9	209.67	ND	0.85
1 3 5 TMB	ND	ND	ND	ND	42.76	ND	ND
1.2.4 TMB	ND	ND	0.81	20.65	436.38	0.28 1	1.66
			0.01	29.00	430.30	0.20 J	0.07
isopropyiberizerie	ND	ND	ND	2.92 J	29.76	ND	0.07
n-propyibenzene	ND	ND	ND	3.42 J	21.42	ND	ND
n-butylbenzene	ND	ND	ND	0.31 J	3.79	ND	ND
Chloromethane	NT	NT	NT	NT	NT	NT	NT
Bromomethane	NT	NT	NT	NT	NT	NT	NT
Vinyl Chloride	NT	NT	NT	NT	NT	NT	NT
Chloroethane	NT	NT	NT	NT	NT	NT	NT
Methylene Chloride	NT	NT	NT	NT	NT	NT	NT
Acetope	NT	NT	NT	NT	NT	NT	NT
Carbon Digulfida		NT	NT	NT		NT	NT
							NT
	IN I	INT	IN I			IN I	
1,1-Dichloroethene	IN I	IN I	IN I	N I	NT	IN I	NI
1,1-Dichloroethane	NI	NI	NI	NI	NI	NI	NI
trans-1,2-Dichloroethene	NT	NT	NT	NT	NT	NT	NT
cis-1,2-Dichloroethene	NT	NT	NT	NT	NT	NT	NT
Chloroform	NT	NT	NT	NT	NT	NT	NT
1,2-Dichloroethane	NT	NT	NT	NT	NT	NT	NT
2-Butanone	NT	NT	NT	NT	NT	NT	NT
1,1,1-Trichloroethane	NT	NT	NT	NT	NT	NT	NT
Carbon Tetrachloride	NT	NT	NT	NT	NT	NT	NT
Bromodichloromethane	NT	NT	NT	NT	NT	NT	NT
1.2-Dichloropropane	NT	NT	NT	NT	NT	NT	NT
cis-1 3-Dichloropropene	NT	NT	NT	NT	NT	NT	NT
Trichloroethene	NT	NT	NT	NT	NT	NT	NT
Dibromochloromethane	NT	NT	NT	NT	NT	NT	NT
1 1 2-Trichloroothano	NT	NT	NT	NT	NT	NT	NT
trans 1.2 Dishlarananana			NT			NT	
Bromoform							
							NT
4-Methyl-2-Pentanone	IN I	IN I	IN I	N I	NT	IN I	NI
2-Hexanone	NI	NI	NI	NI	NI	NI	NI
Tetrachloroethene	NT	NT	NT	NT	NT	NT	NT
1,1,2,2-Tetrachloroethane	NT	NT	NT	NT	NT	NT	NT
Chlorobenzene	NT	NT	NT	NT	NT	NT	NT
Styrene	NT	NT	NT	NT	NT	NT	NT
Freon TF	NT	NT	NT	NT	NT	NT	NT
1,2-Dibromoethane	NT	NT	NT	NT	NT	NT	NT
1,3-Dichlorobenzene	NT	NT	NT	NT	NT	NT	NT
1,4-Dichlorobenzene	NT	NT	NT	NT	NT	NT	NT
1,2-Dichlorobenzene	NT	NT	NT	NT	NT	NT	NT
Dichlorodifluoromethane	NT	NT	NT	NT	NT	NT	NT
1.2.4-Trichlorobenzene	NT	NT	NT	NT	NT	NT	NT
1.2-Dibromo-3-chloropropane	e NT	NT	NT	NT	NT	NT	NT
Isopropylbenzene	NT	NT	NT	NT	NT	NT	NT
Methyl Acetate	NT	NT	NT	NT	NT	NT	NT
Methyl Cyclobeyane	NT		NT	NT		NT	NT
			24	629	E100	111	
	IND	ND	24	030	0100	29	33

J=Quantiation is approximate U=Compound was not detecte All concentrations in ug/L

Sample ID	VF	p_9	VF	-10	VP	P-11	VP	P-12	VP-12	ab Dup	VP	-13	Trip	Blank
Sample Date	10/28	2002	10/28	8/2002	37	557	37	557	37	557	10/28	/2002	10/28	2002
Laboratory	10/20	72002 TI	10/20	72002 TI	01	TI	07	TI	01	TI	10/20	72002 FI	10/20	72002 TI
Laboratory	0		5		5		5		5		5	L	5	
						0.50						004	000	
Laboratory ID	386	861	386	858	386	0859	386	0860	386	862	386	861	386	863
Method	826	50B	82	50B	820	60B	826	60B	820	50B	8260B		826	50B
Analysis Date	11/1/	/2002	10/31	/2002	10/31	1/2002	10/31	1/2002	10/31	/2002	11/1/	2002	11/5/	/2002
Depth	11.5	5-15'	10.	5-14'	10.5	5-15'	10.5	5-13'	10.5	5-13'	10.5	-15'	N	/A
	Concen-	Reporting	Concen-	Reporting	Concen-	Reporting	Concen-	Reporting	Concen-	Reporting	Concen-I	Reporting	Concen-	Reporting
	tration	Limit	tration	Limit	tration	Limit	tration	Limit	tration	Limit	tration	Limit	tration	Limit
								_		_				
Benzene	12000	5000	6000	2500	100	10	26	5	28	5	7500	1000	U	1
Toluene	43000	25000	U	12000	U	50	U	25	U	25	14000	5000	U	5
Ethylbenzene	3500 J	20000	2200 J	10000	U	40	U	20	U	20	4200	4000	U	4
o-Xylene	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
m,p-Xylene	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Xvlenes	24000 J	25000	3300 J	12000	U	50	U	25	U	25	20000	5000	U	5
MTBE	590000	25000	310000	12000	1300	50	340	25	400	25	190000	5000	Ŭ	5
Naphthalene	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	NT	NT	NIT	NT		NT	NT	NT	NT	NT	NT	NT	NT	NT
	NT	INT	NT	INT		IN I		IN I				IN I	INT	IN I
1,2,4 TMB	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
isopropylbenzene	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
n-propylbenzene	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
n-butylbenzene	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Chloromothana		25000		12000		50		25		25		5000		5
Drama an ath an a	0	25000	0	12000		50	0	20	0	25	0	5000	0	5
Bromometnane	U	25000	U	12000	U	50	0	25	0	25	U	5000	U	5
Vinyl Chloride	U	25000	U	12000	U	50	U	25	U	25	U	5000	U	5
Chloroethane	U	25000	U	12000	U	50	U	25	U	25	U	5000	U	5
Methylene Chloride	U	15000	U	7500	U	30	U	15	U	15	U	3000	U	3
Acetone	U	25000	U	12000	U	50	U	25	U	25	U	5000	U	5
Carbon Disulfide	U	25000	U	12000	U	50	U	25	U	25	U	5000	U	5
Trichlorofluoromethane	Ŭ	25000	Ŭ	12000	Ŭ	50	Ū	25	Ū.	25	Ŭ	5000	Ū	5
1 1-Dichloroethene	ŭ	10000	ŭ	5000	ŭ	20	ŭ	10	ŭ	10	ŭ	2000	Ŭ	2
1 1 Dichloroothono		25000		12000		50		25		25		5000		5
	0	25000	0	12000		50	0	25	0	25		5000	0	5
trans-1,2-Dichloroethene	U	25000	U	12000	U	50	0	25	0	25	U	5000	U	5
cis-1,2-Dichloroethene	U	25000	U	12000	U	50	U	25	U	25	U	5000	U	5
Chloroform	U	25000	U	12000	U	50	U	25	U	25	U	5000	U	5
1,2-Dichloroethane	U	10000	U	5000	U	20	U	10	U	10	U	2000	U	2
2-Butanone	U	25000	U	12000	U	50	U	25	U	25	U	5000	U	5
1,1,1-Trichloroethane	U	25000	U	12000	U	50	U	25	U	25	U	5000	U	5
Carbon Tetrachloride	U	10000	U	5000	U	20	U	10	U	10	U	2000	U	2
Bromodichloromethane	Ŭ	5000	Ŭ	2500	Ŭ	10	Ū	5	Ū.	5	Ŭ	1000	Ū	1
1.2-Dichloropropape	ů.	5000	U U	2500	U U	10	Ŭ.	5	U U	5	Ŭ.	1000	U U	1
ais 1.2 Dichloropropano		25000		12000		50		25		25		5000		5
	0	23000	0	12000		30	0	25	0	25	0	1000	0	5
Trichloroethene	0	5000	0	2500	0	10	0	5	0	5	0	1000	0	1
Dibromochloromethane	U	25000	U	12000	U	50	U	25	U	25	U	5000	U	5
1,1,2-Trichloroethane	U	15000	U	7500	U	30	U	15	U	15	U	3000	U	3
trans-1,3-Dichloropropene	U	25000	U	12000	U	50	U	25	U	25	U	5000	U	5
Bromoform	U	20000	U	10000	U	40	U	20	U	20	U	4000	U	4
4-Methyl-2-Pentanone	U	25000	U	12000	U	50	U	25	U	25	U	5000	U	5
2-Hexanone	U	25000	U	12000	U	50	U	25	U	25	U	5000	U	5
Tetrachloroethene	Ŭ	5000	Ŭ	2500	Ŭ	10	Ū	5	Ū.	5	Ŭ	1000	Ū	1
1 1 2 2-Tetrachloroethane	ů.	5000	U U	2500	U U	10	Ŭ.	5	U U	5	Ŭ.	1000	Ŭ.	1
Chlorobenzene		25000	0	12000		50		25		25		5000	U U	5
Childroberizerie	0	25000	0	12000		50	0	25	0	25		5000	0	5
Styrene	0	25000	0	12000	0	50	0	25	0	25	0	5000	0	5
Freon IF	U	25000	U	12000	U	50	U	25	U	25	U	5000	U	5
1,2-Dibromoethane	U	25000	U	12000	U	50	U	25	U	25	U	5000	U	5
1,3-Dichlorobenzene	U	25000	U	12000	U	50	U	25	U	25	U	5000	U	5
1,4-Dichlorobenzene	U	25000	U	12000	U	50	U	25	U	25	U	5000	U	5
1,2-Dichlorobenzene	U	25000	U	12000	U	50	U	25	U	25	U	5000	U	5
Dichlorodifluoromethane	U	25000	U	12000	U	50	U	25	U	25	U	5000	U	5
1.2.4-Trichlorobenzene	Ŭ	25000	u .	12000	Ū.	50	ŭ	25	u .	25	ŭ	5000	Ű	5
1 2-Dibromo-3-chloropropage	U U	25000	L II	12000	U U	50	, i	25		25	Ŭ.	5000	U U	5
		25000		12000		50		25		20		5000		5
	0	20000		12000		50		20 05		20		5000		5
ivietnyi Acetate	U	25000	U	12000	U	50	U	25	U	25	U	5000	U	5
Methyl Cyclohexane	U	25000	U	12000	U	50	U	25	U	25	U	5000	U	5
Total BTEX	82500		17500		170		61		63		45700			

J=Quantiation is approximate U=Compound was not detecte All concentrations in ug/L

All concentrations in ug/L

Table 3-6

Location	Interval	Date	CO	% LEL	H₂S	O ₂
VP-9S	2.5-3	29-Oct-02 5-Nov-02 11-Nov-02 26-Nov-02	0 0 15 1	35 1 37 18	0 0 0	10.2 8.3 8.3 7.4
VP-9M	6.5-7	29-Oct-02 5-Nov-02 11-Nov-02	0 2 126	100 20 25	3 9 3	1.6 0.4 0.9
VP-9D	10.5-11	29-Oct-02 26-Nov-02	31	100 Could not dra	7 w sample	1.0
VP-10S	2.5-3	29-Oct-02 5-Nov-02 26-Nov-02	0 2 0	55 * 0 1	0 0 0	20.6 20.5 21.5
VP-10M	6.5-7	29-Oct-02 26-Nov-02	0 0	33 * 2	0 0	19.8 20.4
VP-10D	10.5-11	29-Oct-02 26-Nov-02	3	21 Could not dra	0 w sample	19.9 **
VP-11	10.5-11	29-Oct-02 26-Nov-02	0	14 Could not dra	0 w sample	20.3
VP-12	10.5-11	29-Oct-02 26-Nov-02	0	9 Could not dra	0 w sample	19.8
VP-13	10.5-11	29-Oct-02 5-Nov-02 11-Nov-02 26-Nov-02	2 2 144	100 12 100 Could not dra	2 23 3 w sample	0.5 0.2 3.8 **

Results of Light Gas Analyses - October to November 2002 Stafford Site

Notes

1. All gas readings taken using VRAE Model X. The %LEL reading was taken using a VRAE calibrate to methane in air.

- 2. * Reading suspect, higher than anticipated for expected biogeochemical conditions
- 3. ** Reading suspect, higher than anticipated for expected biogeochemical conditions could be caused by difficulty in drawing sample and dilution by ambient air.

Sample ID

Table 3-7 October 2002 Soil Vapor Test Results, Stafford Site

Sample ID

VP-9D

Depth			10.	.5-11'			Depth			6	.5-7'		
Sample Date			10/2	8/2002			Sample Date			10/2	8/2002		
Laboratory ID		5	507875 an	d 507875	٦1		Laboratory ID		5	07874D a	nd 507874	R1	
Method			Т	D-15			Method			Т	D-15		
Analysis Date		11/	09/2002 a	and 11/13/2	2002		Analysis Date		11/	/01/2002 a	and 11/14/2	2002	
			Concen-	Quanti-	Quanti-	Quanti-				Concen-	Quanti-	Quanti-	Quanti-
	CAS		tration	fication	fication	fication		CAS		tration	fication	fication	fication
Chemical	#		(ppb)	Qualifier	Type	Level	Chemical	#		(ppb)	Qualifier	Type	Level
METHYL TERT-BUTYL ETHER	1634-04-4	Α	1600000		POL	33000		1634-04-4	Α	450000		POL	6000
BUTANE 2-METHYL-674	78-78-4	т	840000	NI	N/A	N/Δ	3-BUTENOIC ACID 5 57	625-38-7	т	24000	NI		Ν/Δ
DENITANE 7 20	109-66-0	÷.	5/0000	NI	N/A	NI/A	DENTANE 7 20	109-66-0	Ť	24000	NI	N/A	N/A
	2402-06-4	÷	120000	NI	N/A			1630-04-0	Ť	85000	NI	N/A	N/A
CYCLOPPOPANE, 1,2-DIMETHYL, 7,70	1630-04-0	÷	220000	NI	N/A			1630-94-0	Ť	40000	NI		N/A
	F145 01 7	т Т	220000	NU	N/A	IN/A		1030-94-0	т Т	49000	NU	N/A	N/A
2(3H)-FURANONE, DIFTURO-3, 3-DI 8.36	06 14 0	+	210000	INJ NU	IN/A	IN/A	CVCLOPPOPANE 4 ETHVL 2 METHVL 2 06	10701 60 1	т Т	00000	NJ NU	IN/A	IN/A
PENTANE, 3-METHYL- 8.78	96-14-0	+	780000	NJ	IN/A	IN/A	CICLOPROPANE, 1-ETHIL-2-METHIL 8.96	19781-68-1	+	86000	NJ	IN/A	IN/A
1-PENTENE, 2-METHYL- 8.98	763-29-1	 	110000	NJ	N/A	N/A	2(3H)-FURANONE 9.15	20825-71-2	 -	58000	NJ	N/A	N/A
6-OXABICYCLO[3.1.0]HEXANE 9.22	285-67-6	<u> </u>	140000	NJ	N/A	N/A	2-HEXENE, (Z)- 9.21	7688-21-3	<u> </u>	80000	NJ	N/A	N/A
2-PENIENE, 4-MEIHYL-, (\angle)- 9.27	691-38-3	-	130000	NJ	N/A	N/A	2-PENTENE, 4-METHYL-, (Ζ)- 9.25	691-38-3	1	130000	NJ	N/A	N/A
2-BUTENE, 2,3-DIMETHYL- 9.36	563-79-1	T	77000	NJ	N/A	N/A	3-HEXENE, (Z)- 9.40	7642-09-3	Т	57000	NJ	N/A	N/A
1,4-HEXADIENE 9.43	592-45-0	Т	88000	NJ	N/A	N/A	FURAN, 2,3-DIHYDRO-3-METHYL- 9.50	1708-27-6	Т	210000	NJ	N/A	N/A
FURAN, 2,3-DIHYDRO-3-METHYL- 9.52	1708-27-6	т	200000	NJ	N/A	N/A	PENTANE, 2,4-DIMETHYL- 9.54	108-08-7	Т	180000	NJ	N/A	N/A
PENTANE, 2,4-DIMETHYL- 9.57	108-08-7	т	170000	NJ	N/A	N/A	HEXANE, 2-METHYL- 10.16	591-76-4	Т	210000	NJ	N/A	N/A
1-PENTENE, 2-METHYL- 9.69	763-29-1	т	450000	NJ	N/A	N/A	1-HEXENE, 5-METHYL- 10.26	3524-73-0	Т	140000	NJ	N/A	N/A
2H-PYRAN, TETRAHYDRO-2-METHYL- 10.	11 10141-72-7	Т	360000	NJ	N/A	N/A	1-PROPENE, 2-METHYL- 10.54	115-11-7	Т	270000	NJ	N/A	N/A
HEPTANE, 4-METHYL- 10.33	589-53-7	Т	480000	NJ	N/A	N/A	2-PENTENE, 3-ETHYL- 10.77	816-79-5	Т	73000	NJ	N/A	N/A
HEXANE, 2,2-DIMETHYL- 10.56	590-73-8	т	370000	NJ	N/A	N/A	HEXANE, 2-METHYL- 11.15	591-76-4	Т	46000	NJ	N/A	N/A
3-HEXENE, 2-METHYL-, (E)- 10.79	692-24-0	т	83000	NJ	N/A	N/A	1-PENTANOL, 2-METHYL- 11.47	105-30-6	Т	50000	NJ	N/A	N/A
2,4-HEXADIENE, 2-METHYL- 11.58	28823-41-8	т	94000	NJ	N/A	N/A	1-HEPTENE, 4-METHYL- 11.58	13151-05-8	т	92000	NJ	N/A	N/A
PHENOL 15.32	108-95-2	т	190000	NJ	N/A	N/A	N Y	1073-06-9	т	200000	NJ	N/A	N/A
DICHLORODIFLUOROMETHANE	75-71-8	А	U	U	PQL	33000	DICHLORODIFLUOROMETHANE	75-71-8	А	U	U	PQL	15000
	74-87-3	Α	Ŭ	Ū	POI	33000	CHLOROMETHANE	74-87-3	Α	Ū	Ŭ	POI	15000
	75-01-4	Α	Ŭ	Ū	POI	33000		75-01-4	Α	Ū	Ŭ	POI	15000
BROMOMETHANE	74-83-9	Α	ŭ	Ŭ	POL	33000	BROMOMETHANE	74-83-9	Α	Ŭ	ŭ	POL	15000
	75-00-3	Δ	1			33000		75-00-3	Δ				15000
	75-60-4	~				33000		75-60-4	~				15000
	75-09-4	~	0			33000		75-09-4	~	0			15000
	70-13-1	A	0	0		22000		70-13-1	Ā	0	0		15000
	75-00-0	A				22000		75-00-0	A _				15000
	75-09-2	A	U	U	PQL	33000		75-09-2	A	U	U	PQL	15000
	15-34-3	A	U	U	PQL	33000		15-34-3	A	U	U	PQL	15000
CIS-1,2-DICHLOROETHENE	156-59-2	A	U	U	PQL	33000	CIS-1,2-DICHLOROETHENE	156-59-2	A	U	U	PQL	15000
CHLOROFORM	67-66-3	A	U	U	PQL	33000	CHLOROFORM	67-66-3	A	U	U	PQL	15000
1,1,1-I'RICHLOROETHANE	71-55-6	A	U	U	PQL	33000	1,1,1-IRICHLOROETHANE	71-55-6	А	U	U	PQL	15000
CARBON TETRACHLORIDE	56-23-5	А	U	U	PQL	33000	CARBON TETRACHLORIDE	56-23-5	А	U	U	PQL	15000
BENZENE	71-43-2	А	200000		PQL	33000	BENZENE	71-43-2	А	77000		PQL	15000
1,2-DICHLOROETHANE	107-06-2	А	U	U	PQL	33000	1,2-DICHLOROETHANE	107-06-2	А	U	U	PQL	15000
TRICHLOROETHENE	79-01-6	А	U	U	PQL	33000	TRICHLOROETHENE	79-01-6	А	U	U	PQL	15000
1,2-DICHLOROPROPANE	78-87-5	А	U	U	PQL	33000	1,2-DICHLOROPROPANE	78-87-5	А	U	U	PQL	15000
CIS-1,3-DICHLOROPROPENE	10061-01-5	А	U	U	PQL	33000	CIS-1,3-DICHLOROPROPENE	10061-01-5	А	U	U	PQL	15000
TOLUENE	108-88-3	А	290000		PQL	33000	TOLUENE	108-88-3	А	150000		PQL	15000
TRANS-1,3-DICHLOROPROPENE	10061-02-6	А	U	U	PQL	33000	TRANS-1,3-DICHLOROPROPENE	10061-02-6	А	U	U	PQL	15000
1,1,2-TRICHLOROETHANE	79-00-5	А	Ŭ	Ŭ	PQL	33000	1,1,2-TRICHLOROETHANE	79-00-5	А	Ŭ	Ŭ	PQL	15000
TETRACHLOROETHENE	127-18-4	A	ũ	ũ	POI	33000	TETRACHLOROETHENE	127-18-4	A	Ū	Ű	POI	15000
	108-90-7	A	Ű	Ű	POI	33000	CHLOROBENZENE	108-90-7	A	Ű	Ű	POI	15000
ETHYI BENZENE	100-41-4	Δ	11	11		33000	ETHYI BENZENE	100-41-4	Δ	1	11		15000
	1330-20-7	Δ	11	11		33000		1330-20-7	Δ	11	11		15000
0/023-5124C/X'' /	100-42-5	^	11	11		33000		100-12-7	~	1	11		15000
OTTIVEINE	100-42-5	А	0	U	Golde	r Associa		100-42-0	Α	U	0	FUL	Page 1

VP-9M

Sample ID	VP-9D S						Sample ID VP-9M						
Depth	10.5-11'						Depth 6.5-7'						
Sample Date			10/2	8/2002			Sample Date	10/28/2002					
Laboratory ID		Ę	507875 an	d 507875	R1		Laboratory ID	507874D and 507874R1					
Method			TC	D-15			Method	TO-15					
Analysis Date		11/	/09/2002 a	and 11/13/	2002		Analysis Date	11/01/2002 and 11/14/2002					
			Concen-	Quanti-	Quanti-	Quanti-		Concen- Quanti- Qua				Quanti-	Quanti-
	CAS		tration	fication	fication	fication		CAS		tration	fication	fication	fication
Chemical	#		(ppb)	Qualifier	Type	Level	Chemical	#		(ppb)	Qualifier	Type	Level
XYLENE (O)	95-47-6	А	(PP~) U	U	POI	33000	XYLENE (O)	95-47-6	А	(PP~) U	U	POI	15000
1 1 2 2-TETRACHLOROFTHANE	79-34-5	Α	ŭ	Ŭ	POL	33000	1 1 2 2-TETRACHI OROFTHANE	79-34-5	Α	Ŭ	Ŭ	POL	15000
1 3-DICHLOROBENZENE	541-73-1	Α	ŭ	Ŭ	POL	33000	1 3-DICHLOROBENZENE	541-73-1	Α	Ŭ	Ŭ	POL	15000
1 4-DICHLOROBENZENE	106-46-7	Α	ŭ	Ŭ	POL	33000	1 4-DICHLOROBENZENE	106-46-7	Α	Ŭ	Ŭ	POL	15000
1 2-DICHLOROBENZENE	95-50-1	A	Ŭ	Ŭ	POI	33000	1 2-DICHI OROBENZENE	95-50-1	A	Ŭ	Ŭ	POI	15000
1 2 4-TRICHLOROBENZENE	120-82-1	A	Ü	Ŭ	POL	33000	1 2 4-TRICHI OROBENZENE	120-82-1	A	Ŭ	Ŭ	POL	15000
	87-68-3	A	Ü	Ŭ	POL	33000		87-68-3	A	Ŭ	Ŭ	POL	15000
	108-67-8	Δ	U U	U U		33000		108-67-8	Δ	Ű	U U		15000
1.2.4-TRIMETHYLBENZENE	95-63-6	Δ	U U	U U		33000		95-63-6	Δ	U U	U U		15000
	76-14-2	Δ		U U		33000		76-14-2	Δ	U U	U U		15000
	106-93-4	Δ		U U		33000		106-93-4	Δ	U U	U U		15000
	106-99-0	Δ				33000		106-99-0	Δ	1	1		15000
	75-15-0	Δ				33000		75-15-0	Δ	1	1		15000
	110-82-7	Δ	300000	0		33000		110-82-7	Δ	150000	0		15000
	142-82-5	~	320000			33000		1/2-82-5	~	160000			15000
	124-48-1	~	320000			33000		142-02-3	~	100000			15000
	124-40-1	~	1700000	0		33000		124-40-1	~	880000	0		15000
BROMOEORM	75-25-2	~	1700000			33000		75-25-2	~	11			15000
	75-23-2	~				33000		75-27-4	~				15000
TRANS-1 2-DICHLOROFTHENE	156-60-5	Δ	1	1		33000	TRANS-1 2-DICHLOROFTHENE	156-60-5	Δ	1	1		15000
	622-96-8	Δ	U U	U U		33000		622-96-8	Δ	U U	U U		15000
	107-05-1	Δ	U U	U U		33000		107-05-1	Δ	U U	U U		15000
2.2.4-TRIMETHYL PENTANE	540-84-1	Δ	400000	0		33000	2.2.4-TRIMETHYL PENITANE	540-84-1	Δ	210000	0		15000
BROMOETHENE	593-60-2	A	100000	U	POL	33000	BROMOETHENE	593-60-2	A	11	U	POL	15000
2-CHLOROTOLUENE	95-49-8	A	Ü	Ŭ	POL	33000	2-CHLOROTOLUENE	95-49-8	A	Ŭ	Ŭ	POL	15000
BUTANE 2-METHYL-5.04	78-78-4	т	1200000	N.J	N/A	N/A	UNKNOWN ALKANE 5.06	00 10 0	т	00000	J	N/A	N/A
PENTANE 5 44	109-66-0	Ť	580000	N.I	N/A	N/A	UNKNOWN ALKANE 5.45		Ť	330000		N/A	N/A
UNKNOWN ALKANE 5 56	100 00 0	Ť	210000		N/A	N/A	UNKNOWN ALKANE 5 79		Ť	220000	J	N/A	N/A
UNKNOWN 5 77		т	430000		N/A	N/A	UNKNOWN ALKANE 6.09		т	250000		N/A	N/A
UNKNOWN ALKANE 6.08		Ť	450000	J	N/A	N/A	UNKNOWN ALKANE 6.65		Ť	370000	J	N/A	N/A
UNKNOWN ALKANE 6.64		т	800000	J	N/A	N/A	UNKNOWN ALKANE 7.02		Т	680000	J	N/A	N/A
UNKNOWN ALKANE 6.71		т	1900000	J	N/A	N/A	UNKNOWN 7.44		Т	130000	J	N/A	N/A
UNKNOWN ALKANE 7.00		т	1300000	Ĵ	N/A	N/A	UNKNOWN 7.49		т	180000	J	N/A	N/A
UNKNOWN 7.47		т	340000	J	N/A	N/A	UNKNOWN 7.57		т	110000	J	N/A	N/A
UNKNOWN 7.75		т	260000	J	N/A	N/A	UNKNOWN 7.75		т	140000	J	N/A	N/A
UNKNOWN ALKANE 7.93		т	1200000	Ĵ	N/A	N/A	UNKNOWN ALKANE 7.93		т	630000	J	N/A	N/A
UNKNOWN 8.36		т	120000	J	N/A	N/A	UNKNOWN 8.37		Т	58000	J	N/A	N/A
UNKNOWN 8.69		т	330000	J	N/A	N/A	UNKNOWN ALKANE 8.69		Т	180000	J	N/A	N/A
UNKNOWN ALKANE 8.75		т	200000	Ĵ	N/A	N/A	UNKNOWN ALKANE 8.75		т	110000	J	N/A	N/A
UNKNOWN ALKANE 8.86		T	370000	J	N/A	N/A	UNKNOWN ALKANE 8.86		T	190000	J	N/A	N/A
UNKNOWN ALKANE 9.02		т	99000	J	N/A	N/A	UNKNOWN ALKANE 9.04		Т	48000	J	N/A	N/A
UNKNOWN ALKANE 9.09		т	100000	J	N/A	N/A	UNKNOWN ALKANE 9.09		т	65000	J	N/A	N/A
UNKNOWN ALKANE 9.77		т	160000	J	N/A	N/A	UNKNOWN ALKANE 9.77		Т	89000	J	N/A	N/A
UNKNOWN ALKANE 10.23		т	77000	J	N/A	N/A	UNKNOWN ALKANE 10.23		Т	45000	J	N/A	N/A

Sample ID	VP-9S					Sample ID VP-10D					
Depth	2.5-3'					Depth	10.5-11'				
Sample Date		1()/28/2002			Sample Date	10/28/2002				
Laboratory ID		5078730) and 50787'			Laboratory ID	386860				
Method		3070731	TO_{-15}			Method	30000U 8260R				
Analysis Date		11/01/200	2 and 11/13	2002		Analysis Date		1(02000		
Analysis Date		Conce	zanu 1713/ n- Quanti-	2002 Quanti-	Quanti-			Conce	n_{-} Ouanti-	Quanti-	Quanti-
	CAS	tratio	n fication	fication	fication		CAS	tratio	fication	fication	Guariu-
Chomical	UA3 #	(nnh		Typo	Lovol	Chamical	UA3 #	(ppb)		Typo	Lovol
	#	(ppp		туре	Level		#	(ppp	Qualifier	Туре	Level
METHYL TERT-BUTYL ETHER	1634-04-4	A U	U	PQL	500	METHYL TERT-BUTYL ETHER	1634-04-4	A 1500)	PQL	640
2H-PYRAN-2-ONE, TETRAHYDRO-6,6 7.20	2610-95-9	T 4700) NJ	N/A	N/A	HEXANE, 3-ETHYL-4-METHYL- 13.89	3074-77-9	T 2100	NJ	N/A	N/A
CYCLOPROPANE, 1,1-DIMETHYL- 7.70	1630-94-0	T 1600) NJ	N/A	N/A	BENZENE, 1-BROMO-3-FLUORO- 14.10	1073-06-9	T 1700) NJB	N/A	N/A
1-PROPENE, 2-METHYL- 8.77	115-11-7	T 1000	0 NJ	N/A	N/A	DICHLORODIFLUOROMETHANE	75-71-8	A U	U	PQL	640
1-PROPENE, 2-METHYL- 9.04	115-11-7	T 2100) NJ	N/A	N/A	CHLOROMETHANE	74-87-3	A U	U	PQL	640
FURAN, 2,3-DIHYDRO-3-METHYL- 9.25	1708-27-6	T 1000) NJ	N/A	N/A	VINYL CHLORIDE	75-01-4	A U	U	PQL	640
2-BUTENE 9.68	107-01-7	T 4200) NJ	N/A	N/A	BROMOMETHANE	74-83-9	A U	U	PQL	640
HEXANE, 2-METHYL- 10.15	591-76-4	T 1300) NJ	N/A	N/A	CHLOROETHANE	75-00-3	A U	U	PQL	640
PENTANE, 2,3-DIMETHYL- 10.24	565-59-3	T 3100) NJ	N/A	N/A	TRICHLOROFLUOROMETHANE	75-69-4	A U	U	PQL	640
4-PENTENAL 10.65	2100-17-6	T 2000) NJ	N/A	N/A	FREON TF	76-13-1	A U	U	PQL	640
OCTANE 11.15	111-65-9	T 1200) NJ	N/A	N/A	1,1-DICHLOROETHENE	75-35-4	A U	U	PQL	640
DICHLORODIFLUOROMETHANE	75-71-8	A U	U	PQL	500	METHYLENE CHLORIDE	75-09-2	A U	U	PQL	640
CHLOROMETHANE	74-87-3	A U	U	PQL	500	1,1-DICHLOROETHANE	75-34-3	A U	U	PQL	640
VINYL CHLORIDE	75-01-4	A U	U	PQL	500	CIS-1,2-DICHLOROETHENE	156-59-2	A U	U	PQL	640
BROMOMETHANE	74-83-9	A U	U	PQL	500	CHLOROFORM	67-66-3	A U	U	PQL	640
CHLOROETHANE	75-00-3	A U	U	PQL	500	1,1,1-TRICHLOROETHANE	71-55-6	A U	U	PQL	640
TRICHLOROFLUOROMETHANE	75-69-4	A U	U	PQL	500	CARBON TETRACHLORIDE	56-23-5	A U	U	PQL	640
FREON TF	76-13-1	A U	U	PQL	500	BENZENE	71-43-2	A U	U	PQL	640
1.1-DICHLOROETHENE	75-35-4	A U	Ū	PQL	500	1.2-DICHLOROETHANE	107-06-2	A U	Ū	PQL	640
METHYLENE CHLORIDE	75-09-2	A U	Ŭ	PQL	500	TRICHLOROETHENE	79-01-6	A U	Ŭ	PQL	640
	75-34-3	A U	Ű	POL	500	1 2-DICHLOROPROPANE	78-87-5	A U	Ŭ	POL	640
	156-59-2		U U	POL	500		10061-01-5		Ű	POL	640
	67-66-3		U		500		108-88-3	A 860	0		640
	71-55-6		U		500	TRANS-1 3-DICHI OROPROPENE	10061-02-6	A 640			640
	56-23-5		U U		500		79-00-5	Δ 6/0	U U		640
RENZENE	71-43-2		0		500		127-18-1	A 640			640
	107.06.2		0		500		127-10-4	A 640	0		640
	70.01.6		0		500		100-30-7	A 640	0		640
	79-01-0		0		500		100-41-4	A 040	0		640
	10-01-0		0	PQL	500		100 42 5	A 050		PQL	640
	10061-01-5	A U	U	PQL	500		100-42-5	A U	U	PQL	640
	108-88-3	A U	U	PQL	500		95-47-6	A U	U	PQL	640
	10061-02-6	A U	U	PQL	500		79-34-5	A U	U	PQL	640
1,1,2-1 RICHLOROE I HANE	79-00-5	A U	U	PQL	500	1,3-DICHLOROBENZENE	541-73-1	A U	U	PQL	640
TETRACHLOROETHENE	127-18-4	A U	U	PQL	500	1,4-DICHLOROBENZENE	106-46-7	A U	U	PQL	640
CHLOROBENZENE	108-90-7	A U	U	PQL	500	1,2-DICHLOROBENZENE	95-50-1	A U	U	PQL	640
ETHYLBENZENE	100-41-4	A U	U	PQL	500	1,2,4-TRICHLOROBENZENE	120-82-1	A U	U	PQL	640
XYLENE (M,P)	1330-20-7	A U	U	PQL	500	HEXACHLOROBUTADIENE	87-68-3	A U	U	PQL	640
STYRENE	100-42-5	A U	U	PQL	500	1,3,5-TRIMETHYLBENZENE	108-67-8	A U	U	PQL	640
XYLENE (O)	95-47-6	A U	U	PQL	500	1,2,4-TRIMETHYLBENZENE	95-63-6	A U	U	PQL	640
1,1,2,2-TETRACHLOROETHANE	79-34-5	A U	U	PQL	500	1,2-DICHLOROTETRAFLUOROETHANE	76-14-2	A U	U	PQL	640
1,3-DICHLOROBENZENE	541-73-1	A U	U	PQL	500	1,2-DIBROMOETHANE	106-93-4	A U	U	PQL	640
1,4-DICHLOROBENZENE	106-46-7	A U	U	PQL	500	1,3-BUTADIENE	106-99-0	A U	U	PQL	640
1,2-DICHLOROBENZENE	95-50-1	A U	U	PQL	500	CARBON DISULFIDE	75-15-0	A U	U	PQL	640
1,2,4-TRICHLOROBENZENE	120-82-1	A U	U	PQL	500	CYCLOHEXANE	110-82-7	A U	U	PQL	640
HEXACHLOROBUTADIENE	87-68-3	A U	U	PQL	500	N-HEPTANE	142-82-5	A U	U	PQL	640
1,3,5-TRIMETHYLBENZENE	108-67-8	A U	U	PQL	500	DIBROMOCHLOROMETHANE	124-48-1	A U	U	PQL	640
						1					0.40
1,2,4-TRIMETHYLBENZENE	95-63-6	A U	U	PQL	500	N-HEXANE	110-54-3	A U	U	PQL	640

Sample ID	\/P-0S						Sample ID \/P-10D						
Depth	2 5-3'						Depth	10.5-11					
Semple Dete			10/00	0-0			Semale Date	10.5-11					
		E070	10/20					10/28/2002					
Laboratory ID		5078	373D ar	10 50/8/3	SR I		Laboratory ID	386860					
Method			IC)-15				8260B					
Analysis Date		11/01/	/2002 a	nd 11/13/	2002	.	Analysis Date	10/31/2002				• • •	
		Co	oncen-	Quanti-	Quanti-	Quanti-				Concen-	Quanti-	Quanti-	Quanti-
	CAS	tr	ration	fication	fication	fication		CAS		tration	fication	fication	fication
Chemical	#	(ppb)	Qualifier	lype	Level	Chemical	#		(ppb)	Qualifier	Type	Level
1,2-DIBROMOETHANE	106-93-4	А	U	U	PQL	500	BROMODICHLOROMETHANE	75-27-4	A	U	U	PQL	640
1,3-BUTADIENE	106-99-0	А	U	U	PQL	500	TRANS-1,2-DICHLOROETHENE	156-60-5	A	U	U	PQL	640
CARBON DISULFIDE	75-15-0	А	U	U	PQL	500	4-ETHYLTOLUENE	622-96-8	А	U	U	PQL	640
CYCLOHEXANE	110-82-7	A 2	2900		PQL	500	3-CHLOROPROPENE	107-05-1	А	U	U	PQL	640
N-HEPTANE	142-82-5	А	550		PQL	500	2,2,4-TRIMETHYLPENTANE	540-84-1	А	U	U	PQL	640
DIBROMOCHLOROMETHANE	124-48-1	А	U	U	PQL	500	BROMOETHENE	593-60-2	А	U	U	PQL	640
N-HEXANE	110-54-3	Α 5	5000		PQL	500	2-CHLOROTOLUENE	95-49-8	А	U	U	PQL	640
BROMOFORM	75-25-2	А	U	U	PQL	500	UNKNOWN ALKANE 13.17		Т	2800	J	N/A	N/A
BROMODICHLOROMETHANE	75-27-4	А	U	U	PQL	500							
TRANS-1,2-DICHLOROETHENE	156-60-5	А	U	U	PQL	500							
4-ETHYLTOLUENE	622-96-8	А	U	U	PQL	500							
3-CHLOROPROPENE	107-05-1	А	U	U	PQL	500							
2,2,4-TRIMETHYLPENTANE	540-84-1	A 1	1000		PQL	500							
BROMOETHENE	593-60-2	А	U	U	PQL	500							
2-CHLOROTOLUENE	95-49-8	А	U	U	PQL	500							
UNKNOWN ALKANE 5.44		Τt	5100	J	N/A	N/A							
UNKNOWN ALKANE 5.77		Т	2600	J	N/A	N/A							
UNKNOWN ALKANE 6.08		T 1	3000	J	N/A	N/A							
UNKNOWN ALKANE 6.64		T 1	2000	J	N/A	N/A							
UNKNOWN ALKANE 6 71		T 2	0000	J	N/A	N/A							
UNKNOWN ALKANE 7 00		T 1	3000	J	N/A	N/A							
		т 1	1700	.1	N/A	N/A							
UNKNOWN 7 84		т	2400		N/A	N/A							
UNKNOWN ALKANE 7 94		т 1	2000		N/A	N/A							
UNKNOWN ALKANE 8 48		т	1300		N/A	N/A							
UNKNOWN ALKANE 8.67		т ́	1900	ĭ	N/A	N/A							
		т	3800	i	N/A	NI/A							
		т	3500	1	N/A	N/A							
		т /	1000	1		N/A							
		т,	1700	J	N/A	N/Δ							
		т ́	1500	1	N/A	N/A							
ONNNOWIN ALKANE 10.22		1	1300	5	IN/A	11/7							

ſ	Sample ID		VF	P-10M			Sample ID		V	P-10S		
	Depth	6.5-7'					Depth	2.5-3'				
	Sample Date		10/2	8/2002			Sample Date	10/28/2002				
	Laboratory ID		38	6862			Laboratory ID	386860				
	Method		8	260B			Method	8260B				
	Analysis Date		10/3	1/2002			Analysis Date		10/:	31/2002		
			Concen-	Quanti-	Quanti-	Quanti-			Concen	· Quanti-	Quanti-	Quanti-
		CAS	tration	fication	fication	fication		CAS	tration	fication	fication	fication
	Chemical	#	(ppb)	Qualifier	Туре	Level	Chemical	#	(ppb)	Qualifier	Туре	Level
	METHYL TERT-BUTYL ETHER	1634-04-4 A	86		PQL	3.0	METHYL TERT-BUTYL ETHER	1634-04-4 A	4.8		PQL	2.5
	1-PENTENE, 2-METHYL- 8.74	763-29-1 T	93	NJ	N/A	N/A	PENTANE, 2-METHYL- 8.41	107-83-5 1	- 22	NJ	N/A	N/A
	HEXANE, 2-METHYL- 10.14	591-76-4 T	120	NJ	N/A	N/A	DECANE, 2,2,6-TRIMETHYL- 13.00	62237-97-2 1	43	NJ	N/A	N/A
	HEPTANE, 2,2,4,6,6-PENTAMETHYL10.52	13475-82-6 T	120	NJ	N/A	N/A	DECANE 13.37	124-18-5 1	34	NJ	N/A	N/A
	HEPTANE, 2-METHYL- 11.55	592-27-8 T	140	NJ	N/A	N/A	OCTANE, 2,3-DIMETHYL- 13.41	7146-60-3 1	- 22	NJ	N/A	N/A
	OCTANE, 2,2-DIMETHYL- 12.92	15869-87-1 T	160	NJ	N/A	N/A	2,2,6,6-TETRAMETHYLHEPTANE 13.55	40117-45-1 7	- 28	NJ	N/A	N/A
	OCTANE, 2,2-DIMETHYL- 13.01	15869-87-1 T	320	NJ	N/A	N/A	N,N-DIETHYLALLYLAMINE 13.81	0-00-0 7	25	NJ	N/A	N/A
	HEXANE. 2.4-DIMETHYL- 13.37	589-43-5 T	240	NJ	N/A	N/A	2.2.7.7-TETRAMETHYLOCTANE 13.90	1071-31-4 7	210	NJ	N/A	N/A
	OCTANE, 2.3-DIMETHYL- 13.42	7146-60-3 T	140	NJ	N/A	N/A	2.2.6.6-TETRAMETHYLHEPTANE 13.98	40117-45-1 7	- 49	NJ	N/A	N/A
	1-HEXENE, 4-METHYL- 13,56	3769-23-1 T	140	NJ	N/A	N/A	BENZENE, 1-BROMO-2-FLUORO- 14.10	1072-85-1 7	- 98	NJ	N/A	N/A
	4-PIPERIDINAMINE, 2,2,6,6-TETR 13,80	36768-62-4 T	120	NJ	N/A	N/A	ETHANOL, 2-(OCTYLOXY)- 14,19	10020-43-6 1	16	ŊĴ	N/A	N/A
	ETHANE, ISOCYANATO- 13.91	109-90-0 T	2400	NJ	N/A	N/A	THIAZOLE, 4-ETHYL-2-METHYL- 14.25	32272-48-3 1	23	NJ	N/A	N/A
	CAPROLACTAM 13.98	105-60-2 T	240	N.J	N/A	N/A	DECANE 2 3 7-TRIMETHYL - 14 43	62238-13-5 1	19	N.J	N/A	N/A
	BENZENE 1-CHI ORO-4-METHYI - 14 24	106-43-4 T	96	N.J	N/A	N/A	HEPTANE 4-ETHYL-2.2.6.6-TETRA 14.49	62108-31-0 1	- 33	N.J	N/A	N/A
	HEPTANE 2 2-DIMETHYI - 14 50	1071-26-7 T	120	N.J	N/A	N/A	ETHANEDIOIC ACID BIS(CYCI OHEX14 55	370-81-0 1	12	N.J	N/A	N/A
	UNDECANE 57-DIMETHYI - 1477	17312-83-3 T	140	N.I	N/A	N/A	UNDECANE 2 2-DIMETHYL - 14 63	17312-64-0 1	- 11	N.I	N/A	N/A
	ACETAMIDE N-(2-ETHOXY-3 6-DIH 14 86	56248-08-9 T	69	N.I	N/A	N/A	DOCOSANE 14 77	629-97-0 1	- 29	N.I	N/A	N/A
	DODECANE 2710-TRIMETHYL-1499	74645-98-0 T	260	N.I	N/A	N/A	DODECANE 3-METHYL - 14 98	17312-57-1 1	- 48	N.I	N/A	N/A
	HEXYL OCTYL ETHER 15 17	0-00-0 T	94	N.I	N/A	N/A	TRIDECANE 15.18	629-50-5 1	- 14	N.I	N/A	N/A
		108-95-2 T	83	NI	N/A	N/A	PHENOL 15 36	108-95-2 1	- 14	NI	N/A	N/A
	CYCLOPROPANE 1 1-DIETHYL- 15 56	1003-19-6 T	77	NI	N/A	N/A	6-DODECENE (E)- 15 57	7206-17-9 1	- 12	NI	N/A	N/A
		75-71-8 A	11	11	POI	3.0		75-71-8	12	11	POI	25
		74-87-3 A				3.0		74-87-3		U U		2.5
		75-01-4 A	U U	U U		3.0		75-01-4		U U		2.5
	BROMOMETHANE	74-83-9 A	U U	U U		3.0	BROMOMETHANE	74-83-9 4		U U		2.5
		75-00-3 A				3.0		75-00-3		U U		2.5
		75-69-/ A		11		3.0		75-69-4 4		11		2.5
		76-13-1 Δ		11		3.0		76-13-1		11		2.5
		75-35-4 A				3.0		75-35-4				2.5
		75-00-2 A				2.0		75-00-2 /		0		2.5
		75-09-2 A	0	0		3.0		75-09-2 F	A 4.0			2.0
		156 50 2 A	0	0		3.0		156 50 0 /		0		2.0
		100-09-2 A	0	0		3.0		100-09-2 F		0		2.0
		07-00-3 A	0	0		3.0		07-00-3 F		0		2.5
		71-33-0 A	0	0		3.0		71-00-0 F		0		2.5
		50-23-5 A	0	0		3.0		30-23-3 F		0		2.5
		71-43-2 A	21		PQL	3.0		71-43-2 F		0	PQL	2.5
		107-06-2 A	0	0	PQL	3.0		107-06-2 F		0	PQL	2.5
		79-01-6 A	U	U	PQL	3.0		79-01-6 A		U	PQL	2.5
		78-87-5 A	U	U	PQL	3.0		78-87-5 A		U	PQL	2.5
	UIS-I, J-DIUHLUKUPKUPENE	10001-01-5 A	U	U	PQL	3.0		10001-01-5 A		U	PQL	2.5
		108-88-3 A	230		PQL	3.0		108-88-3 A	11		PQL	2.5
		10061-02-6 A	U	U	PQL	3.0		10061-02-6 A		U	PQL	2.5
		79-00-5 A	U	U	PQL	3.0		79-00-5 A	V U	U	PQL	2.5
	I E I RACHLOROE I HENE	127-18-4 A	U	U	PQL	3.0		127-18-4 A	V U	U	PQL	2.5
	CHLOROBENZENE	108-90-7 A	U	U	PQL	3.0	CHLOROBENZENE	108-90-7 A	V U	U	PQL	2.5
	EIHYLBENZENE	100-41-4 A	60		PQL	3.0	E I HYLBENZENE	100-41-4 A	3.1		PQL	2.5
o/	XYLENE (M,P) 23-6124C/X	1330-20-7 A	200		PQL	3.0	XYLENE (M,P)	1330-20-7 A	12		PQL	2.5
Ĩ	STYRENE	100-42-5 A	U	U	Politie	r Associa	STYRENE	100-42-5 A	V U	U	PQL	25 F

Sample ID	VP-10M						Sample ID VP-10S						
Dopth	6 5-7'						Denth 2 5-3'						
Sample Date			10/2	8/2002			Sample Date 10/28/2002						
Laboratory ID			20	6962				10/20/2002					
Method			00				Method S2000						
Analyzia Data			10/2	1/2002			Analysis Date 10/31/2002						
Analysis Date			10/3	1/2002	0	0	Analysis Date			10/3	0	0	0
	010	(Joncen-	Quanti-	Quanti-	Quanti-		0.4.0		Concen-	Quanti-	Quanti-	Quanti-
	CAS		tration	fication	tication	tication		CAS		tration	tication	tication	fication
	#		(ddd)	Qualifier	Type	Level		#		(ddd)	Qualifier	Type	Level
XYLENE (O)	95-47-6	A	68		PQL	3.0	XYLENE (O)	95-47-6	A	4.2		PQL	2.5
1,1,2,2-TETRACHLOROETHANE	79-34-5	A	U	U	PQL	3.0	1,1,2,2-TETRACHLOROETHANE	79-34-5	A	U	U	PQL	2.5
1,3-DICHLOROBENZENE	541-73-1	А	U	U	PQL	3.0	1,3-DICHLOROBENZENE	541-73-1	А	U	U	PQL	2.5
1,4-DICHLOROBENZENE	106-46-7	А	U	U	PQL	3.0	1,4-DICHLOROBENZENE	106-46-7	А	U	U	PQL	2.5
1,2-DICHLOROBENZENE	95-50-1	А	U	U	PQL	3.0	1,2-DICHLOROBENZENE	95-50-1	А	U	U	PQL	2.5
1,2,4-TRICHLOROBENZENE	120-82-1	А	U	U	PQL	3.0	1,2,4-TRICHLOROBENZENE	120-82-1	А	U	U	PQL	2.5
HEXACHLOROBUTADIENE	87-68-3	А	U	U	PQL	3.0	HEXACHLOROBUTADIENE	87-68-3	А	U	U	PQL	2.5
1,3,5-TRIMETHYLBENZENE	108-67-8	А	8.3		PQL	3.0	1,3,5-TRIMETHYLBENZENE	108-67-8	А	U	U	PQL	2.5
1,2,4-TRIMETHYLBENZENE	95-63-6	А	12		PQL	3.0	1,2,4-TRIMETHYLBENZENE	95-63-6	А	U	U	PQL	2.5
1,2-DICHLOROTETRAFLUOROETHANE	76-14-2	А	U	U	PQL	3.0	1,2-DICHLOROTETRAFLUOROETHANE	76-14-2	А	U	U	PQL	2.5
1,2-DIBROMOETHANE	106-93-4	А	U	U	PQL	3.0	1,2-DIBROMOETHANE	106-93-4	А	U	U	PQL	2.5
1,3-BUTADIENE	106-99-0	А	U	U	PQL	3.0	1,3-BUTADIENE	106-99-0	А	U	U	PQL	2.5
CARBON DISULFIDE	75-15-0	А	U	U	PQL	3.0	CARBON DISULFIDE	75-15-0	А	U	U	PQL	2.5
CYCLOHEXANE	110-82-7	А	45		PQL	3.0	CYCLOHEXANE	110-82-7	А	7.3		PQL	2.5
N-HEPTANE	142-82-5	А	140		PQL	3.0	N-HEPTANE	142-82-5	А	13		PQL	2.5
DIBROMOCHLOROMETHANE	124-48-1	А	U	U	PQL	3.0	DIBROMOCHLOROMETHANE	124-48-1	А	U	U	PQL	2.5
N-HEXANE	110-54-3	A	190	-	PQI	3.0	N-HEXANE	110-54-3	Α	28	•	POI	2.5
BROMOFORM	75-25-2	A		U	POL	3.0	BROMOFORM	75-25-2	Α	11	U	POL	2.5
BROMODICHLOROMETHANE	75-27-4	A	Ŭ	Ŭ	POL	3.0	BROMODICHI OROMETHANE	75-27-4	A	Ŭ	Ü	POL	2.5
TRANS-1 2-DICHLOROETHENE	156-60-5	Δ	ŭ	Ű		3.0	TRANS-1 2-DICHLOROFTHENE	156-60-5	Δ	ŭ	U U	POI	2.5
	622-96-8	Δ	32	0		3.0		622-96-8	Δ	3.0	0		2.5
	107-05-1	^	11			3.0		107-05-1	^	5.0			2.5
	540-84-1	~	150	0		3.0		540-84-1	~	16	0		2.5
	503-60-2	~	130			3.0		503-60-2	~	10			2.5
	05 40 9	~				2.0		05 40 9	~		0		2.5
	90-49-0	T	07	0		3.U N/A		95-49-6	T	12	0		2.5 N/A
		т Т	70	J	IN/A	IN/A			T	10	J	IN/A	IN/A
		- -	10	J	IN/A	IN/A			т Т	10	J	IN/A	IN/A
		1 -	180	J	IN/A	N/A			 	22	J	IN/A	N/A
		1 -	120	J	IN/A	N/A			1 T	47	J	IN/A	N/A
		1 -	210	J	IN/A	N/A			1 -	32	J	IN/A	N/A
		1 -	95	J	IN/A	N/A			 	26	J	IN/A	N/A
UNKNOWN ALKANE 13.05		 -	110	J	N/A	N/A	UNKNOWN ALKANE 13.17		 -	250	J	N/A	N/A
UNKNOWN ALKANE 13.28		<u> </u>	150	J	N/A	N/A	UNKNOWN ALKANE 13.26			57	J	N/A	N/A
UNKNOWN ALKANE 13.34		<u> </u>	280	J	N/A	N/A	UNKNOWN ALKANE 13.34		<u> </u>	120	J	N/A	N/A
UNKNOWN 13.46		Т	51	J	N/A	N/A	UNKNOWN ALKANE 13.57		Т	91	J	N/A	N/A
UNKNOWN ALKANE 13.57		Т	190	J	N/A	N/A	UNKNOWN ALKANE 13.61		Т	36	J	N/A	N/A
UNKNOWN 13.63		Т	91	J	N/A	N/A	UNKNOWN ALKANE 13.72		Т	24	J	N/A	N/A
UNKNOWN ALKANE 13.74		Т	70	J	N/A	N/A	UNKNOWN ALKANE 13.80		Т	9.2	J	N/A	N/A
UNKNOWN ALKANE 13.81		Т	41	J	N/A	N/A	UNKNOWN ALKANE 13.84		Т	38	J	N/A	N/A
UNKNOWN ALKANE 13.84		Т	72	J	N/A	N/A	UNKNOWN ALKANE 13.96		Т	8.6	J	N/A	N/A
UNKNOWN ALKANE 14.07		Т	90	J	N/A	N/A	UNKNOWN ALKANE 14.07		Т	39	J	N/A	N/A
UNKNOWN 14.22		Т	42	J	N/A	N/A	UNKNOWN 14.22		Т	17	J	N/A	N/A
UNKNOWN ALKANE 14.28		Т	68	J	N/A	N/A	UNKNOWN ALKANE 14.28		Т	39	J	N/A	N/A
UNKNOWN ALKANE 14.47		Т	41	J	N/A	N/A	UNKNOWN 14.97		Т	7.7	J	N/A	N/A
1													

Sample ID	VP-11					Sample ID VP-12					
Depth	10.5-11'					Depth 10.5-11'					
Sample Date		10/2	8/2002			Sample Date 10/28/2002					
Laboratory ID		38	6862			Laboratory ID 386862					
Method		82	260B			Method 8260B					
Analysis Date		10/3	1/2002			Analysis Date 10/31/2002					
,		Concen-	Quanti-	Quanti-	Quanti-			Concen	- Quanti-	Quanti-	Quanti-
	CAS	tration	fication	fication	fication		CAS	tration	fication	fication	fication
Chemical	#	(ppb)	Qualifier	Туре	Level	Chemical	#	(ppb)	Qualifier	Туре	Level
METHYL TERT-BUTYL ETHER	1634-04-4 A	U	U	PQL	2.8	METHYL TERT-BUTYL ETHER	1634-04-4	A U	U	PQL	2.8
HEPTANE, 2,2,4-TRIMETHYL- 12.93	14720-74-2 T	140	NJ	N/A	N/A	BUTANE, 2,2-DIMETHYL- 7.83	75-83-2	T 23	NJ	N/A	N/A
OCTANE, 2,2-DIMETHYL- 13.02	15869-87-1 T	190	NJ	N/A	N/A	OCTANE, 2,2-DIMETHYL- 13.01	15869-87-1	T 150	NJ	N/A	N/A
HEXANE, 2,4-DIMETHYL- 13.37	589-43-5 T	160	NJ	N/A	N/A	OCTANE, 2,3-DIMETHYL- 13.38	7146-60-3	T 110	NJ	N/A	N/A
HEXANE, 2,5-DIMETHYL- 13.43	592-13-2 T	120	NJ	N/A	N/A	HEPTANE, 3-ETHYL-2-METHYL- 13.42	14676-29-0	T 93	NJ	N/A	N/A
2,2,7,7-TETRAMETHYLOCTANE 13.55	1071-31-4 T	110	NJ	N/A	N/A	HEPTANE, 2,2,4,6,6-PENTAMETHYL 13.56	13475-82-6	T 94	NJ	N/A	N/A
THIAZOLE. 2.5-DIMETHYL- 13.63	4175-66-0 T	20	NJ	N/A	N/A	2-OCTENE, 2.6-DIMETHYL- 13.73	4057-42-5	T 27	NJ	N/A	N/A
1-HEXENE 3.3.5-TRIMETHYI - 13.72	13427-43-5 T	39	N.J	N/A	N/A	PIRACETAM 13 80	7491-74-9	T 78	N.J	N/A	N/A
PIRACETAM 13 81	7491-74-9 T	100	N.I	N/A	N/A	DECANE 2.5.6-TRIMETHYL - 13.89	62108-23-0	T 480	N.I	N/A	N/A
OCTANE 2 2-DIMETHYL - 13 90	15869-87-1 T	480	N.I	N/A	N/A	CIS-4 6-DIMETHYI CYCI OHEXANE-1 13 97	0-00-0	T 140	N.I	N/A	N/A
2 2 6 6-TETRAMETHYL HEPTANE 13 98	40117-45-1 T	170	NI	N/A	N/A	DECANE 2 2 3-TRIMETHYL - 14 08	62338-09-4	T 330	NI	N/A	N/A
NONANE 3-METHVL $1/1$ 10	5011-04-6 T	30	NI	N/A	NI/A	OCTANE 2.6-DIMETHYL $_14.20$	2051-30-1	T 30	NI	N/A	N/A
	15670-12-6 T	61	NI	N/A	N/A		7420-44-0	T /8	NI		N/A
	17302-01-1 T	240	NI	N/A		TETPADECANE 5-METHYL-14.42	25117-32-2	T 36	NI		N/A
UNDECANE 5-METHYL 14.30	1632-70-8 T	240 17	NI	N/A		HEDTANE 4 -ETHVI -2.2.6.6-TETPA 14.40	62108-31-0	T 73	NI		N/A
UNDECANE, 5-METHTE- 14.43	1032-70-0 T	47	NU	N/A	N/A	1 1 2 2 5 DENTAMETHYL CYCLOHEYA14 56	70910 10 4	T 10	NU	N/A	IN/A
2 NONEN 4 ONE 2 METHYL 44.56	02100-31-0 T	20	NU	IN/A	IN/A	DECANE 2.2 DIMETHYL 14.62	10010-19-4	T 10	INJ NU	IN/A	IN/A
LEDTANE 2.2.4.6.6 DENTAMETHYL 44.62	2903-23-3 T	20	NU	IN/A	IN/A		620 04 7	T 60	INJ NU	IN/A	IN/A
	13475-62-6 I	24	INJ NU	IN/A	IN/A		629-94-7	T 60	INJ NU I	IN/A	IN/A
TRIDECANE, 8-METHYL-14.77	13287-23-5 T	72	NJ NJ	N/A	IN/A		100-52-7	T 11	INJ NU	IN/A	IN/A
IRIDECANE, 3-METHYL- 14.98	6418-41-3 I	89	NJ	N/A	N/A	DECANE, 2,6,7-TRIMETHYL- 14.99	62108-25-2	I 80	NJ	N/A	N/A
NONANE, 3-METHYL-5-PROPYL- 15.16	31081-18-2	20	NJ	N/A	N/A	UNDECANE, 3,8-DIMETHYL- 15.17	17301-30-3	1 16	NJ	N/A	N/A
DICHLORODIFLUOROMETHANE	75-71-8 A	U	U	PQL	2.8		75-71-8	A U	U	PQL	2.8
CHLOROMETHANE	74-87-3 A	U	U	PQL	2.8	CHLOROMETHANE	74-87-3	A U	U	PQL	2.8
VINYL CHLORIDE	75-01-4 A	U	U	PQL	2.8	VINYL CHLORIDE	75-01-4	A U	U	PQL	2.8
BROMOMETHANE	74-83-9 A	U	U	PQL	2.8	BROMOMETHANE	74-83-9	A U	U	PQL	2.8
CHLOROETHANE	75-00-3 A	U	U	PQL	2.8	CHLOROETHANE	75-00-3	A U	U	PQL	2.8
TRICHLOROFLUOROMETHANE	75-69-4 A	U	U	PQL	2.8	TRICHLOROFLUOROMETHANE	75-69-4	A U	U	PQL	2.8
FREON TF	76-13-1 A	U	U	PQL	2.8	FREON TF	76-13-1	A U	U	PQL	2.8
1,1-DICHLOROETHENE	75-35-4 A	U	U	PQL	2.8	1,1-DICHLOROETHENE	75-35-4	A U	U	PQL	2.8
METHYLENE CHLORIDE	75-09-2 A	U	U	PQL	2.8	METHYLENE CHLORIDE	75-09-2	A U	U	PQL	2.8
1,1-DICHLOROETHANE	75-34-3 A	U	U	PQL	2.8	1,1-DICHLOROETHANE	75-34-3	A U	U	PQL	2.8
CIS-1,2-DICHLOROETHENE	156-59-2 A	U	U	PQL	2.8	CIS-1,2-DICHLOROETHENE	156-59-2	A U	U	PQL	2.8
CHLOROFORM	67-66-3 A	U	U	PQL	2.8	CHLOROFORM	67-66-3	A U	U	PQL	2.8
1,1,1-TRICHLOROETHANE	71-55-6 A	U	U	PQL	2.8	1,1,1-TRICHLOROETHANE	71-55-6	A U	U	PQL	2.8
CARBON TETRACHLORIDE	56-23-5 A	U	U	PQL	2.8	CARBON TETRACHLORIDE	56-23-5	A U	U	PQL	2.8
BENZENE	71-43-2 A	2.8		PQL	2.8	BENZENE	71-43-2	A U	U	PQL	2.8
1,2-DICHLOROETHANE	107-06-2 A	U	U	PQL	2.8	1,2-DICHLOROETHANE	107-06-2	A U	U	PQL	2.8
TRICHLOROETHENE	79-01-6 A	U	U	PQL	2.8	TRICHLOROETHENE	79-01-6	A U	U	PQL	2.8
1.2-DICHLOROPROPANE	78-87-5 A	Ū	Ū	PQL	2.8	1.2-DICHLOROPROPANE	78-87-5	A Ü	Ū	PQL	2.8
CIS-1.3-DICHLOROPROPENE	10061-01-5 A	Ū	Ŭ	PQL	2.8	CIS-1.3-DICHLOROPROPENE	10061-01-5	A U	Ŭ	PQL	2.8
TOLUENE	108-88-3 A	3.3	-	PQL	2.8	TOLUENE	108-88-3	A 3.1	-	PQL	2.8
TRANS-1.3-DICHLOROPROPENF	10061-02-6 A	U	U	PQL	2.8	TRANS-1.3-DICHLOROPROPENE	10061-02-6	A U	U	PQL	2.8
1 1 2-TRICHLOROFTHANE	79-00-5 A	U U	Ű	POI	2.8	1 1 2-TRICHLOROFTHANE	79-00-5	A II	i i	POL	2.8
TETRACHI OROETHENE	127-18-4 A	ü	U U	POI	2.0	TETRACHLOROETHENE	127-18-4	A II	i i	POL	2.8
	108-90-7 A	U U	1		2.0		108-90-7	Δ 11	11		2.0
ETHYI BENZENE	100-41-/ A	11	11		2.0	ETHYI BENZENE	100_/1_/	ΔΠ	11		2.0
	1330-20-7 A	30	0		2.0		1330-20-7	Δ 56	0		2.0
10/023-6124C/X /	100-42-5 A	11	11		. 2.8	STYRENE	100-/2-5	Δ Π	11		- 28

Sample ID	VP-11						Sample ID VP-12							
Dopth	10 5-11'						Denth 10 5-11							
Sample Date			10/2	9/2002			Sample Date 10/28/2002							
			10/2	0/2002				10/20/2002						
Laboratory ID			30				Mathod S20002							
Analysis Data			40/2					0200D						
Analysis Date			10/3	1/2002	• •	• •	Analysis Date			10/3	1/2002	• •	• •	
			Concen-	Quanti-	Quanti-	Quanti-				Concen-	Quanti-	Quanti-	Quanti-	
	CAS		tration	fication	fication	fication		CAS		tration	fication	fication	fication	
Chemical	#		(ppb)	Qualifier	Туре	Level	Chemical	#		(ppb)	Qualifier	Туре	Level	
XYLENE (O)	95-47-6	А	U	U	PQL	2.8	XYLENE (O)	95-47-6	Α	U	U	PQL	2.8	
1,1,2,2-TETRACHLOROETHANE	79-34-5	А	U	U	PQL	2.8	1,1,2,2-TETRACHLOROETHANE	79-34-5	А	U	U	PQL	2.8	
1,3-DICHLOROBENZENE	541-73-1	А	U	U	PQL	2.8	1,3-DICHLOROBENZENE	541-73-1	А	U	U	PQL	2.8	
1,4-DICHLOROBENZENE	106-46-7	А	U	U	PQL	2.8	1,4-DICHLOROBENZENE	106-46-7	А	U	U	PQL	2.8	
1,2-DICHLOROBENZENE	95-50-1	А	U	U	PQL	2.8	1,2-DICHLOROBENZENE	95-50-1	А	U	U	PQL	2.8	
1,2,4-TRICHLOROBENZENE	120-82-1	А	U	U	PQL	2.8	1,2,4-TRICHLOROBENZENE	120-82-1	Α	U	U	PQL	2.8	
HEXACHLOROBUTADIENE	87-68-3	А	U	U	PQL	2.8	HEXACHLOROBUTADIENE	87-68-3	Α	U	U	PQL	2.8	
1,3,5-TRIMETHYLBENZENE	108-67-8	А	U	U	PQL	2.8	1,3,5-TRIMETHYLBENZENE	108-67-8	Α	U	U	PQL	2.8	
1,2,4-TRIMETHYLBENZENE	95-63-6	А	U	U	PQL	2.8	1,2,4-TRIMETHYLBENZENE	95-63-6	А	U	U	PQL	2.8	
1,2-DICHLOROTETRAFLUOROETHANE	76-14-2	А	U	U	PQL	2.8	1,2-DICHLOROTETRAFLUOROETHANE	76-14-2	А	U	U	PQL	2.8	
1.2-DIBROMOETHANE	106-93-4	А	U	U	PQL	2.8	1.2-DIBROMOETHANE	106-93-4	А	U	U	PQL	2.8	
1.3-BUTADIENE	106-99-0	А	Ū	Ū	PQL	2.8	1.3-BUTADIENE	106-99-0	А	Ū	Ū	PQL	2.8	
CARBON DISULFIDE	75-15-0	Α	Ū	Ū	POL	2.8	CARBON DISULFIDE	75-15-0	Α	Ŭ	Ū	POI	2.8	
	110-82-7	Α	Ŭ	Ŭ	POL	2.8	CYCLOHEXANE	110-82-7	Α	ŭ	Ŭ	POL	2.8	
	142-82-5	Δ	U U	Ű		2.0	N-HEPTANE	142-82-5	Δ	U U	U U	POI	2.8	
	124-48-1	Δ	U U	U U		2.0		12/-/8-1	Δ	1	1		2.0	
	110-54-3	Δ	52	0		2.0	NHEYANE	110-54-3	Δ	1			2.0	
BROMOEORM	75-25-2	~	11			2.0		75-25-2	~				2.0	
	75-25-2	~	0			2.0		75-25-2	~	0			2.0	
	15-21-4	Å	0	0		2.0		15-21-4	Å	0	0		2.0	
	100-00-0	Å	0	0		2.0		100-00-0	A	0	0	PQL	2.0	
	022-90-0	A	0	0	PQL	2.0		022-90-0	A	0	0	PQL	2.0	
	107-05-1	A	0	U	PQL	2.8		107-05-1	A	0	U	PQL	2.8	
2,2,4-TRIMETHYLPENTANE	540-84-1	A	6.5		PQL	2.8		540-84-1	A	9.5		PQL	2.8	
BROMOETHENE	593-60-2	A	U	U	PQL	2.8	BROMOETHENE	593-60-2	A	U	U	PQL	2.8	
2-CHLOROTOLUENE	95-49-8	A	U	U	PQL	2.8	2-CHLOROTOLUENE	95-49-8	A	U	U	PQL	2.8	
UNKNOWN ALKANE 12.11		1	120	J	N/A	N/A	UNKNOWN ALKANE 12.11		1	89	J	N/A	N/A	
UNKNOWN ALKANE 12.22		т	210	J	N/A	N/A	UNKNOWN ALKANE 12.22		Т	150	J	N/A	N/A	
UNKNOWN 12.81		Т	150	J	N/A	N/A	UNKNOWN 12.81		Т	110	J	N/A	N/A	
UNKNOWN 12.87		Т	60	J	N/A	N/A	UNKNOWN ALKANE 12.87		Т	40	J	N/A	N/A	
UNKNOWN 12.93		Т	51	J	N/A	N/A	UNKNOWN 12.93		Т	33	J	N/A	N/A	
UNKNOWN ALKANE 13.05		Т	130	J	N/A	N/A	UNKNOWN ALKANE 13.05		Т	80	J	N/A	N/A	
UNKNOWN ALKANE 13.19		Т	780	J	N/A	N/A	UNKNOWN ALKANE 13.19		Т	620	J	N/A	N/A	
UNKNOWN ALKANE 13.28		Т	260	J	N/A	N/A	UNKNOWN ALKANE 13.28		Т	170	J	N/A	N/A	
UNKNOWN ALKANE 13.36		Т	400	J	N/A	N/A	UNKNOWN ALKANE 13.36		Т	350	J	N/A	N/A	
UNKNOWN 13.46		Т	69	J	N/A	N/A	UNKNOWN 13.57		Т	270	J	N/A	N/A	
UNKNOWN ALKANE 13.57		Т	320	J	N/A	N/A	UNKNOWN ALKANE 13.63		т	89	J	N/A	N/A	
UNKNOWN ALKANE 13.63		Т	110	J	N/A	N/A	UNKNOWN ALKANE 13.74		т	69	J	N/A	N/A	
UNKNOWN ALKANE 13.74		Т	93	J	N/A	N/A	UNKNOWN 13.81		Т	44	J	N/A	N/A	
UNKNOWN ALKANE 13.81		т	55	J	N/A	N/A	UNKNOWN 13.86		т	87	J	N/A	N/A	
UNKNOWN ALKANE 13.86		Т	110	J	N/A	N/A	UNKNOWN ALKANE 13.96		Т	30	J	N/A	N/A	
UNKNOWN ALKANE 14.07		т	130	J	N/A	N/A	UNKNOWN ALKANE 14.07		Т	110	J	N/A	N/A	
UNKNOWN ALKANE 14.22		T	57	J	N/A	N/A	UNKNOWN ALKANE 14.22		Т	45	J	N/A	N/A	
UNKNOWN ALKANE 14 28		Ť	97	ء ا,	N/A	N/A	UNKNOWN ALKANE 14 28		Ť	80	, J	N/A	N/A	
UNKNOWN ALKANE 14 47		Ť	52		N/A	N/A	LINKNOWN ALKANE 14 47		Ť	34		N/A	N/A	
			52	5	1 1/7 1						5	1 1/1 1		

Sample ID			V	P-13		
Denth			10	5-11'		
Sample Date			10.	8/2002		
			20	6060		
Mothed			30			
Analysia Data			40/2			
Analysis Date			10/3	1/2002	0	0
	010		Concen-	Quanti-	Quanti-	Quanti-
	CAS		tration	fication	fication	fication
Chemical	#		(ppb)	Qualifier	lype	Level
METHYL TERT-BUTYL ETHER	1634-04-4	А	120000		PQL	6000
BUTANE, 2-METHYL- 6.74	78-78-4	Т	150000	NJ	N/A	N/A
PENTANE 7.21	109-66-0	Т	110000	NJ	N/A	N/A
CYCLOPROPANE, 1,2-DIMETHYL-,T 7.44	2402-06-4	Т	26000	NJ	N/A	N/A
CYCLOPROPANE, 1,2-DIMETHYL-,T 7.70	2402-06-4	т	48000	NJ	N/A	N/A
2-PENTENE, 4-METHYL- 8.58	4461-48-7	т	48000	NJ	N/A	N/A
PENTANE, 3-METHYL- 8.80	96-14-0	т	220000	NJ	N/A	N/A
2-HEXENE. (E)- 9.24	4050-45-7	т	44000	NJ	N/A	N/A
CYCLOPENTENE 3-METHYL-945	1120-62-3	Т	25000	N.J	N/A	N/A
FURAN 2 3-DIHYDRO-3-METHYL - 9 53	1708-27-6	Ť	76000	N.J	N/A	N/A
PENTANE 24-DIMETHYL-959	108-08-7	Ť	62000	NI	N/A	N/A
CYCLOPENITANE METHYL 9.71	96-37-7	Ť	150000	NI	N/A	N/A
	501-76-4	Ť	160000	NI		N/A
HEXANE, 2-METHYL 10.22	590 24 4	Ť	200000	NU		N/A
DUTANE 2222 TETRAMETUVI 10.66	504 92 1	т Т	200000	NU	N/A	N/A
BUTANE, 2,2,3,3-TETRAMETHTE- 10.30	0720 40 4	т Т	240000	INJ NU	IN/A	IN/A
2-REAEINE, 2-IMETRIL- 10.79	2730-19-4	т Т	49000		IN/A	IN/A
HEPTANE, 4,4-DIMETHYL- 11.17	1068-19-5	- -	52000	INJ	N/A	IN/A
FURAN, 2-METHOXY-11.23	25414-22-6	 -	65000	NJ	N/A	N/A
3,3-DIMETHYL-2-HEXANOL 11.47	22025-20-3	<u> </u>	51000	NJ	N/A	N/A
HEPTANE, 4-METHYL- 11.59	589-53-7	1	100000	NJ	N/A	N/A
BENZENE, 1-BROMO-3-FLUORO- 14.10	1073-06-9		160000	NJB	N/A	N/A
DICHLORODIFLUOROMETHANE	75-71-8	А	U	U	PQL	15000
CHLOROMETHANE	74-87-3	А	U	U	PQL	15000
VINYL CHLORIDE	75-01-4	А	U	U	PQL	15000
BROMOMETHANE	74-83-9	А	U	U	PQL	15000
CHLOROETHANE	75-00-3	А	U	U	PQL	15000
TRICHLOROFLUOROMETHANE	75-69-4	А	U	U	PQL	15000
FREON TF	76-13-1	А	U	U	PQL	15000
1,1-DICHLOROETHENE	75-35-4	А	U	U	PQL	15000
METHYLENE CHLORIDE	75-09-2	А	U	U	PQL	15000
1,1-DICHLOROETHANE	75-34-3	А	U	U	PQL	15000
CIS-1,2-DICHLOROETHENE	156-59-2	А	U	U	PQL	15000
CHLOROFORM	67-66-3	А	U	U	PQL	15000
1.1.1-TRICHLOROETHANE	71-55-6	А	Ū	Ū	PQL	15000
CARBON TETRACHI ORIDE	56-23-5	A	Ŭ	Ŭ	PQI	15000
BENZENE	71-43-2	A	120000	0	POL	15000
	107-06-2	Δ	120000	ш		15000
	79-01-6	Δ		U U		15000
	78-87-5	~				15000
	10061-01-5	Δ	11	11		15000
	108-88-3	~	1/0000	0		15000
	100-00-0	~	140000			15000
	10061-02-6	A	U	U	PQL	15000
	79-00-5	A	U	U	PQL	15000
	127-18-4	A	U	U	PQL	15000
CHLOROBENZENE	108-90-7	A	U	U	PQL	15000
ETHYLBENZENE	100-41-4	A	U	U	PQL	15000
XYLENE (M,P)	1330-20-7	А	22000		PQL	15000
STYRENE Golder Ass	ociates -5	А	U	U	PQL	15000

023-6124C	;
-----------	---

Completion			١/٢	140		
			VI	-13		
Depth			10.	5-11		
Sample Date			10/2	8/2002		
Laboratory ID			38	6862		
Method			82	260B		
Analysis Date			10/3	1/2002		
			Concen-	Quanti-	Quanti-	Quanti-
	CAS		tration	fication	fication	fication
Chemical	#		(ppb)	Qualifier	Туре	Level
XYLENE (O)	95-47-6	А	Ű	U	PQL	15000
1.1.2.2-TETRACHLOROETHANE	79-34-5	А	U	U	PQL	15000
1 3-DICHLOROBENZENE	541-73-1	А	Ū	Ū	POI	15000
1 4-DICHLOROBENZENE	106-46-7	Α	Ŭ	Ŭ	POL	15000
1 2-DICHLOROBENZENE	95-50-1	A	Ŭ	Ŭ	POL	15000
1 2 4-TRICHLOROBENZENE	120-82-1	Δ	Ŭ	U U		15000
	87-68-3	Δ	U U			15000
	108-67-8	Δ				15000
	05-63-6	~				15000
	35-03-0 76 14 2	~	0			15000
	10-14-2	A	0	0	PQL	15000
	106-93-4	A	0	0	PQL	15000
	106-99-0	A	U	0	PQL	15000
	75-15-0	A	U	U	PQL	15000
CYCLOHEXANE	110-82-7	A	200000		PQL	15000
N-HEPTANE	142-82-5	A	330000		PQL	15000
DIBROMOCHLOROMETHANE	124-48-1	А	U	U	PQL	15000
N-HEXANE	110-54-3	Α	990000		PQL	15000
BROMOFORM	75-25-2	А	U	U	PQL	15000
BROMODICHLOROMETHANE	75-27-4	А	U	U	PQL	15000
TRANS-1,2-DICHLOROETHENE	156-60-5	А	U	U	PQL	15000
4-ETHYLTOLUENE	622-96-8	А	U	U	PQL	15000
3-CHLOROPROPENE	107-05-1	А	U	U	PQL	15000
2,2,4-TRIMETHYLPENTANE	540-84-1	А	500000		PQL	15000
BROMOETHENE	593-60-2	А	U	U	PQL	15000
2-CHLOROTOLUENE	95-49-8	Α	U	U	PQL	15000
UNKNOWN ALKANE 5.42		Т	280000	J	N/A	N/A
UNKNOWN ALKANE 5.77		Т	190000	J	N/A	N/A
UNKNOWN ALKANE 6.06		Т	250000	J	N/A	N/A
UNKNOWN ALKANE 6.64		т	410000	J	N/A	N/A
UNKNOWN ALKANE 7.00		Т	760000	J	N/A	N/A
UNKNOWN 7.47		т	250000	J	N/A	N/A
UNKNOWN 7.75		т	200000	J	N/A	N/A
UNKNOWN ALKANE 7.93		Ť	860000	J	N/A	N/A
UNKNOWN 8.36		Ť	98000		N/A	N/A
		Ť	310000	ů I	N/A	N/A
LINKNOWN ALKANE 8 75		Ť	170000	I	N/A	N/A
		Ť	100000	1	N/A	N/A
		Ť	110000	J	N/A	N/A
		т Т	190000	J	N/A	N/A
UNITIOWIN ALLAINE 9.77		1 -	100000	J	IN/A	IN/A
		1 -	120000	J	IN/A	IN/A
		 -	130000	J	IN/A	IN/A
		1	72000	J	N/A	N/A
UNKNOWN ALKANE 10.56			64000	J	N/A	N/A
UNKNOWN ALKANE 10.74		I	50000	J	N/A	N/A

Sampling		Golder	Sample	Laboratory	File
Date	Media	Sample ID	Location	Sample ID	Name
29-Oct-02	Air	Basement14	14 Park Basement	508389	SAQ02
29-Oct-02	Air	FBasement14	14 Park Basement Duplicate	508388	SAQ02
23-Oct-02	Air	Basement18	18 Park Basement	507434	SAQ01
23-Oct-02	Air	Basement22	22 Park Crawlspace	507438	SAQ01
23-Oct-02	Air	Basement73	73 Bay Ave Basement	507436	SAQ01
23-Oct-02	Air	Basement73D	73 Bay Ave Basement Duplicate	507437	SAQ01
29-Oct-02	Air	First14	14 Park First Floor	508390	SAQ02
23-Oct-02	Air	First18	18 Park First Floor	507432	SAQ01
23-Oct-02	Air	First22	22 Park First Floor	507439	SAQ01
4-Nov-02	Air	First63	22 Park First Floor	509327	SAQ03
23-Oct-02	Air	First73	73 Bay First Floor	507442	SAQ01
23-Oct-02	Air	Outdoor22	Outdoor Beside 22 Park	507440	SAQ01
14-Nov-02	Air	Outdoor73	Outdoor Beside 73 Bay	510407	SAQ04
29-Oct-02	Vapor	Subslab14	14 Park Subslab Vapor	508387	SAQ02
23-Oct-02	Vapor	Subslab18	18 Park Subslab Vapor	507433	SAQ01
4-Nov-02	Vapor	Subslab63	63 Bay Subslab Vapor	509326	SAQ03
23-Oct-02	Vapor	Subslab73	73 Bay Subslab Vapor	507435	SAQ01
28-Oct-02	Vapor	VP-9D	VP-9 Deep Vapor	507875	SAQ02
28-Oct-02	Vapor	VP-9M	VP-9 Mid Depth Vapor	507874	SAQ02
28-Oct-02	Vapor	VP-9S	VP-9 Shallow	507873	SAQ02
28-Oct-02	Vapor	VP-10D	VP-10 Deep Vapor	507878	SAQ02
28-Oct-02	Vapor	VP-10M	VP-10 Mid Depth Vapor	507877	SAQ02
28-Oct-02	Vapor	VP-10S	VP-10 Shallow	507876	SAQ02
28-Oct-02	Vapor	VP-11	VP-11 Deep Vapor	507879	SAQ02
28-Oct-02	Vapor	VP-12	VP-12 Deep Vapor	507880	SAQ02
28-Oct-02	Vapor	VP-13	VP-13 Deep Vapor	507881	SAQ02
28-Oct-02	GW	VP-9	VP-9 Groundwater	386857	C207
28-Oct-02	GW	VP-10	VP-10 Groundwater	386858	C207
28-Oct-02	GW	VP-11	VP-11 Groundwater	386859	C207
28-Oct-02	GW	VP-12	VP-12 Groundwater	386860	C207
28-Oct-02	GW	VP-12Dup	VP-12Dup Groundwater	386862	C207
28-Oct-02	GW	VP-13	VP-13 Groundwater	386861	C207
28-Oct-02	Soil	VP-9	VP-9 Soil	386890	C207
28-Oct-02	Soil	VP-13	VP-13 Soil	386894	C207
Table 3-9 Conversion Between ug/m3 and ppbV for Common VOCs

Compound	ppbv	M.W.	ug/m³
Dichlorodifluoromethane	1	120.92	5.08
Chloromethane	1	50.49	2.12
Dichlorotetrafluoroethane	1	170.93	7.18
Vinyl Chloride	1	62.5	2.63
1,3-Butadiene	1	60.14	2.53
Vinyl Chloride	1	62.5	2.63
Bromomethane	1	94.95	3.99
Chloroethane	1	64.52	2.71
Bromoethene	1	106.96	4.50
Acetone	1	58.08	2.44
Trichlorofluoromethane	1	137.38	5.77
Isopropyl Alcoho	1	61.09	2.57
1,1-Dichloroethene	1	96.95	4.08
Methylene Chloride	1	84.94	3.57
3-Chloropropene	1	76.53	3.22
Carbon Disulfide	1	76.14	3.20
Trichlorotrifluoroethane	1	187.38	7.88
trans-1,2-Dichloroethene	1	96.95	4.08
1,1-Dichloroethane	1	98.97	4.16
Methyl tert-Butyl Fther	1	88,15	3.71
Methyl Ethyl Ketone	1	72 11	3 03
aia 1.2 Diablaraathana	1	06.05	1.00
	1	96.95	4.08
Chloroform	1	110 30	5.02
Tetrabydrofuran	1	72 11	3.02
1.2-Dichloroethane	1	98.96	4.16
1.1.1-Trichloroethane	1	133.42	5.61
Benzene	1	78.11	3.28
Carbon Tetrachloride	1	153.84	6.47
Cyclohexane	1	84.16	3.54
1,2-Dichloropropane	1	112.99	4.75
Bromodichloromethane	1	163.83	6.89
Trichloroethene	1	131.4	5.52
1,4-Dioxane	1	88.11	3.70
2,2,4-Trimethylpentane	1	132.38	5.56
n-Heptane	1	101.2	4.25
cis-1,3-Dichloropropene	1	110.98	4.66
Methyl Isobutyl Ketone	1	100.16	4.21
trans-1,3-Dichloropropene	1	110.98	4.66
	1	133.42	5.61
Mothyl Butyl Kotopo	1	92.13	3.07
Dibromochloromethane	1	242 74	4.21
1 2-Dibromoethane	1	187.88	7 90
Tetrachloroethene	1	165.85	6.97
Chlorobenzene	1	112.56	4.73
Ethylbenzene	1	106.16	4.46
m,p-Xylene	1	106.16	4.46
Bromoform	1	252.75	10.62
Styrene	1	104.14	4.38
1,1,2,2-Tetrachloroethane	1	167.86	7.06
o-Xylene	1	106.16	4.46
2-Chlorotoluene	1	126.59	5.32
4-Ethyltoluene	1	120.2	5.05
1,3,5-Trimethylbenzene	1	120.19	5.05
1,2,4-1 rimethylbenzene	1	120.19	5.05
1,3-Dichlorobenzene	1	147.01	6.18
	1	147.01	6.18
	1	147.01	0.18
1,2,4-11ICIIIOIODENZENE	1	101.40	10.05
	1	200.70	10.90
	1	84 16	3.54
MTBE	1	88 17	3.71
····		30.17	0.1 1

Note: The above conversions are based on temperature of 17 degrees C (average groundwater temperature during Oct-02)

Table 3-10 Results of Sub-Slab and Indoor Air Testing October 2002 Stafford Site

Sample ID Depth	7	'3 Bay Si	ub-slab V	apour		Sample ID 73 Bay Basement Depth					
Sample Date		10/	24/2002			Sample Date		10/2	24/2002		
Laboratory ID		5	07435			Laboratory ID		5	07436		
Method		USE	PA TO 15	5		Method		USE	PA TO 1	5	
Analysis Date		10/	30/2002			Analysis Date		10/	29/2002		
Analysis Date		Concen	· Quanti-	Quanti	Quanti	-		Concen	- Quanti-	Quanti-	Quanti
	CAS	tration	fication	fication	fication		CAS	tration	fication	fication	fication
Chemical	#	(ppb)	Qualifier	Туре	Level	Chemical	#	(ppb)	Qualifie	т Туре	Level
METHYL TERT-BUTYL ETHER	1634-04-4	5000		PQL	200	METHYL TERT-BUTYL ETHER	1634-04-4	33		PQL	1.0
DICHLORODIFLUOROMETHANE	75-71-8	U	U	PQL	300	DICHLORODIFLUOROMETHANE	75-71-8	U	U	PQL	2.5
CHLOROMETHANE	74-87-3	Ū	Ū	PQL	300	CHLOROMETHANE	74-87-3	Ū	Ū	PQL	2.5
	75-01-4	Ŭ	Ū	POL	300	VINYL CHLORIDE	75-01-4	Ŭ	Ŭ	POL	2.5
BROMOMETHANE	74-83-9	Ŭ	Ŭ	POL	300	BROMOMETHANE	74-83-9	Ŭ	ŭ	POL	2.5
CHLOROETHANE	75-00-3	U U	ŭ	POL	300	CHLOROETHANE	75-00-3	U U	U U	POL	2.5
	75-69-4	U U	ц Ц		300		75-69-4	1	ц Ц		2.5
	76 12 1	0			200		76 12 1				2.5
	70-13-1	0			200		70-13-1	0			2.5
	75-35-4	0	0		300		75-35-4	0	0		2.5
	75-09-2	U	0	PQL	300		75-09-2	0	0	PQL	2.5
	75-34-3	U	U	PQL	300		75-34-3	U	0	PQL	2.5
CIS-1,2-DICHLOROETHENE	156-59-2	U	U	PQL	300	CIS-1,2-DICHLOROETHENE	156-59-2	U	U	PQL	2.5
CHLOROFORM	67-66-3	U	U	PQL	300	CHLOROFORM	67-66-3	U	U	PQL	2.5
1,1,1-TRICHLOROETHANE	71-55-6	U	U	PQL	300	1,1,1-TRICHLOROETHANE	71-55-6	U	U	PQL	2.5
CARBON TETRACHLORIDE	56-23-5	U	U	PQL	300	CARBON TETRACHLORIDE	56-23-5	U	U	PQL	2.5
BENZENE	71-43-2	U	U	PQL	300	BENZENE	71-43-2	U	U	PQL	2.5
1,2-DICHLOROETHANE	107-06-2	U	U	PQL	300	1,2-DICHLOROETHANE	107-06-2	U	U	PQL	2.5
TRICHLOROETHENE	79-01-6	U	U	PQL	300	TRICHLOROETHENE	79-01-6	U	U	PQL	2.5
1,2-DICHLOROPROPANE	78-87-5	U	U	PQL	300	1,2-DICHLOROPROPANE	78-87-5	U	U	PQL	2.5
CIS-1,3-DICHLOROPROPENE	10061-01-5	U	U	PQL	300	CIS-1,3-DICHLOROPROPENE	10061-01-5	U	U	PQL	2.5
TOLUENE	108-88-3	U	U	PQL	300	TOLUENE	108-88-3	U	U	PQL	2.5
TRANS-1.3-DICHLOROPROPENE	10061-02-6	Ū	Ū	PQL	300	TRANS-1.3-DICHLOROPROPENE	10061-02-6	U	Ŭ	PQL	2.5
1.1.2-TRICHI OROFTHANE	79-00-5	Ū	Ū	POI	300	1.1.2-TRICHLOROFTHANE	79-00-5	Ū	Ū	POI	2.5
TETRACHI OROETHENE	127-18-4	Ŭ	Ŭ	POL	300		127-18-4	Ŭ	Ŭ	POL	2.5
CHLOROBENZENE	108-90-7	Ü	ŭ	POL	300	CHLOROBENZENE	108-90-7	U U	U U	POL	2.5
ETHVI BENZENE	100-41-4	U U	ц Ц		300	ETHVI BENZENE	100-41-4		U U		2.5
	1330-20-7	1			300		1330-20-7	3.2	0		2.5
	100 42 5				200		100 42 5	5.2			2.5
STIRENE (O)	05 47 6	0			200		05 47 6	0			2.5
	90-47-0	0	0		300		95-47-6	0	0		2.5
	79-34-5	U	0	PQL	300		79-34-5	0	0	PQL	2.5
1,3-DICHLOROBENZENE	541-73-1	U	U	PQL	300		541-73-1	U	0	PQL	2.5
1,4-DICHLOROBENZENE	106-46-7	U	U	PQL	300	1,4-DICHLOROBENZENE	106-46-7	U	U	PQL	2.5
1,2-DICHLOROBENZENE	95-50-1	U	U	PQL	300	1,2-DICHLOROBENZENE	95-50-1	U	U	PQL	2.5
1,2,4-TRICHLOROBENZENE	120-82-1	U	U	PQL	300	1,2,4-TRICHLOROBENZENE	120-82-1	U	U	PQL	2.5
HEXACHLOROBUTADIENE	87-68-3	U	U	PQL	300	HEXACHLOROBUTADIENE	87-68-3	U	U	PQL	2.5
1,3,5-TRIMETHYLBENZENE	108-67-8	U	U	PQL	300	1,3,5-TRIMETHYLBENZENE	108-67-8	U	U	PQL	2.5
1,2,4-TRIMETHYLBENZENE	95-63-6	U	U	PQL	300	1,2,4-TRIMETHYLBENZENE	95-63-6	U	U	PQL	2.5
1,2-DICHLOROTETRAFLUOROETHANE	76-14-2	U	U	PQL	300	1,2-DICHLOROTETRAFLUOROETHANE	76-14-2	U	U	PQL	2.5
1,2-DIBROMOETHANE	106-93-4	U	U	PQL	300	1,2-DIBROMOETHANE	106-93-4	U	U	PQL	2.5
1,3-BUTADIENE	106-99-0	U	U	PQL	300	1,3-BUTADIENE	106-99-0	U	U	PQL	2.5
CARBON DISULFIDE	75-15-0	U	U	PQL	300	CARBON DISULFIDE	75-15-0	U	U	PQL	2.5
CYCLOHEXANE	110-82-7	4300		PQL	300	CYCLOHEXANE	110-82-7	36		PQL	2.5
N-HEPTANE	142-82-5	U	U	PQL	300	N-HEPTANE	142-82-5	U	U	PQL	2.5
DIBROMOCHLOROMETHANE	124-48-1	U	U	PQL	300	DIBROMOCHLOROMETHANE	124-48-1	U	U	PQL	2.5
N-HEXANE	110-54-3	U	U	PQL	300	N-HEXANE	110-54-3	U	U	PQL	2.5
BROMOFORM	75-25-2	Ū	Ū	POI	300	BROMOFORM	75-25-2	Ū	Ū	POI	2.5
BROMODICHLOROMETHANE	75-27-4	ŭ	Ŭ	POI	300	BROMODICHLOROMETHANE	75-27-4	ŭ	ŭ	POI	2.5
TRANS-1 2-DICHLOROFTHENE	156-60-5	U U	ii		300	TRANS-1 2-DICHLOROFTHENE	156-60-5	ц Ц	ii		25
	622-06-8	11	11		300	4-FTHYLTOLLIENE	622-06-8	11			2.5
	107-05-1	11	11		300		107-05-1	11			2.5
	540-94 1	20000	0		300		540.94.4	140	0		2.0
	503-60 2	20000			300		502.60.2	140			2.0
	05 40 0		0		300		05 40 0	0			2.5
	90-49-8	U	U	PQL	300	2-UTLUKUI ULUENE	90-49-8	U	U	PQL	2.5

n:/active/6000/023-6124C/

Table 3-10 Results of Sub-Slab and Indoor Air Testing October 2002 Stafford Site

Sample ID	73 Bay Basement Field Duplicate Sample ID 73 Bay First Floor							or			
Sample Date		10/	24/2002			Sample Date		10/	21/2002		
Laboratory ID		5	07/37			Laboratory ID		5	07112		
Method			DA TO 15			Method					
Analysis Date		10/	20/2002	,		Analysis Date		10/	20/2002		
Analysis Date		Concen	- Ouanti-	Quanti-	Quanti			Concen-	Ouanti-	Quanti-	Quanti
	C 4 S	tration	fication	fication	fication		C 4 S	tration	fication	fication	fication
Chemical	#	(ppb)	Qualifier	Туре	Level	Chemical	#	(ppb)	Qualifier	Туре	Level
METHYL TERT-BUTYL ETHER	1634-04-4	38		PQL	1.0	METHYL TERT-BUTYL ETHER	1634-04-4	14		PQL	0.50
DICHLORODIFLUOROMETHANE	75-71-8	U	U	PQL	2.5	DICHLORODIFLUOROMETHANE	75-71-8	U	U	PQL	0.50
CHLOROMETHANE	74-87-3	U	U	PQL	2.5	CHLOROMETHANE	74-87-3	U	U	PQL	0.50
VINYL CHLORIDE	75-01-4	U	U	PQL	2.5	VINYL CHLORIDE	75-01-4	U	U	PQL	0.50
BROMOMETHANE	74-83-9	Ū	Ū	PQL	2.5	BROMOMETHANE	74-83-9	Ū	Ū	PQL	0.50
CHLOROETHANE	75-00-3	Ū	Ū	PQL	2.5	CHLOROETHANE	75-00-3	U	Ū	PQL	0.50
TRICHLOROFLUOROMETHANE	75-69-4	Ū	Ū	PQL	2.5	TRICHLOROFLUOROMETHANE	75-69-4	Ū	Ū	PQL	0.50
FREON TF	76-13-1	Ū	Ū	PQL	2.5	FREON TF	76-13-1	Ū	Ū	PQL	0.50
1.1-DICHLOROETHENE	75-35-4	Ū	Ŭ	PQL	2.5	1.1-DICHLOROETHENE	75-35-4	Ŭ	Ŭ	PQL	0.50
METHYLENE CHLORIDE	75-09-2	Ū	Ū	PQL	2.5	METHYLENE CHLORIDE	75-09-2	29	-	PQL	0.50
1.1-DICHLOROETHANE	75-34-3	Ū	Ū	PQL	2.5	1.1-DICHLOROETHANE	75-34-3	U	U	PQL	0.50
CIS-1.2-DICHLOROETHENE	156-59-2	Ū	Ŭ	PQL	2.5	CIS-1.2-DICHLOROETHENE	156-59-2	Ŭ	Ŭ	PQL	0.50
CHIOROFORM	67-66-3	Ū	Ŭ	PQI	2.5	CHIOROFORM	67-66-3	Ŭ	Ŭ	PQI	0.50
1.1.1-TRICHI OROFTHANE	71-55-6	Ŭ	Ŭ	PQI	2.5	1.1.1-TRICHI OROFTHANE	71-55-6	Ŭ	Ŭ	PQI	0.50
CARBON TETRACHI ORIDE	56-23-5	Ŭ	Ŭ	PQI	2.5	CARBON TETRACHI ORIDE	56-23-5	Ŭ	Ŭ	PQI	0.50
BENZENE	71-43-2	Ŭ	Ŭ	PQI	2.5	BENZENE	71-43-2	Ŭ	Ŭ	PQI	0.50
1.2-DICHLOROFTHANE	107-06-2	Ŭ	Ŭ	POL	2.5	1.2-DICHI OROFTHANE	107-06-2	Ŭ	Ŭ	PQL	0.50
	79-01-6	Ŭ	Ŭ	POL	2.5		79-01-6	Ŭ	Ŭ	POL	0.50
	78-87-5	U U	Ŭ	POL	2.5		78-87-5	U U	Ŭ	POL	0.50
CIS-1 3-DICHLOROPROPENE	10061-01-5	Ŭ	Ŭ	POL	2.5	CIS-1 3-DICHI OROPROPENE	10061-01-5	ŭ	Ŭ	POL	0.50
TOLLIENE	108-88-3	U U	U U	POL	2.5	TOLLIENE	108-88-3	12	U	POL	0.00
TRANS-1.3-DICHLOROPROPENE	10061-02-6	Ŭ	Ŭ	POL	2.5	TRANS-1.3-DICHLOROPROPENE	10061-02-6	12	U	POL	0.50
	79-00-5	U U	ŭ	POL	2.5		79-00-5	U U	Ŭ	POL	0.50
	127-18-4	U U	U U	POL	2.5		127-18-4	U U	U U	POL	0.00
CHLOROBENZENE	108-90-7	Ŭ	Ŭ	POL	2.5	CHLOROBENZENE	108-90-7	ŭ	Ŭ	POL	0.50
ETHYLBENZENE	100-41-4	U U	U U	POL	2.5	ETHYLBENZENE	100-41-4	24	U	POL	0.50
XYI ENE (M P)	1330-20-7	27	0	POL	2.5	XYI ENE (M P)	1330-20-7	89		POL	0.50
STYRENE	100-42-5	11	ш	POL	2.5	STYRENE	100-42-5	11	ш	POL	0.50
XYI ENE (O)	95-47-6	U U	U U	POL	2.5	XYI ENE (O)	95-47-6	3.8	U	POL	0.50
1 1 2 2-TETRACHI OROFTHANE	79-34-5	Ŭ	Ŭ	POL	2.5	1 1 2 2-TETRACHI OROETHANE	79-34-5	11	U	POL	0.50
	541-73-1	U U	U U	POL	2.5		541-73-1	U U	U U	POL	0.00
1 4-DICHLOROBENZENE	106-46-7	Ŭ	Ŭ	POL	2.5	1 4-DICHI OROBENZENE	106-46-7	Ŭ	Ŭ	POL	0.50
1 2-DICHLOROBENZENE	95-50-1	U U	Ŭ	POL	2.5		95-50-1	U U	Ŭ	POL	0.50
1 2 4-TRICHI OROBENZENE	120-82-1	Ŭ	Ŭ	POL	2.5	1 2 4-TRICHI OROBENZENE	120-82-1	Ŭ	Ŭ	POL	0.50
	87-68-3	Ŭ	Ŭ	POL	2.5		87-68-3	Ŭ	Ŭ	PQL	0.50
1.3.5-TRIMETHYLBENZENE	108-67-8	Ŭ	Ŭ	PQI	2.5	1.3.5-TRIMETHYI BENZENE	108-67-8	1.2	Ū	PQI	0.50
1.2.4-TRIMETHYLBENZENE	95-63-6	Ŭ	Ŭ	POL	2.5	1.2.4-TRIMETHYI BENZENE	95-63-6	3.5		PQL	0.50
1.2-DICHI OROTETRAFI UOROFTHANE	76-14-2	Ŭ	Ŭ	PQI	2.5	1.2-DICHI OROTETRAFI UOROFTHANE	76-14-2	U	U	PQI	0.50
1 2-DIBROMOETHANE	106-93-4	Ŭ	Ŭ	POL	2.5	1 2-DIBROMOETHANE	106-93-4	Ŭ	Ŭ	POL	0.50
1.3-BUTADIENE	106-99-0	Ŭ	Ŭ	PQL	2.5	1.3-BUTADIENE	106-99-0	Ŭ	Ŭ	PQL	0.50
CARBON DISULFIDE	75-15-0	Ŭ	Ŭ	PQI	2.5	CARBON DISULFIDE	75-15-0	Ŭ	Ŭ	PQI	0.50
CYCLOHEXANE	110-82-7	36	Ũ	POL	2.5	CYCLOHEXANE	110-82-7	7.4	Ũ	PQL	0.50
N-HEPTANE	142-82-5	11	U	POL	2.5	N-HEPTANE	142-82-5	 Ц	U	POL	0.50
	124-48-1	Ŭ	Ŭ	POL	2.5		124-48-1	Ŭ	Ŭ	POL	0.50
N-HEXANE	110-54-3	Ŭ	Ŭ	POL	2.5	N-HEXANE	110-54-3	ŭ	Ŭ	POL	0.50
BROMOFORM	75-25-2	U U	Ŭ	POL	2.5	BROMOFORM	75-25-2	U U	Ŭ	POL	0.50
	75-27-4	U U	Ц Ц	POL	2.5		75-27-4	U U	Ц Ц	POL	0.50
TRANS-1 2-DICHLOROFTHENE	156-60-5	11	U U		25	TRANS-1 2-DICHI OROFTHENE	156-60-5	1	U U		0.50
4-FTHYI TOI LIENE	622-96-8	U	11		2.5	4-FTHYI TOI LIFNE	622-96-8	3.8	5		0.50
3-CHLOROPROPENE	107-05-1	11	11		2.5	3-CHLOROPROPENE	107-05-1	11	U.		0.50
2.24-TRIMETHYI PENTANE	540-84-1	150	5		2.5	2.2.4-TRIMETHYI PENITANE	540-84-1	2/	5		0.50
BROMOFTHENE	593-60-2	100	U		2.5	BROMOFTHENE	593-60-2	11	U	POI	0.50
2-CHLOROTOLUENE	95-49-8	11	U U		25	2-CHLOROTOLUENE	95-49-8	1	U U		0.50
		0	5		2.0			0	5		0.00

n:/active/6000/023-6124C/

Table 3-10 Results of Sub-Slab and Indoor Air Testing October 2002 Stafford Site

Sample ID	(63 Bay Su	ıb-slab Va	apour		Sample ID		63 Bay	First Floo	or	
Depth Sample Date		11	15/2002			Depth Sample Date		11	15/2002		
Jahoratory ID		509	326R1			Laboratory ID		509	15/2002 9326R1		
Method		USE	PA TO 15			Method		USE	9320ICT PA TO 15		
Analysis Date		11/	14/2002			Analysis Date		11/	13/2002		
		Concen-	Quanti-	Quanti-	Quanti	-		Concen-	Quanti-	Quanti-	Quanti
	CAS	tration	fication	fication	fication	1	CAS	tration	fication	fication	fication
Chemical	#	(ppb)	Qualifier	Туре	Level	Chemical	#	(ppb)	Qualifier	Туре	Level
METHYL TERT-BUTYL ETHER	1634-04-4	0.71		PQL	0.50	METHYL TERT-BUTYL ETHER	1634-04-4	0.77		PQL	0.50
1,7-NAPHTHYRIDINE 9.74	253-69-0	10	NJ	N/A	N/A	BUTANE, 2-METHYL- 6.71	78-78-4	1.0	NJ	N/A	N/A
TETRADECANE, 2,5-DIMETHYL- 13.89	56292-69-4	21	NJ	N/A	N/A	BENZENE, 1-BROMO-2-FLUORO- 14.10	1072-85-1	14	NJ	N/A	N/A
BENZENE, 1-BROMO-3-FLUORO- 14.09	1073-06-9	27	NJB	N/A	N/A		138-86-3	1.1	NJ	N/A	N/A
2 2 7 7-TETRAMETHYL OCTANE 14.48	1071-31-4	0.7 48	NI	N/A N/Δ	N/A N/Δ	DICHLORODIELLIOROMETHANE	75-71-8	0.64	INJ		0.50
2-PYRAZOLINE, 1-METHYL-4-PROPY 14.54	133063-77-3	6.8	NJ	N/A	N/A	CHLOROMETHANE	74-87-3	0.75		PQL	0.50
DECANE, 2,2,6-TRIMETHYL- 14.62	62237-97-2	20	NJ	N/A	N/A	VINYL CHLORIDE	75-01-4	U	U	PQL	0.50
NONANE, 3-METHYL-5-PROPYL- 14.77	31081-18-2	95	NJ	N/A	N/A	BROMOMETHANE	74-83-9	U	U	PQL	0.50
PENTANE, 2,3,4-TRIMETHYL- 14.83	565-75-3	12	NJ	N/A	N/A	CHLOROETHANE	75-00-3	U	U	PQL	0.50
EICOSANE 14.86	112-95-8	19	NJ	N/A	N/A	TRICHLOROFLUOROMETHANE	75-69-4	U	U	PQL	0.50
HEPTANE, 2,2-DIMETHYL- 14.99	10/1-26-7	130	NJ	N/A	N/A		76-13-1	U	U	PQL	0.50
DECANE 2-METHYL 15 24	6075-08-0	50 14	NI	N/A N/Δ	N/A N/Δ		75-09-2	0	0		0.50
NONANE, 5-BUTYL- 15.34	17312-63-9	26	NJ	N/A	N/A	1.1-DICHLOROETHANE	75-34-3	Ŭ	Ŭ	PQL	0.50
HEXANE, 3,3-DIMETHYL- 15.40	563-16-6	15	NJ	N/A	N/A	CIS-1,2-DICHLOROETHENE	156-59-2	Ū	Ū	PQL	0.50
UNDECANE, 3-METHYL- 15.53	1002-43-3	44	NJ	N/A	N/A	CHLOROFORM	67-66-3	U	U	PQL	0.50
DECANE, 3,3,8-TRIMETHYL- 15.78	62338-16-3	22	NJ	N/A	N/A	1,1,1-TRICHLOROETHANE	71-55-6	U	U	PQL	0.50
HEXANE, 2,4,4-TRIMETHYL- 15.96	16747-30-1	7.8	NJ	N/A	N/A	CARBON TETRACHLORIDE	56-23-5	U	U	PQL	0.50
NONANE, 3-METHYL- 16.08	5911-04-6	28	NJ	N/A	N/A		71-43-2	U	U	PQL	0.50
	62338-15-2 75-71-8	5.2		N/A POI	N/A 10		79-01-6	U	0	PQL	0.50
CHIOROMETHANE	74-87-3	U U	U U	POL	10	1 2-DICHLOROPROPANE	78-87-5	U	U	POL	0.50
VINYL CHLORIDE	75-01-4	Ŭ	Ŭ	PQL	10	CIS-1,3-DICHLOROPROPENE	10061-01-5	Ŭ	Ŭ	PQL	0.50
BROMOMETHANE	74-83-9	U	U	PQL	10	TOLUENE	108-88-3	0.83	-	PQL	0.50
CHLOROETHANE	75-00-3	U	U	PQL	10	TRANS-1,3-DICHLOROPROPENE	10061-02-6	U	U	PQL	0.50
TRICHLOROFLUOROMETHANE	75-69-4	U	U	PQL	10	1,1,2-TRICHLOROETHANE	79-00-5	U	U	PQL	0.50
FREON TF	76-13-1	U	U	PQL	10	TETRACHLOROETHENE	127-18-4	U	U	PQL	0.50
	75-35-4	U	U	PQL	10		108-90-7	U	U	PQL	0.50
1 1-DICHLOROETHANE	75-34-3	0	0		10	XYI ENE (M P)	1330-20-7	0.65	0		0.50
CIS-1.2-DICHLOROETHENE	156-59-2	Ŭ	Ŭ	PQL	10	STYRENE	100-42-5	U.00	U	PQL	0.50
CHLOROFORM	67-66-3	U	U	PQL	10	XYLENE (O)	95-47-6	U	U	PQL	0.50
1,1,1-TRICHLOROETHANE	71-55-6	U	U	PQL	10	1,1,2,2-TETRACHLOROETHANE	79-34-5	U	U	PQL	0.50
CARBON TETRACHLORIDE	56-23-5	U	U	PQL	10	1,3-DICHLOROBENZENE	541-73-1	U	U	PQL	0.50
BENZENE	71-43-2	U	U	PQL	10	1,4-DICHLOROBENZENE	106-46-7	U	U	PQL	0.50
	107-06-2	U	U	PQL	10		95-50-1	U	U	PQL	0.50
	79-01-0	0	0		10	1,2,4-1 RICHLOROBEINZENE HEXACHLOROBUTADIENE	87-68-3	0	0		0.50
CIS-1.3-DICHLOROPROPENE	10061-01-5	U	U	PQL	10	1.3.5-TRIMETHYLBENZENE	108-67-8	U	U	PQL	0.50
TOLUENE	108-88-3	Ŭ	Ŭ	PQL	10	1,2,4-TRIMETHYLBENZENE	95-63-6	0.50	•	PQL	0.50
TRANS-1,3-DICHLOROPROPENE	10061-02-6	U	U	PQL	10	1,2-DICHLOROTETRAFLUOROETHANE	76-14-2	U	U	PQL	0.50
1,1,2-TRICHLOROETHANE	79-00-5	U	U	PQL	10	1,2-DIBROMOETHANE	106-93-4	U	U	PQL	0.50
	127-18-4	59		PQL	10	1,3-BUTADIENE	106-99-0	U	U	PQL	0.50
	108-90-7	U	U	PQL	10		110 92 7	U	U	PQL	0.50
	1330-20-7	12	0		10		142-82-5	0	0	PQL	0.50
STYRENE	100-42-5	U	U	PQL	10	DIBROMOCHLOROMETHANE	124-48-1	Ŭ	Ŭ	PQL	0.50
XYLENE (O)	95-47-6	Ŭ	Ŭ	PQL	10	N-HEXANE	110-54-3	0.51	•	PQL	0.50
1,1,2,2-TETRACHLOROETHANE	79-34-5	U	U	PQL	10	BROMOFORM	75-25-2	U	U	PQL	0.50
1,3-DICHLOROBENZENE	541-73-1	U	U	PQL	10	BROMODICHLOROMETHANE	75-27-4	U	U	PQL	0.50
1,4-DICHLOROBENZENE	106-46-7	U	U	PQL	10	TRANS-1,2-DICHLOROETHENE	156-60-5	U	U	PQL	0.50
	95-50-1	U	U	PQL	10		622-96-8	U	0	PQL	0.50
	87-68-3	0			10	2.2.4-TRIMETHYI PENTANE	107-05-1 540-84-1	0	0	PQL	0.50
1.3.5-TRIMETHYLBENZENE	108-67-8	Ŭ	Ŭ	PQL	10	BROMOETHENE	593-60-2	Ŭ	Ŭ	PQL	0.50
1,2,4-TRIMETHYLBENZENE	95-63-6	Ŭ	Ŭ	PQL	10	2-CHLOROTOLUENE	95-49-8	Ū	Ū	PQL	0.50
1,2-DICHLOROTETRAFLUOROETHANE	76-14-2	U	U	PQL	10	UNKNOWN ALKANE 5.07		1.8	J	N/A	N/A
1,2-DIBROMOETHANE	106-93-4	U	U	PQL	10						
1,3-BUTADIENE	106-99-0	U	U	PQL	10						
	75-15-0	U	U	PQL	10						
	142-82-5	0			10						
DIBROMOCHLOROMETHANE	124-48-1	Ŭ	Ŭ		10						
N-HEXANE	110-54-3	Ŭ	Ŭ	PQL	10						
BROMOFORM	75-25-2	U	U	PQL	10						
BROMODICHLOROMETHANE	75-27-4	U	U	PQL	10						
I RANS-1,2-DICHLOROETHENE	156-60-5	U	U	PQL	10						
	622-96-8	U	U	PQL	10						
2 2 4-TRIMETHYI PENTANE	540-84-1	0	0	PQL P∩I	10 10						
BROMOETHENE	593-60-2	U	U	POL	10						
2-CHLOROTOLUENE	95-49-8	U	U	PQL	10						
UNKNOWN 7.00		200	J	N/A	N/A						
UNKNOWN 8.43		120	J	N/A	N/A						

UNKNOWN ALKANE 13.17	44	J	N/A	N/A	
UNKNOWN 13.36	28	J	N/A	N/A	
UNKNOWN ALKANE 13.57	51	J	N/A	N/A	
UNKNOWN ALKANE 13.86	130	J	N/A	N/A	
UNKNOWN ALKANE 13.98	39	J	N/A	N/A	
UNKNOWN ALKANE 14.09	250	J	N/A	N/A	
UNKNOWN 14.18	21	J	N/A	N/A	
UNKNOWN ALKANE 14.22	40	J	N/A	N/A	
UNKNOWN ALKANE 14.30	340	J	N/A	N/A	
UNKNOWN ALKANE 14.48	140	J	N/A	N/A	
UNKNOWN 14.56	31	J	N/A	N/A	
UNKNOWN ALKANE 14.63	39	J	N/A	N/A	
UNKNOWN ALKANE 14.68	50	J	N/A	N/A	
UNKNOWN ALKANE 14.89	83	J	N/A	N/A	
UNKNOWN ALKANE 15.09	30	J	N/A	N/A	
UNKNOWN ALKANE 15.38	28	J	N/A	N/A	

Table 3-10 Results of Sub-Slab and Indoor Air Testing October 2002 Stafford Site

Sample ID	1	4 Park Su	ub-Slab Va	apour		Sample ID		14 Parl	k Baseme	nt	
Sample Date		10/	30/2002			Sample Date		10/	30/2002		
Laboratory ID		5	08387			Laboratory ID		5	08388		
Method		USE	PA TO 15			Method		USE	PA TO 15		
Analysis Date		Concen-	Quanti-	Quanti-	Quanti-	Analysis Date		Concen-	Quanti-	Quanti-	Quanti-
	CAS	tration	fication	fication	fication		CAS	tration	fication	fication	fication
Chemical	#	(ppb)	Qualifier	Туре	Level	Chemical	#	(ppb)	Qualifier	Туре	Level
METHYL TERT-BUTYL ETHER	1634-04-4	U	U	PQL	1.0	METHYL TERT-BUTYL ETHER	1634-04-4	U	U	PQL	0.50
OCTANE, 2,2-DIMETHYL- 13.89	15869-87-1	45	NJ	N/A	N/A	BUTANAL 13.88	123-72-8	3.1	NJ	N/A	N/A
BENZENE, 1-BROMO-3-FLUORO- 14	620-50-5	58 40	NJ	N/A	N/A N/A	TETRADECANE, 1-CHLORO- 14.20 RENZENE, 1-ETHVL-2-METHVL- 14.20	2425-54-9	1.1	NJ	N/A	N/A
PIPERIDINE 14.44	110-89-4	6.6	NJ	N/A	N/A	CYCLOPENTANOL, 2-(AMINOMETHYL) 15.1	1 40482-02-8	1.5	NJ	N/A	N/A
OCTANE, 2,2-DIMETHYL- 14.49	15869-87-1	92	NJ	N/A	N/A	UNDECANE 15.25	1120-21-4	1.2	NJ	N/A	N/A
1-PROPANONE, 2-CHLORO-1-(4-CHI	36025-21-5	9.3	NJ	N/A	N/A	PHENOL 15.32	108-95-2	4.3	NJ	N/A	N/A
HYDROXYLAMINE O-DECYL-14.62	1/302-37-3	24 190	NJ N I	N/A N/A	N/A N/Δ		75-71-8 74-87-3	18 11	п	PQL	0.50
1-UNDECENE, 5-METHYL- 14.88	74630-38-9	29	NJ	N/A	N/A	VINYL CHLORIDE	75-01-4	U	Ŭ	PQL	0.50
1-PENTANOL, 3,4-DIMETHYL- 14.99	6570-87-2	220	NJ	N/A	N/A	BROMOMETHANE	74-83-9	U	U	PQL	0.50
UNDECANE, 2,8-DIMETHYL- 15.17	17301-25-6	52	NJ	N/A	N/A	CHLOROETHANE	75-00-3	U	U	PQL	0.50
NONANE, 3-METHYL- 15.26	0-00-0	9.2 17	NJ NJ	N/A N/A	N/A N/A		75-69-4 76-13-1	U	U	PQL	0.50
HEPTANE, 2,4-DIMETHYL- 15.41	2213-23-2	10	NJ	N/A	N/A	1,1-DICHLOROETHENE	75-35-4	Ŭ	Ŭ	PQL	0.50
DECANE, 2,2,9-TRIMETHYL- 15.54	62238-00-0	32	NJ	N/A	N/A	METHYLENE CHLORIDE	75-09-2	4.2		PQL	0.50
HEPTADECANE, 4-METHYL- 15.78	26429-11-8	20	NJ	N/A	N/A		75-34-3	U	U	PQL	0.50
OCTANE, 2, 6-DIMETHYL - 16.08	2051-30-1	10	NJ NJ	N/A N/A	Ν/Α N/Δ	CHI OROFORM	150-59-2 67-66-3	U	U	PQL	0.50
BENZENEMETHANOL, .ALPHA.,.ALP	617-94-7	12	NJ	N/A	N/A	1,1,1-TRICHLOROETHANE	71-55-6	U	U	PQL	0.50
TRIDECANE, 4-METHYL- 16.36	26730-12-1	11	NJ	N/A	N/A	CARBON TETRACHLORIDE	56-23-5	U	U	PQL	0.50
	75-71-8	14		PQL	1.0		71-43-2	U	U	PQL	0.50
	74-87-3 75-01-4	U	U	PQL	1.0		79-01-6	U	U	PQL	0.50
BROMOMETHANE	74-83-9	Ŭ	Ŭ	PQL	1.0	1,2-DICHLOROPROPANE	78-87-5	Ŭ	Ŭ	PQL	0.50
CHLOROETHANE	75-00-3	U	U	PQL	1.0	CIS-1,3-DICHLOROPROPENE	10061-01-5	U	U	PQL	0.50
	75-69-4	U	U	PQL	1.0		108-88-3	2.4		PQL	0.50
1 1-DICHLOROFTHENE	76-13-1 75-35-4	U	U	PQL	1.0	1 1 2-TRICHLOROFTHANE	79-00-5	U	U	PQL	0.50
METHYLENE CHLORIDE	75-09-2	2.7	Ũ	PQL	1.0	TETRACHLOROETHENE	127-18-4	Ŭ	Ŭ	PQL	0.50
1,1-DICHLOROETHANE	75-34-3	U	U	PQL	1.0	CHLOROBENZENE	108-90-7	U	U	PQL	0.50
	156-59-2	U	U	PQL	1.0		100-41-4	0.84		PQL	0.50
	07-00-3 71-55-6	U	U	PQL	1.0	STYRENE	100-42-5	3.1 U	U	PQL	0.50
CARBON TETRACHLORIDE	56-23-5	Ŭ	Ŭ	PQL	1.0	XYLENE (O)	95-47-6	1.2	Ū	PQL	0.50
BENZENE	71-43-2	U	U	PQL	1.0	1,1,2,2-TETRACHLOROETHANE	79-34-5	U	U	PQL	0.50
	107-06-2	U	U	PQL	1.0		541-73-1	U	U	PQL	0.50
1.2-DICHLOROPROPANE	79-01-6	U	U		1.0	1.2-DICHLOROBENZENE	95-50-1	U	U		0.50
CIS-1,3-DICHLOROPROPENE	10061-01-5	Ŭ	Ŭ	PQL	1.0	1,2,4-TRICHLOROBENZENE	120-82-1	Ŭ	Ŭ	PQL	0.50
TOLUENE	108-88-3	9.4		PQL	1.0	HEXACHLOROBUTADIENE	87-68-3	U	U	PQL	0.50
	10061-02-6	U	U	PQL	1.0		108-67-8	0.63		PQL	0.50
TETRACHLOROETHENE	127-18-4	U	U		1.0	1.2-DICHLOROTETRAFLUOROETHANE	95-03-0 76-14-2	1.9 U	U		0.50
CHLOROBENZENE	108-90-7	Ū	Ŭ	PQL	1.0	1,2-DIBROMOETHANE	106-93-4	Ū	Ū	PQL	0.50
ETHYLBENZENE	100-41-4	3.4		PQL	1.0	1,3-BUTADIENE	106-99-0	U	U	PQL	0.50
XYLENE (M,P)	1330-20-7	12	ш	PQL	1.0		75-15-0 110-82-7	1.2		PQL	0.50
XYLENE (O)	95-47-6	4.9	0		1.0	N-HEPTANE	142-82-5	U	U		0.50
1,1,2,2-TETRACHLOROETHANE	79-34-5	U	U	PQL	1.0	DIBROMOCHLOROMETHANE	124-48-1	U	U	PQL	0.50
	541-73-1	U	U	PQL	1.0		110-54-3	0.55		PQL	0.50
1,4-DICHLOROBENZENE	100-46-7 95-50-1			PQL	1.0 1.0	BROMODICHI OROMETHANE	15-25-2 75-27-4	U	U	PQL	0.50
1,2,4-TRICHLOROBENZENE	120-82-1	Ŭ	Ŭ	PQL	1.0	TRANS-1,2-DICHLOROETHENE	156-60-5	Ŭ	Ŭ	PQL	0.50
HEXACHLOROBUTADIENE	87-68-3	U	U	PQL	1.0	4-ETHYLTOLUENE	622-96-8	1.4		PQL	0.50
	108-67-8	1.6		PQL	1.0		107-05-1	U	U	PQL	0.50
1,2-DICHLOROTETRAFI LIOROETHA	90-03-0 76-14-2	ວ.3 []	IJ	PQL	1.0	2,2,4+ I RIVIE I TI LPENTANE BROMOETHENF	540-84-1 593-60-2	U	U	PQL	0.50
1,2-DIBROMOETHANE	106-93-4	Ŭ	Ŭ	PQL	1.0	2-CHLOROTOLUENE	95-49-8	0.54	Ŭ	PQL	0.50
1,3-BUTADIENE	106-99-0	U	U	PQL	1.0	UNKNOWN ALKANE 5.12		1.0	J	N/A	N/A
	75-15-0	U	U		1.0	UNKNOWN 13.81		2.0	J	N/A	N/A
N-HEPTANE	110-82-7 142-82-5	1.0	U	PQL	1.0	UINTINUVVIN ALMAINE 14.59		1.0	J	IN/A	IN/A
DIBROMOCHLOROMETHANE	124-48-1	U	U	PQL	1.0						
N-HEXANE	110-54-3	U	U	PQL	1.0						
BROMOFORM	75-25-2	U	U	PQL	1.0						
	/ ⊃-2/-4 156-60-5			PQL	1.0 1.0						
4-ETHYLTOLUENE	622-96-8	4.7	U	PQL	1.0						
3-CHLOROPROPENE	107-05-1	U	U	PQL	1.0						
	540-84-1	U	U	PQL	1.0						
2-CHLOROTOLUENE	วรว-60-2 95-49-8	U U	U U	PQL	1.0						
UNKNOWN 13.30		7.1	J	N/A	N/A						
UNKNOWN ALKANE 13.36		27	J	N/A	N/A						

UNKNOWN ALKANE 13.58	39	J	N/A	N/A
UNKNOWN 13.63	15	J	N/A	N/A
UNKNOWN 13.74	14	J	N/A	N/A
UNKNOWN ALKANE 13.87	99	J	N/A	N/A
UNKNOWN ALKANE 13.98	31	J	N/A	N/A
UNKNOWN ALKANE 14.09	180	J	N/A	N/A
UNKNOWN 14.18	12	J	N/A	N/A
UNKNOWN ALKANE 14.22	36	J	N/A	N/A
UNKNOWN ALKANE 14.30	200	J	N/A	N/A
UNKNOWN ALKANE 14.48	91	J	N/A	N/A
UNKNOWN ALKANE 14.56	22	J	N/A	N/A
UNKNOWN ALKANE 14.63	32	J	N/A	N/A
UNKNOWN ALKANE 14.68	30	J	N/A	N/A
UNKNOWN ALKANE 14.89	60	J	N/A	N/A
UNKNOWN ALKANE 15.09	26	J	N/A	N/A
UNKNOWN ALKANE 15.26	18	J	N/A	N/A
UNKNOWN ALKANE 15.38	30	J	N/A	N/A

Table 3-10 Results of Sub-Slab and Indoor Air Testing October 2002 Stafford Site

Commiss ID	44.0	ul Dees	and Field	Duraliant	-	Comple ID		44 5			
Sample ID Depth	14 Pa	ark Basen	nent Field	Duplicat	е	Sample ID		14 F	Irst Floor		
Sample Date		10/	30/2002			Sample Date		10/:	30/2002		
Laboratory ID		5	08389			Laboratory ID		5	08390		
Method		USE	PA TO 15			Method		USE	PA TO 15		
Analysis Date		11	/1/2002			Analysis Date		11/	10/2002		
	040	Concen-	Quanti-	Quanti-	Quanti	-	040	Concen-	Quanti-	Quanti-	Quanti-
Chemical	CAS #	tration	fication	fication	fication	Chemical	CAS #	tration (ppb)	fication	fication	fication
	#	(ppp)	Quaimer	туре	Level	Chemical	π	(ppp)	Quaimer	туре	Level
METHYL TERT-BUTYL ETHER	1634-04-4	0.50	U	PQL	0.50	METHYL TERT-BUTYL ETHER	1634-04-4	U	U	PQL	0.50
ACETAMIDE, 2-CHLORO-N,N-DI-2-P 5.12	93-71-0	1.2	NJ	N/A	N/A	UXIRANE, ETHENYL-5.09	930-22-3	5.4 1.2	NJ	N/A	N/A
HEXANOL ACID 1-METHYLOCTYLE 97	155193-16-3	1.0	N.I	N/A	N/A	DIMETHYL ETHER 7.58	115-10-6	1.2	NJ	N/A	N/A
ACETAMIDE, N.N-DIMETHYL- 13.87	127-19-5	3.2	NJ	N/A	N/A	ACETAMIDE, N.N-DIMETHYL- 13.86	127-19-5	2.2	NJ	N/A	N/A
BENZENE, 1-BROMO-3-FLUORO- 14.10	1073-06-9	19	NJ	N/A	N/A	CYCLOHEXANE, 1,2,4-TRIS(METHYL 13.89	14296-81-2	1.9	NJ	N/A	N/A
BENZENE, 1,3,5-TRIMETHYL- 14.30	108-67-8	1.4	NJ	N/A	N/A	BENZENE, 1-BROMO-3-FLUORO- 14.10	1073-06-9	19	NJ	N/A	N/A
PHENOL 15.32	108-95-2	1.3	NJ	N/A	N/A	UNDECANE 14.21	1120-21-4	1.4	NJ	N/A	N/A
	75-71-8	21		PQL	0.50		100-52-7	1.1	NJ	N/A	N/A
	74-87-3	0.50	0		0.50	BICTCLO[2.2.1] HEP1-2-ENE, 1,7, 14.93 BENIZENE, 1_ETHYL_3_METHYL_15,14	404-17-0 620-14-4	4.Z	NJ NJ	IN/A	N/A
BROMOMETHANE	74-83-9	0.50	U	PQL	0.50	BENZENEACETIC ACID. TRIMETHYLS 15 44	2078-18-4	3.1	N.J	N/A	N/A
CHLOROETHANE	75-00-3	0.50	Ŭ	PQL	0.50	DICHLORODIFLUOROMETHANE	75-71-8	6.4		PQL	0.50
TRICHLOROFLUOROMETHANE	75-69-4	0.50	U	PQL	0.50	CHLOROMETHANE	74-87-3	U	U	PQL	0.50
FREON TF	76-13-1	0.50	U	PQL	0.50	VINYL CHLORIDE	75-01-4	U	U	PQL	0.50
1,1-DICHLOROETHENE	75-35-4	0.50	U	PQL	0.50	BROMOMETHANE	74-83-9	U	U	PQL	0.50
	75-09-2	4.3		PQL	0.50		75-00-3 75-60-4	0.52	U	PQL	0.50
	156-59-2	0.50	0		0.50		75-69-4	0.52			0.50
CHLOROFORM	67-66-3	0.50	Ŭ	PQL	0.50	1.1-DICHLOROETHENE	75-35-4	Ŭ	Ŭ	PQL	0.50
1,1,1-TRICHLOROETHANE	71-55-6	0.50	Ŭ	PQL	0.50	METHYLENE CHLORIDE	75-09-2	1.3	•	PQL	0.50
CARBON TETRACHLORIDE	56-23-5	0.50	U	PQL	0.50	1,1-DICHLOROETHANE	75-34-3	U	U	PQL	0.50
BENZENE	71-43-2	0.50	U	PQL	0.50	CIS-1,2-DICHLOROETHENE	156-59-2	U	U	PQL	0.50
1,2-DICHLOROETHANE	107-06-2	0.50	U	PQL	0.50		67-66-3	U	U	PQL	0.50
	79-01-6	0.50	U	PQL	0.50		/1-55-6 F6 22 F	U	U	PQL	0.50
CIS-1 3-DICHLOROPROPANE	10061-01-5	0.50	U		0.50	BENZENE	00-23-0 71-43-2	0	0		0.50
TOLUENE	108-88-3	4.4	0	PQL	0.50	1.2-DICHLOROETHANE	107-06-2	Ŭ	Ŭ	PQL	0.50
TRANS-1,3-DICHLOROPROPENE	10061-02-6	0.50	U	PQL	0.50	TRICHLOROETHENE	79-01-6	U	U	PQL	0.50
1,1,2-TRICHLOROETHANE	79-00-5	0.50	U	PQL	0.50	1,2-DICHLOROPROPANE	78-87-5	U	U	PQL	0.50
TETRACHLOROETHENE	127-18-4	0.50	U	PQL	0.50	CIS-1,3-DICHLOROPROPENE	10061-01-5	U	U	PQL	0.50
	108-90-7	0.50	U	PQL	0.50		108-88-3	2.4		PQL	0.50
	1330-20-7	1.0 5.7			0.50		79-00-5		0		0.50
STYRENE	100-42-5	0.50	U	PQL	0.50	TETRACHLOROETHENE	127-18-4	U	U	PQL	0.50
XYLENE (O)	95-47-6	2.2	-	PQL	0.50	CHLOROBENZENE	108-90-7	U	U	PQL	0.50
1,1,2,2-TETRACHLOROETHANE	79-34-5	0.50	U	PQL	0.50	ETHYLBENZENE	100-41-4	0.71		PQL	0.50
1,3-DICHLOROBENZENE	541-73-1	0.50	U	PQL	0.50	XYLENE (M,P)	1330-20-7	2.7		PQL	0.50
	106-46-7	0.50	U	PQL	0.50	STYRENE	100-42-5	0.50		PQL	0.50
	95-50-1 120-82-1	0.50	U		0.50		95-47-6 70-34-5	1.2			0.50
HEXACHLOROBUTADIENE	87-68-3	0.50	U	PQL	0.50	1.3-DICHLOROBENZENE	541-73-1	U	U	PQL	0.50
1,3,5-TRIMETHYLBENZENE	108-67-8	0.76	•	PQL	0.50	1,4-DICHLOROBENZENE	106-46-7	Ŭ	Ŭ	PQL	0.50
1,2,4-TRIMETHYLBENZENE	95-63-6	2.1		PQL	0.50	1,2-DICHLOROBENZENE	95-50-1	U	U	PQL	0.50
1,2-DICHLOROTETRAFLUOROETHANE	76-14-2	0.50	U	PQL	0.50	1,2,4-TRICHLOROBENZENE	120-82-1	U	U	PQL	0.50
	106-93-4	0.50	U	PQL	0.50		87-68-3	U	U	PQL	0.50
	106-99-0	0.50	U		0.50		108-67-8	0.53		PQL	0.50
	110-82-7	0.50	U	POL	0.50	1,2,4-TRIMETHTEBENZENE	95-03-0 76-14-2	1.5	U		0.50
N-HEPTANE	142-82-5	0.77	Ũ	PQL	0.50	1,2-DIBROMOETHANE	106-93-4	Ŭ	Ŭ	PQL	0.50
DIBROMOCHLOROMETHANE	124-48-1	0.50	U	PQL	0.50	1,3-BUTADIENE	106-99-0	U	U	PQL	0.50
N-HEXANE	110-54-3	0.51		PQL	0.50	CARBON DISULFIDE	75-15-0	U	U	PQL	0.50
BROMOFORM	75-25-2	0.50	U	PQL	0.50	CYCLOHEXANE	110-82-7	U	U	PQL	0.50
	75-27-4	0.50	U	PQL	0.50		142-82-5	0.73		PQL	0.50
	100-00-0	0.50	0		0.50		124-48-1	0	0		0.50
3-CHLOROPROPENE	107-05-1	0.50	U	PQL	0.50	BROMOFORM	75-25-2	Ŭ	Ŭ	PQL	0.50
2,2,4-TRIMETHYLPENTANE	540-84-1	0.50	Ũ	PQL	0.50	BROMODICHLOROMETHANE	75-27-4	Ŭ	Ŭ	PQL	0.50
BROMOETHENE	593-60-2	0.50	U	PQL	0.50	TRANS-1,2-DICHLOROETHENE	156-60-5	U	U	PQL	0.50
2-CHLOROTOLUENE	95-49-8	0.75		PQL	0.50	4-ETHYLTOLUENE	622-96-8	1.3		PQL	0.50
		1.3	J	N/A	N/A		107-05-1	U	U	PQL	0.50
UNKNUWN ALKANE 14.59		1.0	J	N/A	N/A		540-84-1	U	U		0.50
							95-49-8	0	U U	POL	0.50
						UNKNOWN 5.04	0-0-0	1.9	J	N/A	N/A
						UNKNOWN 13.83		1.6	J	N/A	N/A

n:/active/6000/023-6124C/

Table 3-10 Results of Sub-Slab and Indoor Air Testing October 2002 Stafford Site

Sample Date 10/24/2002 Sample Date 10/24/2002 USEPA TO 15 Laboratory (D) USEPA TO 16 Method USEPA TO 16 Analysis Date CAS Concer- Quanti< Quanti- CAS Concer- Quanti Quanti- CAS Totolin Concer- Quanti Quanti-	Sample ID Depth		18 Park S 1	ub-Slab \ 0.5-11'	/apour		Sample ID Depth	18 Park Basement				
Laboratory ID 507433 Laboratory ID 507434 Second Se	Sample Date		10/	/24/2002			Sample Date		10	/24/2002		
Method USEPA TO 15 Method Constrain Constan Constan Constrain<	Laboratory ID		5	507433			Laboratory ID		5	507434		
Analysis Date 102242002 Analysis Date 10224002 Concer Constr Cuanti	Method		USE	PA TO 1	5		Method		USE	PA TO 1	5	
Concern Constant Concern <	Analysis Date		10/	/29/2002			Analysis Date		10	/29/2002		
CAS tration feation leave Chemical Y tration feation feation </td <td></td> <td></td> <td>Concen-</td> <td>Quanti-</td> <td>Quanti-</td> <td>Quanti-</td> <td></td> <td></td> <td>Concen-</td> <td>· Quanti-</td> <td>Quanti-</td> <td>Quanti-</td>			Concen-	Quanti-	Quanti-	Quanti-			Concen-	· Quanti-	Quanti-	Quanti-
METHYL TERT-BUTYL ETHER 1634-044 1.4 POL 0.20	Chemical	CAS #	tration (ppb)	fication Qualifier	fication Type	fication Level	Chemical	CAS #	tration (ppb)	fication Qualifier	fication Type	fication Level
MILTICLIAR-POULTE_EIRER IOS-40-44 Z.9 POL 0.33 MICHARDEMORDETHAN 7.873 U POL 0.36 MICHORDETHANE 7.873 U POL 0.36 BOMUMETHANE 7.801.4 U POL 0.36 BOMUMETHANE 7.801.4 U POL 0.36 BOMUMETHANE 7.803.4 U V POL 0.50 BOMUMETHANE 7.803.4 U V POL 0.50 TICHLOROUNDETHANE 7.804.4 U V POL 0.50 TICHLOROUNDORMETHANE 7.813.1 U V POL 0.50 1.100CHLOROETHANE 7.813.1 U V POL 0.50 1.100CHLOROETHANE 7.813.1 U V POL 0.50 INTOCHLOROETHANE 7.813.1 U V POL 0.50 INTOCHLOROETHANE 7.813.1 U POL 0.50 INTOCHLOROETHANE 7.813.1 U POL 0.50 INTOCHLOROETHANE 7.813.1		1004.04.4	4.4			0.50		1004.04.4	2.0			0.50
DIR.H.D.GUDIELUGROME THAM 12-74-83 U POL D.S.B DIR.H.D.GUME THAME 74-87-3 U U POL 0.50 VINYL CHLORIDE 75-01-4 U U POL 0.50 CHLOROMETHANE 74-87-3 U U POL 0.50 REMOMMETHANE 74-87-3 U U POL 0.50 POL 0.50 REMOMMETHANE 74-83-3 U U POL 0.50 POL 0.50 REMOMMETHANE 74-83-4 U U POL 0.50 PECONTF 75-94-3 U U POL 0.50 1+DICHLOROETHANE 75-84-3 U U POL 0.50 1+DICHLOROETHANE 75-84-3 U U POL 0.50 1+DICHLOROETHANE 75-84-3 U U POL 0.50 1+DICHLOROETHANE 75-94-3 U U POL 0.50 1+DICHLOROETHANE 75-94-3 U U POL 0.50 1+DICHLOROETHANE 75-94-3		1634-04-4	1.4		PQL	0.50		1634-04-4	2.6		PQL	0.50
CHLORMME INAME 74-87-3 U U POL 0.50 CHLORME INAME 74-87-3 L I POL 0.50 BRUDORDETTANE 74-80-3 U U POL 0.50 VINULCHLORMETTANE 74-80-3 U U POL 0.50 BRUDORDETTANE 74-80-3 U U POL 0.50 TRUNCHORDETTANE 74-80-3 U POL 0.50 TRUCHLOROCTETANE 75-80-4 U U POL 0.50 TRUNCHORDETTANE 75-90-2 2.1 POL 0.50 TRUNCHOROCTETANE 75-34-3 U V POL 0.50 TRUNCHOROCTETANE 75-34-3 U V POL 0.50 CIS-12-DICHLOROCTETANE 75-34-3 U V POL 0.50 CIS-12-DICHLOROCTETANE 75-36-3 U V POL 0.50 CIS-12-DICHLOROCTETANE 75-36-3 U V POL 0.50 CIS-12-DICHLOROCTETANE 77-35-5 U V POL 0.50 CIS-12-DICHLOROCTETANE		75-71-8	0	U	PQL	0.50		75-71-8	0	U	PQL	0.50
VINITURALORIDE 74-01-4 U D PCL D.S0 VINITURALORIDE 74-01-4 U PCL D.S0 VINITURALOR 74-01-4 U PCL D.S0 VINITURALOR 74-01-3 U PCL D.S0 VINITURALOR 74-01-3 U PCL D.S0 VINITURALOR 74-01-3 U PCL D.S0 VINITURALOR 75-00-3 U U PCL D.S0 VINITURALOR 75-00-3 U U PCL D.S0 VINITURALOR 75-00-3 U U PCL D.S0 VINITURALOR 75-00-2 VINITURALOR PCL D.S0 VINITURALOR 76-05-3 U PCL D.S0 VINITURALOR 76-05-3 U PCL D.S0 VINITURALOR PCL <td></td> <td>74-87-3</td> <td>U</td> <td>U</td> <td>PQL</td> <td>0.50</td> <td></td> <td>74-87-3</td> <td>2.1</td> <td></td> <td>PQL</td> <td>0.50</td>		74-87-3	U	U	PQL	0.50		74-87-3	2.1		PQL	0.50
DROMONE HAVE 74-33 U U PAL D33 BROMONE HAVE 74-33 U U PAL D33 D D D21 D33 D33 D D D21 D33 D33 D31 D33 D31 D31 D31 D31 D31 D31 D31 D31 <td></td> <td>75-01-4</td> <td>U</td> <td>U</td> <td>PQL</td> <td>0.50</td> <td></td> <td>75-01-4</td> <td>U</td> <td>U</td> <td>PQL</td> <td>0.50</td>		75-01-4	U	U	PQL	0.50		75-01-4	U	U	PQL	0.50
CHLORAGE HAME 75-00-3 U PAL Diso Diso	BROMOMETHANE	74-83-9	U	U	PQL	0.50		74-83-9	U	U	PQL	0.50
Internet Oreconstruction 74-99-4 U U Pole Disb Internet Oreconstruction 75-85-4 U U Pole Disb 1.1-DICHLOROETHENE 75-35-4 U U Pole Disb The		75-00-3	U	U	PQL	0.50		75-00-3	U	U	PQL	0.50
PREUN IP /6-13-1 U U Poll 0.50 PREUN IP /6-13-1 U U Poll 0.50 METHYLENE CHLORIDE 75-38-4 U Poll 0.50 METHYLENE CHLORIDE 75-38-2 2.1 Poll 0.50 NI-JOICHLOROETHANE 75-34-3 U Poll 0.50 CIB-12-DICHLOROETHANE 75-34-3 U Poll 0.50 CILOROFORM 67-66-3 U U Poll 0.50 CIHLOROETHANE 77-58-6 U U Poll 0.50 CIHLOROFORM 67-66-3 U U Poll 0.50 CHLOROFORM 67-66-3 U U Poll 0.50 CHLOROFORM 67-66-3 U U Poll 0.50 CHLOROFORM 67-63-3 U U Poll 0.50 CHLOROFORME 77-43-2 1.2 Poll 0.50 TACOHLOROFORPORA 77-87-5 U U Poll 0.50 TACOHLOROFORPORE 100-010-5 U Dol 0.50<		75-69-4	0	U	PQL	0.50		75-69-4	U	0	PQL	0.50
11-DICHORDE HENE 75-38-4 U U PQL 0.50 11-DICHLOROE HENE 75-38-4 U U PQL 0.50 11-DICHLOROETHANE 75-38-3 U U PQL 0.50 11-DICHLOROETHANE 75-34-3 U U PQL 0.50 051-2.DICHLOROETHANE 75-66-3 U U PQL 0.50 CHLOROETHANE 75-56-8 U U PQL 0.50 CARDON TETRACHLOROE 74-35-2 0.50 CHLOROETHANE 77-55-6 U U PQL 0.50 CARBON TETRACHLOROE 74-35-2 0.53 U U PQL 0.50 CARBON TETRACHLOROE 79-01-6 U V PQL 0.50 12-DICHLOROETHANE 77-45-2 U U PQL 0.50 12-DICHLOROETHANE 79-01-6 U VQL 0.50 12-DICHLOROENTHANE 79-01-6 U PQL 0.50 12-DICHLOROETHANE 78-87-5 U U PQL 0.50 12-DICHLORO		76-13-1	U	U	PQL	0.50		76-13-1	U	0	PQL	0.50
MEINTLENE CHLORIDE 75-34-3 U POL 0.50 MEINTLENE CHLORIDE 75-34-3 U POL 0.50 CIS-12-DICHLOROETHANE 175-34-3 U U POL 0.50 CIS-12-DICHLOROETHANE 17.63-43 U POL 0.50 CILOROFORM 67-66-3 U U POL 0.50 CILOROFORM 67-66-3 U U POL 0.50 CARBON TETRACHLORIDE 55-23-5 U U POL 0.50 CARBON TETRACHLORIDE 71-43-2 1.2 POL 0.50 BENZENE 71-43-2 0.63 POL 0.50 TRICHLOROETHANE 77-43-2 1.2 VPL 0.50 12-DICHLORORTHANE 78-01-6 U U POL 0.50 TRICHLOROETHANE 79-01-6 U VPL 0.50 TRICHLOROETH	1,1-DICHLOROETHENE	75-35-4	U	U	PQL	0.50	1,1-DICHLOROETHENE	75-35-4	U	U	PQL	0.50
1,1-DICHLOROE HANE 75:34-3 U U PQL 0.50 CS1-2,2-DICHLOROETHANE 75:34-3 U U PQL 0.50 CS1-2,2-DICHLOROETHANE 76:36-3 U U PQL 0.50 CRIDOROFORM 67:66-3 U V PQL 0.50 CARBON TETRACHLOROE 56:23-5 U V PQL 0.50 CARBON TETRACHLOROE 71:43-2 V PQL 0.50 BENZENE 71:43-2 0.01 PQL 0.50 12:DICHLOROETHANE 17:49-2 U PQL 0.50 12:DICHLOROFROPANE 78:47-5 U U PQL 0.50 12:DICHLOROPROPANE 78:47-5 U U PQL 0.50 12:DICHLOROPROPENE 10061:01-5 U U PQL 0.50 TALUENC 10:SICHLOROPROPENE 10:SICHLOROPROPENE 10:SICHLOROPROPENE 10:SICHLOROPROPENE 10:SICHLOROPROPEN 10:SICHLOROPROPEN 10:SICHLOROPROPEN 10:SICHLOROPROPEN 10:SICHLOROPROPEN 10:SICHLOROPROPEN 10:SICHLOROPROPEN 10:SICHLOROPROPEN 10:SICHLOROPENDEN 10:SICHLOROPROPEN <t< td=""><td>METHYLENE CHLORIDE</td><td>75-09-2</td><td>1.1</td><td></td><td>PQL</td><td>0.50</td><td>METHYLENE CHLORIDE</td><td>75-09-2</td><td>2.1</td><td></td><td>PQL</td><td>0.50</td></t<>	METHYLENE CHLORIDE	75-09-2	1.1		PQL	0.50	METHYLENE CHLORIDE	75-09-2	2.1		PQL	0.50
CIS-12-DICHLOROE 114-TR 136-59-2 U PQL 0.50 CIS-12-DICHLOROETHANE 136-59-2 U PQL 0.50 1,1,1-TRICH-LOROETHANE 71-55-6 U V PQL 0.50 CHLOROFORM 67-66-3 U V PQL 0.50 CARBON TETRACHLORDET 56-23-5 U V PQL 0.50 CARBON TETRACHLORDETHANE 71-43-2 1.2 PQL 0.50 J2-DICHLOROETHANE 71-43-2 0.2 V PQL 0.50 1.2-DICHLOROETHANE 71-43-2 1.2 PQL 0.50 12-DICHLOROPENPANE 79-01-6 U PQL 0.50 12-DICHLOROPROPENE 100-81-5 U PQL 0.50 12-DICHLOROPROPENE 106-89-3 9.9 PQL 0.50 TRANS-13-DICHLOROPROPENE 100-89-87 U V PQL 0.50 11.2-TRICHLOROETHANE 79-00-5 U V PQL 0.50 TRANS-13-DICHLOROPROPENE 100-41-4 1.3 PQL 0.50	1,1-DICHLOROETHANE	75-34-3	U	U	PQL	0.50	1,1-DICHLOROETHANE	75-34-3	U	U	PQL	0.50
CHLOROPORM 67-66-3 U POL 0.50 CHLOROPORM 7-65-6-3 U POL 0.50 CARBON TETRACHLORIDE 56-23-5 U V POL 0.50 1.1.7TRCHLORIDE 56-23-5 U V POL 0.50 CARBON TETRACHLORIDE 56-23-5 U V POL 0.50 EXERE 71-43-2 1.2 POL 0.50 L2.DICHLOROETHANE 17-06-2 U U POL 0.50 ISCHLOROPENANE 71-07-6-2 U U POL 0.50 DICHLOROPENDENE 10061-01-5 U U POL 0.50 TICHLOROPENANE 78-07-5 U U POL 0.50 CISL-13-DICHLOROPROPEN 10061-02-6 U U POL 0.50 TICLUROP COPROPEN 10061-02-6 U U POL 0.50 TIL2-TRICHLOROPEROPEN 100-14-4 4 U POL 0.50 TICLUROPENANE 73-05-5 U U POL 0.50	CIS-1,2-DICHLOROETHENE	156-59-2	U	U	PQL	0.50	CIS-1,2-DICHLOROETHENE	156-59-2	U	U	PQL	0.50
1,1,1-TRICHLOROETHANE 71-85-6 U U POL 0.50 1,1-TRICHLOROETHANE 71-85-6 U U POL 0.50 CARBON TERACHLORIDE 56-23-8 U U POL 0.50 CARBON TERACHLORIDE 56-23-8 U U POL 0.50 BENZENE 71-43-2 1.2 POL 0.50 12-01CHLOROETHANE 17-43-2 1.2 POL 0.50 TRICHLOROETHANE 79-01-6 U U POL 0.50 12-01CHLOROPROPANE 79-01-6 U U POL 0.50 L2/DICHLOROPROPANE 108-89-3 9.9 POL 0.50 TOLUENE 108-88-3 8.7 POL 0.50 TALNS-1.3-DICHLOROPROPEN 10061-01-5 U U POL 0.50 TALSHANS-1.3-DICHLOROPROPEN 100-10-50 U POL 0.50 TALANS-1.3-DICHLOROETHANE 79-00-5 U U POL 0.50 TTARCHLOROETHANE 79-00-5 U U POL 0.50 TALS-1.3-DICHLOROETHANE 127-184 U U POL 0.50 <	CHLOROFORM	67-66-3	U	U	PQL	0.50	CHLOROFORM	67-66-3	U	U	PQL	0.50
CARBON TETRACHLORIDE 56:23-5 U POL 0.50 CARBON TETRACHLORIDE 56:23-5 U POL 0.50 BENZENE 17:43-2 1.2 POL 0.50 BENZENE 71:43-2 1.2 POL 0.50 TICHLOROETHANE 17:06-2 U U POL 0.50 BENZENE 71:43-2 1.2 POL 0.50 TICHLOROETHANE 79:01-6 U U POL 0.50 TICHLOROPROPANE 78:01-6 U U POL 0.50 CIS1-3:DICHLOROPROPENE 10061-05 U U POL 0.50 TOLUENE 10061-05.0 U POL 0.50 TRANS-1:3:DICHLOROPROPENE 10061-05.0 U POL 0.50 TRANS-1:3:DICHLOROPROPENE 100-40.0 U POL 0.50 TRANS-1:3:DICHLOROPROPENE 100-40.0 TETRACHLOROETHANE 79:0-5 U POL 0.50 TRANS-1:3:DICHLOROPROPENE 100-40.0 TETRACHLOROETHANE 79:0-5 U POL <td< td=""><td>1,1,1-TRICHLOROETHANE</td><td>71-55-6</td><td>U</td><td>U</td><td>PQL</td><td>0.50</td><td>1,1,1-TRICHLOROETHANE</td><td>71-55-6</td><td>U</td><td>U</td><td>PQL</td><td>0.50</td></td<>	1,1,1-TRICHLOROETHANE	71-55-6	U	U	PQL	0.50	1,1,1-TRICHLOROETHANE	71-55-6	U	U	PQL	0.50
BENZENE 71-43-2 0.63 PQL 0.50 BENZENE 71-43-2 1.2 PQL 0.50 12-DICHLOROETHANE 107-06-2 U V PQL 0.50 12-DICHLOROETHANE 107-06-2 U V PQL 0.50 12-DICHLOROPROPANE 78-87-5 U V PQL 0.50 12-DICHLOROPROPANE 78-87-5 U V PQL 0.50 0.51 0.50 12-DICHLOROPROPANE 1068-83 8.7 V V 0.50 CIULINE 108-98-3 9.9 POL 0.50 TANS-1,3-DICHLOROPROPEN 10061-02-6 U V PQL 0.50 TARS-1,3-DICHLOROPROPEN 10061-14 10 U PQL 0.50 TARAS-1,3-DICHLOROPROPEN 100-41-4 1.3 PQL 0.50 TARS-1,3-DICHLOROFTHANE 129-90-5 U U PQL 0.50 TARAS-1,3-DICHLOROPROPEN 108-90-7 U PQL 0.50 THYLENZENE 100-41-5 U PQL 0.50 TAL	CARBON TETRACHLORIDE	56-23-5	U	U	PQL	0.50	CARBON TETRACHLORIDE	56-23-5	U	U	PQL	0.50
1,2-DICHLOROETHANE 107-06-2 U V PQL 0.50 1,2-DICHLOROETHANE 107-06-2 U V PQL 0.50 1,2-DICHLOROPROPANE 78-87-5 U V PQL 0.50 TRICHLOROPROPANE 78-87-5 U V PQL 0.50 0:S1-3-DICHLOROPROPENE 1086-10-5 U U PQL 0.50 TSI-3-DICHLOROPROPENE 1066-10-5 U V PQL 0.50 TRANS-1,3-DICHLOROPROPEN 108-88-3 9.9 V PQL 0.50 TSI-3-DICHLOROPROPEN 106-10-2-6 U V PQL 0.50 TI,2-TRICHLOROETHANE 79-00-5 U U PQL 0.50 TTRANS-1,3-DICHLOROPOPEN 108-88-3 8.7 V V PQL 0.50 TETRACHLOROETHENE 127-18-4 U V PQL 0.50 TTRANS-1,3-DICHOROPETHANE 127-18-4 U V PQL 0.50 TYLENE (MP) 1330-207 14 PQL 0.50 TYLENE (MP) 1330-207 4.4 PQL 0.50 TYLENE (MP) 1339-207	BENZENE	71-43-2	0.63		PQL	0.50	BENZENE	71-43-2	1.2		PQL	0.50
TRICHLOROETHENE 79-01-6 U U PQL 0.50 TRICHLOROPTINE 78-87-5 U U PQL 0.50 CIS-1.3-DICHLOROPROPENE 10081-01-5 U V PQL 0.50 CIS-1.3-DICHLOROPROPENE 10081-01-5 U V PQL 0.50 TANNS-1.3-DICHLOROPROPEN 10081-02-6 U V PQL 0.50 TAIXANS-1.3-DICHLOROPROPEN 10081-02-6 U V PQL 0.50 TANNS-1.3-DICHLOROPROPEN 10081-02-6 U V PQL 0.50 TRICHLOROETHANE 79-00-5 U V PQL 0.50 TETRACHLOROETHANE 127-18-4 U V PQL 0.50 CHLOROBEXENE 100-41-4 1.3 PQL 0.50 CHUCROBENZENE 100-42-5 U V PQL 0.50 XYLENE (0.00 95-47-6 1.3 PQL 0.50 STYRENE 100-42-5 U V PQL 0.50 1.1.2.2-TETRACHLOROETHANE 79-34-5 U	1,2-DICHLOROETHANE	107-06-2	U	U	PQL	0.50	1,2-DICHLOROETHANE	107-06-2	U	U	PQL	0.50
1,2-DICHLOROPROPANE 78-87-5 U U PQL 0.50 1,2-DICHLOROPROPENE 78-87-5 U U PQL 0.50 CIS1,3-DICHLOROPROPENE 1008-88-3 9.9 PQL 0.50 TOLUENC 1008-88-3 8.7 PQL 0.50 TRANS-1,3-DICHLOROPROPEN 1008-88-3 8.7 PQL 0.50 TAINS-1,3-DICHLOROPROPEN 1008-88-3 8.7 PQL 0.50 1,1,2-TRICHLOROETHANE 79-00-5 U PQL 0.50 TAINS-1,3-DICHLOROPROPANE 108-80-7 U PQL 0.50 CHLOROBENZENE 1009-41-4 4.0 V PQL 0.50 ETHRACHLOROETHENE 127-18-4 U VQL 0.50 STYLENE (MP) 1330-207 14 4.0 VQL 0.50 STYRENE 100-41-4 1.3 PQL 0.50 STYLENE (NP) 1330-207 1.4 VQL 0.50 STYRENE 100-42-5 0.50 PQL 0.50 STYLENE (O) 54-47-6 5.0 PQL<	TRICHLOROETHENE	79-01-6	U	U	PQL	0.50	TRICHLOROETHENE	79-01-6	U	U	PQL	0.50
CIS-1.3-DICHLOROPROPENE 10061-01-5 U PQL 0.50 CIS-1.3-DICHLOROPROPEN 10061-01-5 U PQL 0.50 TRANS-1.3-DICHLOROPROPEN 10061-02-6 U V PQL 0.50 TRANS-1.3-DICHLOROPROPEN 10061-02-6 U PQL 0.50 1,1.2-TRICHLOROPETHANE 79-00-5 U U PQL 0.50 TRANS-1.3-DICHLOROPETHANE 79-00-5 U U PQL 0.50 CHLOROBENZENE 108-90-7 U U PQL 0.50 CHLOROBENZENE 100-41-4 U PQL 0.50 CHUROBENZENE 100-41-4 4.0 PQL 0.50 THYLENZENE 100-41-5 U PQL 0.50 STYRENE 100-42-5 U PQL 0.50 XYLENE (M,P) 1330-20-7 4.4 PQL 0.50 STYRENE 100-42-5 U PQL 0.50 XYLENE (O) 95-47-6 1.3 PQL 0.50 1,1.2,2-TERACHLOROETHANE 79-34-5 U PQL	1,2-DICHLOROPROPANE	78-87-5	U	U	PQL	0.50	1,2-DICHLOROPROPANE	78-87-5	U	U	PQL	0.50
TOLUENE 108-88-3 9.9 PQL 0.50 TOLUENE 108-88-3 8.7 PQL 0.50 TRANS-13-DICHLOROPROPENT 100F1-02-6 U V PQL 0.50 TRANS-13-DICHLOROPROPENT 10061-02-6 U V PQL 0.50 TETRACHLOROETHANE 127-18-4 U U PQL 0.50 TETRACHLOROETHENE 127-18-4 U U PQL 0.50 CHLOROBENZENE 100-41-4 4.0 V PQL 0.50 TETRACHLOROETHENE 100-41-4 1.3 PQL 0.50 STYLENE (M,P) 133-02-7 16 PQL 0.50 STYLENE (M,P) 133-02-7 4.4 PQL 0.50 STYRENE 100-42-5 U V PQL 0.50 STYLENE (O) 95-47-6 1.3 PQL 0.50 1,1,2,2-TETRACHLOROETHANE 79-34-5 U V PQL 0.50 1.4-12/LCROBENZENE 541-73-1 U V PQL 0.50 1,2,2-TETRACHLOROBETAZENE 563-61	CIS-1,3-DICHLOROPROPENE	10061-01-5	U	U	PQL	0.50	CIS-1,3-DICHLOROPROPENE	10061-01-5	U	U	PQL	0.50
TRANS-13-DICHLOROPROPEN 10061-02-6 U U PQL 0.50 TRANS-13-DICHLOROPROPEN 10061-02-6 U U PQL 0.50 1.1.2-TRICHLOROETHANE 79-00-5 U U PQL 0.50 1.1.2-TRICHLOROETHANE 79-00-5 U U PQL 0.50 CHLOROBENZENE 108-90-7 U U PQL 0.50 CHLOROETHANE 100-414 1.3 PQL 0.50 CHUCROBENZENE 100-42-5 U U PQL 0.50 XYLENE (M,P) 1330-20-7 4.4 PQL 0.50 STYRENE 100-42-5 U U PQL 0.50 XYLENE (M,P) 1330-20-7 4.4 PQL 0.50 SYLENE (O) 95-47-6 D. U PQL 0.50 XYLENE (O) 95-47-6 1.3 PQL 0.50 1.4-DICHLOROBENZENE 106-46-7 U U PQL 0.50 1.2-DICHLOROBENZENE 106-46-7 U U PQL 0.50 1.2-DICHLOROBENZENE 10.50 </td <td>TOLUENE</td> <td>108-88-3</td> <td>9.9</td> <td></td> <td>PQL</td> <td>0.50</td> <td>TOLUENE</td> <td>108-88-3</td> <td>8.7</td> <td></td> <td>PQL</td> <td>0.50</td>	TOLUENE	108-88-3	9.9		PQL	0.50	TOLUENE	108-88-3	8.7		PQL	0.50
1,1,2-TRICHLOROETHANE 79-00-5 U U PQL 0.50 1,1,2-TRICHLOROETHANE 79-00-5 U U PQL 0.50 CHLOROBETHENE 108-90-7 U U PQL 0.50 CHLOROBENZENE 108-90-7 U U PQL 0.50 CHLOROBENZENE 100-41-4 4.0 PQL 0.50 CHLOROBENZENE 100-41-4 1.3 PQL 0.50 STYLENE (M,P) 1330-20-7 16 PQL 0.50 STYRENE 100-42-5 0.50 PQL 0.50 STYLENE (O) 95-47-6 5.0 V PQL 0.50 STYRENE 10-42-5 U PQL 0.50 1,1,2,2-TETRACHLOROETHANE 79-34-5 U U PQL 0.50 1,1,2,2-TETRACHLOROETHANE 79-34-5 U U PQL 0.50 1,2,4-TRICHLOROBENZENE 541-73-1 U U PQL 0.50 1,2,4-TRICHLOROBENZENE 10-46-7 U U PQL 0.50 1,2,4-TRICHLOROBENZENE 106-67-8 1.0 U PQL 0.50 1,2,4-TRICHLOROBEN	TRANS-1,3-DICHLOROPROPEN	10061-02-6	U	U	PQL	0.50	TRANS-1,3-DICHLOROPROPEN	10061-02-6	U	U	PQL	0.50
TETRACHLOROETHENE 127-18-4 U U PQL 0.50 TETRACHLOROETHENE 127-18-4 U U PQL 0.50 CHLOROBENZENE 100-41-4 4.0 PQL 0.50 CHLOROBENZENE 100-41-4 1.3 PQL 0.50 XYLENE (M,P) 1330-20-7 16 PQL 0.50 STYRENE 100-41-4 4.3 PQL 0.50 XYLENE (M,P) 1330-20-7 16 PQL 0.50 STYRENE 100-42-5 U PQL 0.50 XYLENE (O) 95-47-6 5.0 PQL 0.50 1,2-2-TETRACHLOROETHANE 79-34-5 U U PQL 0.50 1,3-DICHLOROBENZENE 106-46-7 U U PQL 0.50 1,2-DICHLOROBENZENE 106-46-7 U U PQL 0.50 1,2-4-TRICHLOROBENZENE 106-46-7 U U PQL 0.50 1,2-4-TRICHLOROBENZENE 106-46-7 U U PQL 0.50 1,2-4-TRICHLOROBENZENE 106-46-78 U U PQL 0.50 1,2-4-TRICHLOROBENZENE 106-80-8 <t< td=""><td>1,1,2-TRICHLOROETHANE</td><td>79-00-5</td><td>U</td><td>U</td><td>PQL</td><td>0.50</td><td>1,1,2-TRICHLOROETHANE</td><td>79-00-5</td><td>U</td><td>U</td><td>PQL</td><td>0.50</td></t<>	1,1,2-TRICHLOROETHANE	79-00-5	U	U	PQL	0.50	1,1,2-TRICHLOROETHANE	79-00-5	U	U	PQL	0.50
CHLOROBENZENE 108-90-7 U PQL 0.50 CHLOROBENZENE 108-90-7 U U PQL 0.50 CHLOROBENZENE 100-41-4 4.0 PQL 0.50 ETHYLBENZENE 100-41-4 1.3 PQL 0.50 XYLENE (M,P) 1330-20-7 16 PQL 0.50 XYLENE (N,P) 1330-20-7 4.4 PQL 0.50 XYLENE (O) 95-47-6 5.0 PQL 0.50 XYLENE (O) 95-47-6 1.3 U PQL 0.50 1,1,2,2-TETRACHLOROETHANE 79-34-5 U U PQL 0.50 1,1,2,2-TETRACHLOROETHANE 79-34-5 U U PQL 0.50 1,2-DICHLOROBENZENE 166-46-7 U U PQL 0.50 1,2-DICHLOROBENZENE 106-47-7 U U PQL 0.50 1,2-DICHLOROBENZENE 120-82-1 U U PQL 0.50 1,2-DICHLOROBENZENE 106-93-4 U U PQL 0.50 1,2-DICHLOROBUTADIENE <td>TETRACHLOROETHENE</td> <td>127-18-4</td> <td>U</td> <td>U</td> <td>PQL</td> <td>0.50</td> <td>TETRACHLOROETHENE</td> <td>127-18-4</td> <td>U</td> <td>U</td> <td>PQL</td> <td>0.50</td>	TETRACHLOROETHENE	127-18-4	U	U	PQL	0.50	TETRACHLOROETHENE	127-18-4	U	U	PQL	0.50
ETHYLBENZENE 100-41-4 4.0 PQL 0.50 ETHYLBENZENE 100-41-4 1.3 PQL 0.50 XYLENE (M,P) 1330-20-7 16 PQL 0.50 XYLENE (M,P) 1330-20-7 4.4 PQL 0.50 STYRENE 100-42-5 U U PQL 0.50 STYRENE 100-42-5 0.50 PQL 0.50 XYLENE (O) 95-47-6 5.0 PQL 0.50 XYLENE (O) 95-47-6 1.3 PQL 0.50 1,12,2-TETRACHLOROBENZENE 541-73-1 U PQL 0.50 1,3-DICHLOROBENZENE 541-73-1 U PQL 0.50 1,2-DICHLOROBENZENE 106-46-7 U U PQL 0.50 1,2-DICHLOROBENZENE 106-46-7 U U PQL 0.50 1,2-DICHLOROBENZENE 106-84-7 U U PQL 0.50 1,2-DICHLOROBENZENE 106-86-8 U U PQL 0.50 1,2-DICHLOROBENZENE 87-68-3 U U	CHLOROBENZENE	108-90-7	U	U	PQL	0.50	CHLOROBENZENE	108-90-7	U	U	PQL	0.50
XYLENE (M,P) 1330-20-7 16 PQL 0.50 XYLENE (M,P) 1330-20-7 4.4 PQL 0.50 STYRENE 100-42-5 U VQL 0.50 STYRENE 100-42-5 0.50 PQL 0.50 STYLENE (O) 95-47-6 5.0 PQL 0.50 XYLENE (O) 95-47-6 1.3 PQL 0.50 1,4.2)CHLOROBENZENE 541-73-1 U U PQL 0.50 1,4.2)CHLOROBENZENE 541-73-1 U U PQL 0.50 1,4-DICHLOROBENZENE 106-46-7 U U PQL 0.50 1,4.2)CHLOROBENZENE 106-46-7 U U PQL 0.50 1,2-DICHLOROBENZENE 95-50-1 U U PQL 0.50 1,2.4 0.64-7 U U PQL 0.50 1,2-A-TRINCHLOROBENZENE 196-56-1 U U PQL 0.50 1,2.4 0.64-7 U U PQL 0.50 1,2-4-TRINETHYLBENZENE 106-86-7 U U PQL 0.50 1,2.4 0.50 1,2.4 0.650	ETHYLBENZENE	100-41-4	4.0		PQL	0.50	ETHYLBENZENE	100-41-4	1.3		PQL	0.50
STYRENE 100-42-5 U U PQL 0.50 STYRENE 100-42-5 0.50 PQL 0.50 XYLENE (O) 95-47-6 5.0 PQL 0.50 XYLENE (O) 95-47-6 1.3 PQL 0.50 XYLENE (O) 95-47-6 1.3 U PQL 0.50 XYLENE (O) 95-47-6 1.3 U PQL 0.50 1,1,2.2-TETRACHLOROETHAME 79-34-5 U U PQL 0.50 1,3-DICHLOROBENZENE 541-73-1 U U PQL 0.50 1,2-DICHLOROBENZENE 106-46-7 U U PQL 0.50 1,2-DICHLOROBENZENE 106-46-7 U U PQL 0.50 1,2-DICHLOROBENZENE 120-82-1 U U PQL 0.50 1,2-LTRINCHOROBENZENE 120-82-1 U PQL 0.50 1,3-STRIMETHYLBENZENE 108-67-8 U U PQL 0.50 1,2-LTRINCHOROBENZENE 10-6-83- U U PQL 0.50 1,2-4-TRIMETHYLBENZENE 108-67-8 1.8 PQL 0.50 1,2-DICHLOROTETRAFLUOROE	XYLENE (M,P)	1330-20-7	16		PQL	0.50	XYLENE (M,P)	1330-20-7	4.4		PQL	0.50
XYLENE (0) 95-47-6 5.0 POL 0.50 XYLENE (0) 95-47-6 1.3 POL 0.50 1,1,2,2-TETRACHLOROETHANE 79-34-5 U U PQL 0.50 1,1,2,2-TETRACHLOROETHANE 79-34-5 U U PQL 0.50 1,3-DICHLOROBENZENE 541-73-1 U U PQL 0.50 1,4-DICHLOROBENZENE 541-73-1 U U PQL 0.50 1,4-DICHLOROBENZENE 106-46-7 U U PQL 0.50 1,4-DICHLOROBENZENE 106-46-7 U U PQL 0.50 1,2-4-TRICHLOROBENZENE 106-46-7 U U PQL 0.50 1,2-DICHLOROBENZENE 120-82-1 U U PQL 0.50 1,2-4-TRICHLOROBENZENE 107-84-78 1.8 PQL 0.50 1,2-LONCHLOROBENZENE 120-82-1 U U PQL 0.50 1,3-5-TRIMETHYLBENZENE 107-84-8 1.8 PQL 0.50 1,2-DICHLOROBENZENE 120-867-8 U U PQL 0.50 1,2-DICHLOROBENZENE 106-90-0 U U <td< td=""><td>STYRENE</td><td>100-42-5</td><td>U</td><td>U</td><td>PQL</td><td>0.50</td><td>STYRENE</td><td>100-42-5</td><td>0.50</td><td></td><td>PQL</td><td>0.50</td></td<>	STYRENE	100-42-5	U	U	PQL	0.50	STYRENE	100-42-5	0.50		PQL	0.50
1,1,2,2-TETRACHLOROCETHANE 79-34-5 U U PQL 0.50 1,1,2,2-TETRACHLOROETHANE 79-34-5 U U PQL 0.50 1,3-DICHLOROBENZENE 541-73-1 U U PQL 0.50 1,3-DICHLOROBENZENE 541-73-1 U U PQL 0.50 1,4-DICHLOROBENZENE 95-50-1 U U PQL 0.50 1,2-DICHLOROBENZENE 120-82-1 U PQL 0.50 1,2,4-TRICHLOROBENZENE 120-82-1 U U PQL 0.50 1,2-LATRICHLOROBENZENE 120-82-1 U PQL 0.50 1,3,5-TRIMETHYLBENZENE 108-67-8 U U PQL 0.50 1,3-5-TRIMETHYLBENZENE 108-67-8 U U PQL 0.50 1,2-DIRMONDETHANE 106-87-6 U U PQL 0.50 1,2-LATRIMETHYLBENZENE 108-67-8 U U PQL 0.50 1,2-DIBROMOETHANE 106-93-4 U U PQL 0.50 1,2-DIBROMOETHANE 106-93-4 U U PQL 0.50 1,3-BUTADIENE 106-93-0	XYLENE (O)	95-47-6	5.0		PQL	0.50	XYLENE (O)	95-47-6	1.3		PQL	0.50
1,3-DICHLOROBENZENE 541-73-1 U U PQL 0.50 1,3-DICHLOROBENZENE 541-73-1 U U PQL 0.50 1,4-DICHLOROBENZENE 106-46-7 U U PQL 0.50 1,4-DICHLOROBENZENE 106-46-7 U U PQL 0.50 1,2-DICHLOROBENZENE 120-82-1 U U PQL 0.50 1,2-4-TRICHLOROBENZENE 120-82-1 U U PQL 0.50 1,2,4-TRICHLOROBENZENE 108-67-8 U U PQL 0.50 1,2,4-TRICHLOROBENZENE 120-82-1 U U PQL 0.50 1,2,4-TRIMETHYLBENZENE 95-63-6 5.5 PQL 0.50 1,2-DICHLOROTETRAFLUOROE 76-14-2 U U PQL 0.50 1,2-DIBROMOETHANE 106-93-4 U U PQL 0.50 1,2-DIGHLOROTETRAFLUOROE 76-14-2 U U PQL 0.50 1,2-DIBROMOETHANE 106-93-4 U U PQL 0.50 1,2-DIBROMOETHANE 106-93-0 U PQL 0.50 1,3-BUTADIENE 106-93-4	1,1,2,2-TETRACHLOROETHANE	79-34-5	U	U	PQL	0.50	1,1,2,2-TETRACHLOROETHANE	79-34-5	U	U	PQL	0.50
1,4-DICHLOROBENZENE 106-46-7 U U PQL 0.50 1,4-DICHLOROBENZENE 106-46-7 U U PQL 0.50 1,2-DICHLOROBENZENE 95-50-1 U U PQL 0.50 1,2-DICHLOROBENZENE 95-50-1 U U PQL 0.50 1,2,4-TRICHLOROBENZENE 120-82-1 U U PQL 0.50 1,2,4-TRICHLOROBENZENE 120-82-1 U U PQL 0.50 1,2,4-TRICHLOROBENZENE 108-67-8 U U PQL 0.50 1,3,5-TRIMETHYLBENZENE 108-67-8 U V PQL 0.50 1,2-LOCHLOROTETRAFLUOROE 76-14-2 U VQL 0.50 1,2-4-TRIMETHYLBENZENE 95-63-6 1.2 PQL 0.50 1,2-DICHLOROTETRAFLUOROE 76-14-2 U U PQL 0.50 1,2-DICHLOROTETRAFLUOROE 76-14-2 U PQL 0.50 1,2-DICHLOROTETRAFLUOROE 76-14-2 U U PQL 0.50 1,2-DICHLOROTETRAFLUOROE 76-14-2 U PQL 0.50 1,2-DICHLOROTETRAFLUOROE 76-14-2 U <td>1,3-DICHLOROBENZENE</td> <td>541-73-1</td> <td>U</td> <td>U</td> <td>PQL</td> <td>0.50</td> <td>1,3-DICHLOROBENZENE</td> <td>541-73-1</td> <td>U</td> <td>U</td> <td>PQL</td> <td>0.50</td>	1,3-DICHLOROBENZENE	541-73-1	U	U	PQL	0.50	1,3-DICHLOROBENZENE	541-73-1	U	U	PQL	0.50
1,2-DICHLOROBENZENE 95-50-1 U U PQL 0.50 1,2-DICHLOROBENZENE 95-50-1 U U PQL 0.50 1,2,4-TRICHLOROBENZENE 120.42-1 U U PQL 0.50 1,2,4-TRICHLOROBENZENE 120.42-1 U U PQL 0.50 HEXACHLOROBUTADIENE 87-68-3 U U PQL 0.50 1,2,4-TRICHLOROBENZENE 120.62-1 U U PQL 0.50 1,3,5-TRIMETHYLBENZENE 108-67-8 1.8 PQL 0.50 1,2,4-TRIMETHYLBENZENE 95-63-6 1.2 PQL 0.50 1,2-DICHLOROTETRAFLUOROE 76-14-2 U U PQL 0.50 1,2-DIBROMOETHANE 106-93-4 U U PQL 0.50 1,2-DIBROMOETHANE 106-99-0 U U PQL 0.50 1,2-DIBROMOETHANE 106-93-4 U U PQL 0.50 1,3-BUTADIENE 106-99-0 U U PQL 0.50 CARBON DISULFIDE 75-15-0 U U PQL 0.50 CYCLOHEXANE 110-82-7 U <	1,4-DICHLOROBENZENE	106-46-7	U	U	PQL	0.50	1,4-DICHLOROBENZENE	106-46-7	U	U	PQL	0.50
1,2,4-TRICHLOROBENZENE 120-82-1 U U PQL 0.50 1,2,4-TRICHLOROBENZENE 120-82-1 U U PQL 0.50 HEXACHLOROBUTADIENE 87-68-3 U U PQL 0.50 HEXACHLOROBUTADIENE 87-68-3 U U PQL 0.50 1,2,4-TRIMETHYLBENZENE 108-67-8 1.8 PQL 0.50 1,2,4-TRIMETHYLBENZENE 108-67-8 U U PQL 0.50 1,2,4-TRIMETHYLBENZENE 95-63-6 5.5 PQL 0.50 1,2,4-TRIMETHYLBENZENE 95-63-6 1.2 PQL 0.50 1,2-DICHLOROTETRAFLUOROE 76-14-2 U U PQL 0.50 1,2-DIBROMOETHANE 106-93-4 U U PQL 0.50 1,2-DIBROMOETHANE 106-93-4 U U PQL 0.50 1,2-DIBROMOETHANE 106-93-4 U U PQL 0.50 1,3-BUTADIENE 106-93-4 U U PQL 0.50 CARBON DISULFIDE 75-15-0 U U PQL 0.50 N-HEPTANE 110-82-7 U U	1,2-DICHLOROBENZENE	95-50-1	U	U	PQL	0.50	1,2-DICHLOROBENZENE	95-50-1	U	U	PQL	0.50
HEXACHLOROBUTADIENE 87-68-3 U V PQL 0.50 HEXACHLOROBUTADIENE 87-68-3 U U PQL 0.50 1,3,5-TRIMETHYLBENZENE 198-67-8 1.8 PQL 0.50 1,3,5-TRIMETHYLBENZENE 108-67-8 U U PQL 0.50 1,2,4-TRIMETHYLBENZENE 95-63-6 5.5 PQL 0.50 1,2,4-TRIMETHYLBENZENE 95-63-6 1.2 PQL 0.50 1,2-DICHLOROTETRAFLUOROE 76-14-2 U PQL 0.50 1,2-DIBROMOETHANE 106-93-4 U PQL 0.50 1,2-DIBROMOETHANE 106-93-4 U U PQL 0.50 1,2-DIBROMOETHANE 106-93-4 U PQL 0.50 1,3-BUTADIENE 106-93-4 U U PQL 0.50 1,2-DIBROMOETHANE 106-93-4 U PQL 0.50 CYCLOHEXANE 110-89-7 U U PQL 0.50 CARBON DISULFIDE 75-15-0 U U PQL 0.50 N+HEYANE 110-82-7 U U PQL 0.50 NHERTANE 110-82-7	1,2,4-TRICHLOROBENZENE	120-82-1	U	U	PQL	0.50	1,2,4-TRICHLOROBENZENE	120-82-1	U	U	PQL	0.50
1,3,5-TRIMETHYLBENZENE 108-67-8 1.8 PQL 0.50 1,3,5-TRIMETHYLBENZENE 108-67-8 U U PQL 0.50 1,2,4-TRIMETHYLBENZENE 95-63-6 5.5 PQL 0.50 1,2,4-TRIMETHYLBENZENE 95-63-6 1.2 PQL 0.50 1,2-DICHLOROTETRAFLUOROE 76-14-2 U U PQL 0.50 1,2-DICHLOROTETRAFLUOROE 76-14-2 U U PQL 0.50 1,2-DIBROMOETHANE 106-93-4 U U PQL 0.50 1,2-DICHLOROTETRAFLUOROE 76-14-2 U U PQL 0.50 1,3-BUTADIENE 106-93-4 U U PQL 0.50 1,3-BUTADIENE 106-93-4 U U PQL 0.50 CARBON DISULFIDE 75-15-0 U U PQL 0.50 CARBON DISULFIDE 75-15-0 U U PQL 0.50 CYCLOHEXANE 110-82-7 U U PQL 0.50 CYCLOHEXANE 110-82-7 U U PQL 0.50 N-HEPTANE 142-82-5 1.6 PQL 0.50 <td>HEXACHLOROBUTADIENE</td> <td>87-68-3</td> <td>U</td> <td>U</td> <td>PQL</td> <td>0.50</td> <td>HEXACHLOROBUTADIENE</td> <td>87-68-3</td> <td>U</td> <td>U</td> <td>PQL</td> <td>0.50</td>	HEXACHLOROBUTADIENE	87-68-3	U	U	PQL	0.50	HEXACHLOROBUTADIENE	87-68-3	U	U	PQL	0.50
1,2,4-TRIMETHYLBENZENE 95-63-6 5.5 PQL 0.50 1,2,4-TRIMETHYLBENZENE 95-63-6 1.2 PQL 0.50 1,2-DICHLOROTETRAFLUOROE 76-14-2 U U PQL 0.50 1,2-DICHLOROTETRAFLUOROE 76-14-2 U U PQL 0.50 1,2-DIBROMOETHANE 106-93-4 U U PQL 0.50 1,2-DIBROMOETHANE 106-93-4 U U PQL 0.50 1,3-BUTADIENE 106-99-0 U U PQL 0.50 1,3-BUTADIENE 106-99-0 0.94 PQL 0.50 CARBON DISULFIDE 75-15-0 U U PQL 0.50 CARBON DISULFIDE 75-15-0 U U PQL 0.50 CYCLOHEXANE 110-82-7 U U PQL 0.50 CYCLOHEXANE 110-82-7 U U PQL 0.50 N-HEPTANE 142-82-5 1.6 PQL 0.50 DIBROMOCHLOROMETHANE 124-48-1 U U PQL 0.50 N-HEXANE 110-54-3 0.51 PQL 0.50 BROMOFORM <t< td=""><td>1,3,5-TRIMETHYLBENZENE</td><td>108-67-8</td><td>1.8</td><td></td><td>PQL</td><td>0.50</td><td>1,3,5-TRIMETHYLBENZENE</td><td>108-67-8</td><td>U</td><td>U</td><td>PQL</td><td>0.50</td></t<>	1,3,5-TRIMETHYLBENZENE	108-67-8	1.8		PQL	0.50	1,3,5-TRIMETHYLBENZENE	108-67-8	U	U	PQL	0.50
1,2-DICHLOROTETRAFLUOROE 76-14-2 U U PQL 0.50 1,2-DICHLOROTETRAFLUOROE 76-14-2 U U PQL 0.50 1,2-DIBROMOETHANE 106-93-4 U U PQL 0.50 1,2-DIBROMOETHANE 106-93-4 U U PQL 0.50 1,3-BUTADIENE 106-99-0 U U PQL 0.50 1,3-BUTADIENE 106-99-0 0.94 PQL 0.50 CARBON DISULFIDE 75-15-0 U U PQL 0.50 CARBON DISULFIDE 75-15-0 U PQL 0.50 CYCLOHEXANE 110-82-7 U V PQL 0.50 CYCLOHEXANE 110-82-7 U V PQL 0.50 N-HEPTANE 142-82-5 1.6 PQL 0.50 N-HEPTANE 142-82-5 0.57 PQL 0.50 DIBROMOCHLOROMETHANE 124-48-1 U PQL 0.50 DIBROMOCHLOROMETHANE 12-448-1 U PQL 0.50 N-HEXANE 110-54-3 0.51 PQL 0.50 N-HEXANE 110-54-3 0.68 PQL	1,2,4-TRIMETHYLBENZENE	95-63-6	5.5		PQL	0.50	1,2,4-TRIMETHYLBENZENE	95-63-6	1.2		PQL	0.50
1,2-DIBROMOETHANE 106-93-4 U U PQL 0.50 1,2-DIBROMOETHANE 106-93-4 U V PQL 0.50 1,3-BUTADIENE 106-99-0 U U PQL 0.50 1,3-BUTADIENE 106-99-0 0.94 PQL 0.50 CARBON DISULFIDE 75-15-0 U U PQL 0.50 CARBON DISULFIDE 75-15-0 U V PQL 0.50 CYCLOHEXANE 110-82-7 U U PQL 0.50 CYCLOHEXANE 110-82-7 U V PQL 0.50 N-HEPTANE 142-82-5 1.6 PQL 0.50 N-HEPTANE 142-82-5 0.57 PQL 0.50 DIBROMOCHLOROMETHANE 124-48-1 U U PQL 0.50 DIBROMOCHLOROMETHANE 124-48-1 U V PQL 0.50 N-HEXANE 110-54-3 0.51 PQL 0.50 DIBROMOCHLOROMETHANE 124-48-1 U V PQL 0.50 BROMOFORM 75-25-2 U U PQL 0.50 BROMOFORM 75-27-4	1,2-DICHLOROTETRAFLUOROE	76-14-2	U	U	PQL	0.50	1,2-DICHLOROTETRAFLUOROE	76-14-2	U	U	PQL	0.50
1,3-BUTADIENE 106-99-0 U U PQL 0.50 1,3-BUTADIENE 106-99-0 0.94 PQL 0.50 CARBON DISULFIDE 75-15-0 U U PQL 0.50 CARBON DISULFIDE 75-15-0 U U PQL 0.50 CYCLOHEXANE 110-82-7 U U PQL 0.50 CYCLOHEXANE 110-82-7 U U PQL 0.50 N-HEPTANE 142-82-5 1.6 PQL 0.50 CYCLOHEXANE 142-82-5 0.57 PQL 0.50 DIBROMOCHLOROMETHANE 124-48-1 U U PQL 0.50 N-HEPTANE 142-82-5 0.68 PQL 0.50 N-HEXANE 110-54-3 0.51 PQL 0.50 N-HEXANE 110-54-3 0.68 PQL 0.50 BROMOFORM 75-25-2 U U PQL 0.50 BROMOFORM 75-25-2 U U PQL 0.50 BROMOFORM 75-27-4 U U PQL 0.50 TRANS-1,2-DICHLOROETHENE 156-60-5 U U PQL <td>1,2-DIBROMOETHANE</td> <td>106-93-4</td> <td>U</td> <td>U</td> <td>PQL</td> <td>0.50</td> <td>1,2-DIBROMOETHANE</td> <td>106-93-4</td> <td>U</td> <td>U</td> <td>PQL</td> <td>0.50</td>	1,2-DIBROMOETHANE	106-93-4	U	U	PQL	0.50	1,2-DIBROMOETHANE	106-93-4	U	U	PQL	0.50
CARBON DISULFIDE 75-15-0 U U PQL 0.50 CARBON DISULFIDE 75-15-0 U U PQL 0.50 CYCLOHEXANE 110-82-7 U U PQL 0.50 CYCLOHEXANE 110-82-7 U U PQL 0.50 N-HEPTANE 142-82-5 1.6 PQL 0.50 N-HEPTANE 142-82-5 0.57 PQL 0.50 DIBROMOCHLOROMETHANE 124-48-1 U U PQL 0.50 DIBROMOCHLOROMETHANE 124-48-1 U U PQL 0.50 N-HEXANE 110-54-3 0.51 PQL 0.50 DIBROMOCHLOROMETHANE 124-48-1 U U PQL 0.50 BROMOFORM 75-25-2 U U PQL 0.50 BROMOFORM 75-25-2 U U PQL 0.50 BROMODICHLOROMETHANE 75-27-4 U U PQL 0.50 BROMODICHLOROMETHANE 75-27-4 U U PQL 0.50 TRANS-1,2-DICHLOROETHENE 156-60-5 U U PQL 0.50 TRANS-1,2-DICH	1,3-BUTADIENE	106-99-0	U	U	PQL	0.50	1,3-BUTADIENE	106-99-0	0.94		PQL	0.50
CYCLOHEXANE 110-82-7 U U PQL 0.50 CYCLOHEXANE 110-82-7 U U PQL 0.50 N-HEPTANE 142-82-5 1.6 PQL 0.50 N-HEPTANE 142-82-5 0.57 PQL 0.50 DIBROMOCHLOROMETHANE 124-48-1 U U PQL 0.50 DIBROMOCHLOROMETHANE 124-48-1 U U PQL 0.50 N-HEXANE 110-54-3 0.51 PQL 0.50 DIBROMOCHLOROMETHANE 124-48-1 U U PQL 0.50 BROMOFORM 75-25-2 U U PQL 0.50 BROMOFORM 75-25-2 U U PQL 0.50 BROMODICHLOROMETHANE 75-27-4 U U PQL 0.50 BROMODICHLOROMETHANE 75-27-4 U U PQL 0.50 BROMODICHLOROMETHANE 75-27-4 U U PQL 0.50 TRANS-1,2-DICHLOROETHENE 156-60-5 U U PQL 0.50 4-ETHYLTOLUENE 622-96-8 5.2 PQL 0.50 3-CHLOROPROPENE	CARBON DISULFIDE	75-15-0	U	U	PQL	0.50	CARBON DISULFIDE	75-15-0	U	U	PQL	0.50
N-HEPTANE 142-82-5 1.6 PQL 0.50 N-HEPTANE 142-82-5 0.57 PQL 0.50 DIBROMOCHLOROMETHANE 124-48-1 U U PQL 0.50 DIBROMOCHLOROMETHANE 124-48-1 U U PQL 0.50 N-HEXANE 110-54-3 0.51 PQL 0.50 N-HEXANE 110-54-3 0.68 PQL 0.50 BROMOFORM 75-25-2 U U PQL 0.50 BROMOFORM 75-25-2 U U PQL 0.50 BROMODICHLOROMETHANE 75-27-4 U U PQL 0.50 BROMODICHLOROMETHANE 75-27-4 U U PQL 0.50 BROMODICHLOROMETHANE 75-27-4 U U PQL 0.50 BROMODICHLOROMETHANE 75-27-4 U U PQL 0.50 TRANS-1,2-DICHLOROETHENE 156-60-5 U U PQL 0.50 TRANS-1,2-DICHLOROETHENE 156-60-5 U U PQL 0.50 4-ETHYLTOLUENE 622-96-8 5.2 PQL 0.50 3-CHLOROPROPENE	CYCLOHEXANE	110-82-7	Ū	Ū	PQL	0.50	CYCLOHEXANE	110-82-7	Ū	Ū	PQL	0.50
DIBROMOCHLOROMETHANE 124-48-1 U U PQL 0.50 DIBROMOCHLOROMETHANE 124-48-1 U U PQL 0.50 N-HEXANE 110-54-3 0.51 PQL 0.50 N-HEXANE 110-54-3 0.68 PQL 0.50 BROMOFORM 75-25-2 U U PQL 0.50 BROMOFORM 75-25-2 U U PQL 0.50 BROMODICHLOROMETHANE 75-27-4 U U PQL 0.50 BROMODICHLOROMETHANE 75-27-4 U U PQL 0.50 TRANS-1,2-DICHLOROETHENE 156-60-5 U U PQL 0.50 TRANS-1,2-DICHLOROETHENE 156-60-5 U U PQL 0.50 4-ETHYLTOLUENE 622-96-8 5.2 PQL 0.50 4-ETHYLTOLUENE 622-96-8 1.1 PQL 0.50 3-CHLOROPROPENE 107-05-1 U U PQL 0.50 3-CHLOROPROPENE 107-05-1 U U PQL 0.50 2,2,4-TRIMETHYLPENTANE 540-84-1 1.1 PQL 0.50 2,2,4-TRIMETHYLPENTANE	N-HEPTANE	142-82-5	1.6		PQL	0.50	N-HEPTANE	142-82-5	0.57		PQL	0.50
N-HEXANE 110-54-3 0.51 PQL 0.50 N-HEXANE 110-54-3 0.68 PQL 0.50 BROMOFORM 75-25-2 U U PQL 0.50 BROMOFORM 75-25-2 U U PQL 0.50 BROMODICHLOROMETHANE 75-27-4 U U PQL 0.50 BROMODICHLOROMETHANE 75-27-4 U U PQL 0.50 TRANS-1,2-DICHLOROETHENE 156-60-5 U U PQL 0.50 TRANS-1,2-DICHLOROETHENE 156-60-5 U U PQL 0.50 4-ETHYLTOLUENE 622-96-8 5.2 PQL 0.50 4-ETHYLTOLUENE 622-96-8 1.1 PQL 0.50 3-CHLOROPROPENE 107-05-1 U U PQL 0.50 3-CHLOROPROPENE 107-05-1 U U PQL 0.50 2,2,4-TRIMETHYLPENTANE 540-84-1 1.1 PQL 0.50 2,2,4-TRIMETHYLPENTANE 540-84-1 2.3 PQL 0.50 BROMOETHENE 593-60-2 U U PQL 0.50 2,CHLOROTOLUENE 593-60-2	DIBROMOCHLOROMETHANE	124-48-1	U	U	PQL	0.50	DIBROMOCHLOROMETHANE	124-48-1	U	U	PQL	0.50
BROMOFORM 75-25-2 U U PQL 0.50 BROMOFORM 75-25-2 U U PQL 0.50 BROMODICHLOROMETHANE 75-27-4 U U PQL 0.50 BROMODICHLOROMETHANE 75-27-4 U U PQL 0.50 TRANS-1,2-DICHLOROETHENE 156-60-5 U U PQL 0.50 TRANS-1,2-DICHLOROETHENE 156-60-5 U U PQL 0.50 4-ETHYLTOLUENE 622-96-8 5.2 PQL 0.50 4-ETHYLTOLUENE 622-96-8 1.1 PQL 0.50 3-CHLOROPROPENE 107-05-1 U U PQL 0.50 3-CHLOROPROPENE 107-05-1 U U PQL 0.50 2,2,4-TRIMETHYLPENTANE 540-84-1 1.1 PQL 0.50 2,2,4-TRIMETHYLPENTANE 540-84-1 2.3 PQL 0.50 BROMOETHENE 593-60-2 U U PQL 0.50 BROMOETHENE 593-60-2 U U PQL 0.50	N-HEXANE	110-54-3	0.51	-	PQL	0.50	N-HEXANE	110-54-3	0.68	-	PQL	0.50
BROMODICHLOROMETHANE 75-27-4 U U PQL 0.50 BROMODICHLOROMETHANE 75-27-4 U U PQL 0.50 TRANS-1,2-DICHLOROETHENE 156-60-5 U U PQL 0.50 TRANS-1,2-DICHLOROETHENE 156-60-5 U U PQL 0.50 4-ETHYLTOLUENE 622-96-8 5.2 PQL 0.50 4-ETHYLTOLUENE 622-96-8 1.1 PQL 0.50 3-CHLOROPROPENE 107-05-1 U U PQL 0.50 3-CHLOROPROPENE 107-05-1 U U PQL 0.50 2,2,4-TRIMETHYLPENTANE 540-84-1 1.1 PQL 0.50 2,2,4-TRIMETHYLPENTANE 540-84-1 2.3 PQL 0.50 BROMOETHENE 593-60-2 U U PQL 0.50 BROMOETHENE 593-60-2 U PQL 0.50 2-CHLOROTOLUENE 95-49-8 U U PQL 0.50 2-CHLOROTOLUENE 95-49-8 U PQL 0.50	BROMOFORM	75-25-2	U	U	PQI	0.50	BROMOFORM	75-25-2	U	U	PQI	0.50
TRANS-1,2-DICHLOROETHENE 156-60-5 U V PQL 0.50 TRANS-1,2-DICHLOROETHENE 156-60-5 U V PQL 0.50 4-ETHYLTOLUENE 622-96-8 5.2 PQL 0.50 4-ETHYLTOLUENE 622-96-8 1.1 PQL 0.50 3-CHLOROPROPENE 107-05-1 U U PQL 0.50 3-CHLOROPROPENE 107-05-1 U U PQL 0.50 2,2,4-TRIMETHYLPENTANE 540-84-1 1.1 PQL 0.50 2,2,4-TRIMETHYLPENTANE 540-84-1 2.3 PQL 0.50 BROMOETHENE 593-60-2 U U PQL 0.50 BROMOETHENE 593-60-2 U U PQL 0.50 2-CHLOROTOLUENE 95-49-8 U U PQL 0.50 2-CHLOROTOLUENE 95-49-8 U V PQL 0.50	BROMODICHLOROMETHANF	75-27-4	Ŭ	Ū	POL	0.50	BROMODICHLOROMETHANF	75-27-4	Ũ	Ũ	POL	0.50
4-ETHYLTOLUENE 622-96-8 5.2 PQL 0.50 4-ETHYLTOLUENE 622-96-8 1.1 PQL 0.50 3-CHLOROPROPENE 107-05-1 U U PQL 0.50 3-CHLOROPROPENE 107-05-1 U U PQL 0.50 2,2,4-TRIMETHYLPENTANE 540-84-1 1.1 PQL 0.50 2,2,4-TRIMETHYLPENTANE 540-84-1 2.3 PQL 0.50 BROMOETHENE 593-60-2 U U PQL 0.50 BROMOETHENE 593-60-2 U U PQL 0.50 2-CHLOROTOLUENE 95-49-8 U U PQL 0.50 2-CHLOROTOLUENE 95-49-8 U U PQL 0.50	TRANS-1.2-DICHI OROFTHENE	156-60-5	i i	Ű	POI	0.50	TRANS-1.2-DICHI OROFTHENE	156-60-5	i i	Ű	POI	0.50
3-CHLOROPROPENE 107-05-1 U V PQL 0.50 3-CHLOROPROPENE 107-05-1 U V PQL 0.50 2,2,4-TRIMETHYLPENTANE 540-84-1 1.1 PQL 0.50 2,2,4-TRIMETHYLPENTANE 540-84-1 2.3 PQL 0.50 BROMOETHENE 593-60-2 U U PQL 0.50 BROMOETHENE 593-60-2 U V PQL 0.50 2-CHLOROTOLUENE 95-49-8 U U PQL 0.50 2-CHLOROTOLUENE 95-49-8 U V PQL 0.50	4-FTHYI TOI UENE	622-96-8	52	5	POI	0.50	4-ETHYI TOI UENE	622-96-8	11	5	POI	0.50
2,2,4-TRIMETHYLPENTANE 540-84-1 1.1 PQL 0.50 2,2,4-TRIMETHYLPENTANE 540-84-1 2.3 PQL 0.50 BROMOETHENE 593-60-2 U U PQL 0.50 BROMOETHENE 593-60-2 U U PQL 0.50 0.50 2-CHLOROTOLUENE 95-49-8 U U PQL 0.50	3-CHLOROPROPENE	107-05-1	ι. <u> </u>	U	POI	0.50	3-CHLOROPROPENE	107-05-1	U	U	POI	0.50
BROMOETHENE 593-60-2 U U PQL 0.50 BROMOETHENE 593-60-2 U U PQL 0.50 2.01 CHIANE 593-60-2	2 2 4-TRIMETHYI PENTANE	540-84-1	11	5		0.50	2 2 4-TRIMETHYI PENTANE	540-84-1	23	5		0.50
2-CHLOROTOLUENE 95-49-8 U U PQL 0.50 2-CHLOROTOLUENE 95-49-8 U U PQL 0.50	BROMOETHENF	593-60-2	 U	U	POI	0.50	BROMOETHENF	593-60-2	11	U	POI	0.50
	2-CHLOROTOLUENE	95-49-8	Ŭ	Ū	PQL	0.50	2-CHLOROTOLUENE	95-49-8	Ŭ	Ū	PQL	0.50

Table 3-10 Results of Sub-Slab and Indoor Air Testing October 2002 Stafford Site

		18 Pai	k First Flo	or		Sample ID	22 Park Crawlspace				
		10	/24/2002			Sample Date		10	/24/2002		
		Ę	507432			Laboratory ID		Ę	507438		
		USE	PA TO 1	5		Method		USE	PA TO 1	5	
		10	/29/2002			Analysis Date		10	/30/2002		
		Concen	· Quanti-	Quanti-	Quanti-			Concen	· Quanti-	Quanti-	Quanti-
Chemical	CAS #	tration (ppb)	fication Qualifier	fication Type	fication Level	Chemical	CAS #	tration (ppb)	fication Qualifier	fication Type	fication Level
	4004.04.4				0.50		4004.04.4	0.00			0.50
	7634-04-4	1.4		PQL	0.50		7634-04-4	0.62		PQL	0.50
	73-71-0	12	0		0.50		73-71-0	0	0		0.50
	74-07-3	1.2			0.50		74-07-3	0	0		0.50
	75-01-4	0	0		0.50		75-01-4	0	0		0.50
	74-03-9	0	0		0.50		74-03-9	0	0		0.50
	75-00-3	0			0.50		75-00-3	0			0.50
	76 12 1				0.50		76 12 1				0.50
	70-13-1	0	0		0.50		76-13-1	0	0		0.50
	75-35-4	20	0		0.50		75-35-4	0			0.50
	75 24 2	2.5			0.50		75 24 2	0			0.50
	156-50-2	0	0		0.50		156-50-2	0	0		0.50
	67 66 2	0	0		0.50	CHI OBOEODM	67.66.2	0	0		0.50
	71 55 6	0	0		0.50		71 55 6	0	0		0.50
	71-00-0 56 00 5	0	0		0.50		7 1-33-0 56 22 5	0	0		0.50
	71 42 2	0.01	0		0.50		71 42 2	0	0		0.50
	107.06.2	0.91			0.50		107.06.2	0	0		0.50
	70.01.6				0.50		70.01.6	0			0.50
	79-01-0	0	0		0.50		79-01-0	0	0		0.50
	10061-01-5	0	0		0.50		10061-01-5	0	0		0.50
	10001-01-3	5.5	0		0.50		10001-01-5	12	0		0.50
	100-00-3	5.5			0.50		100-00-3	1.5	ш		0.50
	79-00-5		11		0.50		79-00-5		0		0.50
	127-18-4		11		0.50		127-18-4		0		0.50
	108-90-7	1	1		0.50		108-90-7	1	1		0.50
	100-41-4	0.01	0		0.50		100-41-4		0		0.50
	1330-20-7	3.1			0.50		1330-20-7	15	0		0.50
STYRENE	100-42-5	11	Ш		0.50	STYRENE	100-42-5	1.5	ш		0.50
	95-47-6	0.91	0		0.50	XYLENE (O)	95-47-6	0.56	0		0.50
1 1 2 2-TETRACHLOROETHANE	79-34-5	11	ш	POL	0.50	1 1 2 2-TETRACHI OROETHANE	79-34-5	11	ш	POI	0.50
1 3-DICHLOROBENZENE	541-73-1	Ü	Ŭ	POL	0.50	1 3-DICHLOROBENZENE	541-73-1	Ü	Ŭ	POL	0.50
1.4-DICHLOROBENZENE	106-46-7	Ŭ	Ŭ	PQI	0.50	1.4-DICHLOROBENZENE	106-46-7	Ŭ	Ŭ	PQI	0.50
1.2-DICHI OROBENZENE	95-50-1	Ŭ	Ŭ	PQI	0.50	1.2-DICHLOROBENZENE	95-50-1	Ŭ	Ŭ	PQI	0.50
1.2.4-TRICHI OROBENZENE	120-82-1	Ŭ	Ŭ	PQI	0.50	1.2.4-TRICHI OROBENZENE	120-82-1	Ŭ	Ŭ	PQI	0.50
HEXACHLOROBUTADIENE	87-68-3	Ŭ	Ŭ	PQL	0.50	HEXACHLOROBUTADIENE	87-68-3	Ŭ	Ŭ	PQL	0.50
1.3.5-TRIMETHYLBENZENE	108-67-8	Ŭ	Ŭ	PQL	0.50	1.3.5-TRIMETHYLBENZENE	108-67-8	Ŭ	Ŭ	PQL	0.50
1.2.4-TRIMETHYLBENZENE	95-63-6	0.68	-	PQL	0.50	1.2.4-TRIMETHYLBENZENE	95-63-6	Ŭ	Ŭ	PQL	0.50
1.2-DICHLOROTETRAFLUOROE	76-14-2	U	U	PQL	0.50	1.2-DICHLOROTETRAFLUOROE	76-14-2	U	Ū	PQL	0.50
1.2-DIBROMOETHANE	106-93-4	Ū	Ū	PQL	0.50	1.2-DIBROMOETHANE	106-93-4	U	Ū	PQL	0.50
1.3-BUTADIENE	106-99-0	0.72	-	PQL	0.50	1.3-BUTADIENE	106-99-0	Ŭ	Ŭ	PQL	0.50
CARBON DISULFIDE	75-15-0	U	U	PQL	0.50	CARBON DISULFIDE	75-15-0	U	U	PQL	0.50
CYCLOHEXANE	110-82-7	U	U	PQL	0.50	CYCLOHEXANE	110-82-7	U	U	PQL	0.50
N-HEPTANE	142-82-5	1.1		PQL	0.50	N-HEPTANE	142-82-5	U	U	PQL	0.50
DIBROMOCHLOROMETHANE	124-48-1	U	U	PQL	0.50	DIBROMOCHLOROMETHANE	124-48-1	U	U	PQL	0.50
N-HEXANE	110-54-3	2.1		PQL	0.50	N-HEXANE	110-54-3	U	U	PQL	0.50
BROMOFORM	75-25-2	U	U	PQL	0.50	BROMOFORM	75-25-2	U	U	PQL	0.50
BROMODICHLOROMETHANE	75-27-4	U	U	PQL	0.50	BROMODICHLOROMETHANE	75-27-4	U	U	PQL	0.50
TRANS-1,2-DICHLOROETHENE	156-60-5	U	U	PQL	0.50	TRANS-1,2-DICHLOROETHENE	156-60-5	U	U	PQL	0.50
4-ETHYLTOLUENE	622-96-8	0.76	-	PQL	0.50	4-ETHYLTOLUENE	622-96-8	Ū	Ū	PQL	0.50
3-CHLOROPROPENE	107-05-1	U	U	PQL	0.50	3-CHLOROPROPENE	107-05-1	Ū	Ū	PQL	0.50
2,2,4-TRIMETHYLPENTANE	540-84-1	0.94		PQL	0.50	2,2,4-TRIMETHYLPENTANE	540-84-1	U	U	PQL	0.50
BROMOETHENE	593-60-2	U	U	PQL	0.50	BROMOETHENE	593-60-2	U	U	PQL	0.50
2-CHLOROTOLUENE	95-49-8	U	U	PQL	0.50	2-CHLOROTOLUENE	95-49-8	U	U	PQL	0.50

n:/active/6000/023-6124C/

Table 3-10 Results of Sub-Slab and Indoor Air Testing October 2002 Stafford Site

Sample ID		22 Par	k First Flo	oor	
Depin Comple Data		40	04/0000		
		10	/24/2002		
Laboratory ID		:	507439	_	
Method		USE	PA TO 1	5	
Analysis Date		10	/30/2002	•	•
		Concen-	Quanti-	Quanti-	Quanti-
	CAS	tration	fication	fication	fication
Chemical	#	(ppb)	Qualifier	Type	Level
METHYL TERT-BUTYL ETHER	1634-04-4	U	U	PQL	0.50
DICHLORODIFLUOROMETHANE	75-71-8	Ū	Ŭ	PQL	0.50
CHI OROMETHANE	74-87-3	Ŭ	Ŭ	PQI	0.50
	75-01-4	Ŭ	Ŭ		0.50
BROMOMETHANE	74-83-9	Ŭ	Ŭ		0.50
CHLOROETHANE	75-00-3	Ŭ	Ŭ		0.50
	75-69-4	Ŭ	Ŭ		0.50
FREON TE	76-13-1	Ŭ	Ŭ		0.50
	75-35-4	U U	Ŭ		0.50
METHYLENE CHLORIDE	75-09-2	0.51	Ũ		0.50
1 1-DICHLOROFTHANE	75-34-3	11	ш		0.50
CIS-1 2-DICHLOROETHENE	156-59-2	Ü	Ŭ		0.50
	67-66-3	U U	U U		0.50
	71-55-6	1	U U		0.50
	56-23-5	1	U U		0.50
BENZENE	71-43-2	1	U U		0.50
1 2-DICHLOROFTHANE	107-06-2	1	U U		0.50
	79-01-6	1	U U		0.50
	78-87-5	1	U U		0.50
	10061-01-5	1	11		0.50
	108-88-3	36	0		0.50
TRANS-1 3-DICHLOROPROPENE	10061-02-6	11	ш		0.50
1 1 2-TRICHLOROFTHANE	79-00-5	U U	U U		0.50
	127-18-4	U U	U U		0.50
CHLOROBENZENE	108-90-7	Ü	Ŭ		0.50
ETHYI BENZENE	100-41-4	Ü	Ŭ		0.50
XYI ENE (M P)	1330-20-7	18	Ũ		0.50
STYRENE	100-42-5	U	U		0.50
XYLENE (O)	95-47-6	0.63	Ũ		0.50
1.1.2.2-TETRACHI OROETHANE	79-34-5	U	U		0.50
1.3-DICHLOROBENZENE	541-73-1	Ŭ	Ŭ		0.50
1.4-DICHLOROBENZENE	106-46-7	Ŭ	Ŭ		0.50
1 2-DICHLOROBENZENE	95-50-1	Ŭ	Ŭ	POL	0.50
1 2 4-TRICHLOROBENZENE	120-82-1	Ü	Ŭ		0.50
HEXACHI OROBUTADIENE	87-68-3	Ŭ	Ŭ		0.50
1.3.5-TRIMETHYI BENZENE	108-67-8	Ŭ	Ŭ		0.50
1.2.4-TRIMETHYLBENZENE	95-63-6	0.58	Ū	PQL	0.50
1.2-DICHI OROTETRAFI UOROFT	76-14-2	U	U		0.50
1 2-DIBROMOETHANE	106-93-4	Ŭ	Ŭ		0.50
1.3-BUTADIENE	106-99-0	Ŭ	Ŭ		0.50
CARBON DISULFIDE	75-15-0	Ŭ	Ŭ		0.50
CYCLOHEXANE	110-82-7	Ŭ	Ŭ		0.50
N-HEPTANE	142-82-5	Ü	Ŭ		0.50
	124-48-1	Ü	Ŭ		0.50
N-HEXANE	110-54-3	Ŭ	Ŭ		0.50
BROMOFORM	75-25-2	Ŭ	Ŭ		0.50
BROMODICHI OROMETHANE	75-27-4	Ű	Ŭ		0.50
TRANS-1.2-DICHI OROFTHENE	156-60-5	Ű	Ū	POI	0.50
4-ETHYLTOLUENF	622-96-8	0.57	-	POI	0.50
3-CHLOROPROPENE	107-05-1	U.	U	PQL	0.50
2.2.4-TRIMETHYLPENTANE	540-84-1	Ŭ	Ū	PQL	0.50
BROMOETHENE	593-60-2	Ũ	Ū	PQL	0.50
2-CHLOROTOLUENE	95-49-8	Ū	Ū	PQL	0.50
		-	-		

Date Printed:2/9/2005

	73 Bay Sub-	73 Bay Sub-slab				14 Park	
	slab	Vapour Field	Relative Percent		14 Park	Basement Field	Relative Percent
Sample ID	Vapour	Duplicate	Difference	Sample ID	Basement	Duplicate	Difference
	Concen-	Concen-			Concen-	Concen-	
	tration	tration			tration	tration	
Chemical	(ppb)	(ppb)		Chemical	(ppb)	(ppb)	
METHYL TERT-BUTYL ETHER	33	38	14	PHENOL 15.32	4.3	1.3	107
XYLENE (M,P)	3.2	2.7	17	DICHLORODIFLUOROMETHANE	18	21	15
CYCLOHEXANE	36	36	0.0	METHYLENE CHLORIDE	4.2	4.3	2.4
2,2,4-TRIMETHYLPENTANE	140	150	6.9	TOLUENE	2.4	4.4	59
				ETHYLBENZENE	0.84	1.6	62
				XYLENE (M,P)	3.1	5.7	59
				XYLENE (O)	1.2	2.2	59
				1,3,5-TRIMETHYLBENZENE	0.63	0.76	19
				1,2,4-TRIMETHYLBENZENE	1.9	2.1	10
				CARBON DISULFIDE	1.2	0.50	82
				N-HEXANE	0.55	0.51	7.5
				4-ETHYLTOLUENE	1.4	1.8	25
				2-CHLOROTOLUENE	0.54	0.75	33

Table 3-12 Results of Outdoor Air Analysis, Stafford Site

Sample ID		0	utdoor A	ir 73 Bay A	Ave		Sample ID		(Outdoor /	Air 22 Park		
Depth			Ν	J/A			Depth			N	/A		
Sample Date			11/1	4/2002			Sample Date			10/24	4/2002		
Laboratory ID			51	0407			Laboratory ID			50	7440		
Method			т	D-15			Method			тс	D-15		
Analysis Date			11/2	2/2002			Analysis Date			10/3	0/2002		
			Concen-	Quanti-	Quanti-	Quanti				Concen-	Quanti-	Quanti-	Quanti-
	CAS		tration	fication	fication	fication		CAS		tration	fication	fication	fication
Chemical	#		(ppb)	Qualifier	Туре	Level	Chemical	#		(ppb)	Qualifier	Туре	Level
DICHLORODIFLUOROMETHANE	75-71-8	А	0.58		PQL	0.50	METHYL TERT-BUTYL ETHER	1634-04-4	А	U	U	PQL	0.50
CHLOROMETHANE	74-87-3	А	0.62		PQL	0.50	DICHLORODIFLUOROMETHANE	75-71-8	А	U	U	PQL	0.50
VINYL CHLORIDE	75-01-4	А	U	U	PQL	0.50	CHLOROMETHANE	74-87-3	А	U	U	PQL	0.50
BROMOMETHANE	74-83-9	А	U	U	PQL	0.50	VINYL CHLORIDE	75-01-4	А	U	U	PQL	0.50
CHLOROETHANE	75-00-3	А	U	U	PQL	0.50	BROMOMETHANE	74-83-9	А	U	U	PQL	0.50
TRICHLOROFLUOROMETHANE	75-69-4	А	U	U	PQL	0.50	CHLOROETHANE	75-00-3	А	U	U	PQL	0.50
FREON TF	76-13-1	А	U	U	PQL	0.50	TRICHLOROFLUOROMETHANE	75-69-4	А	U	U	PQL	0.50
1,1-DICHLOROETHENE	75-35-4	А	U	U	PQL	0.50	FREON TF	76-13-1	А	U	U	PQL	0.50
METHYLENE CHLORIDE	75-09-2	А	U	U	PQL	0.50	1,1-DICHLOROETHENE	75-35-4	А	U	U	PQL	0.50
1,1-DICHLOROETHANE	75-34-3	А	U	U	PQL	0.50	METHYLENE CHLORIDE	75-09-2	А	U	U	PQL	0.50
CIS-1,2-DICHLOROETHENE	156-59-2	А	U	U	PQL	0.50	1,1-DICHLOROETHANE	75-34-3	А	U	U	PQL	0.50
CHLOROFORM	67-66-3	А	U	U	PQL	0.50	CIS-1,2-DICHLOROETHENE	156-59-2	А	U	U	PQL	0.50
1,1,1-TRICHLOROETHANE	71-55-6	А	U	U	PQL	0.50	CHLOROFORM	67-66-3	А	U	U	PQL	0.50
CARBON TETRACHLORIDE	56-23-5	А	U	U	PQL	0.50	1,1,1-TRICHLOROETHANE	71-55-6	А	U	U	PQL	0.50
BENZENE	71-43-2	А	U	U	PQL	0.50	CARBON TETRACHLORIDE	56-23-5	А	U	U	PQL	0.50
1,2-DICHLOROETHANE	107-06-2	А	U	U	PQL	0.50	BENZENE	71-43-2	А	U	U	PQL	0.50
TRICHLOROETHENE	79-01-6	А	U	U	PQL	0.50	1,2-DICHLOROETHANE	107-06-2	А	U	U	PQL	0.50
1,2-DICHLOROPROPANE	78-87-5	А	U	U	PQL	0.50	TRICHLOROETHENE	79-01-6	А	U	U	PQL	0.50
CIS-1,3-DICHLOROPROPENE	10061-01-5	А	U	U	PQL	0.50	1,2-DICHLOROPROPANE	78-87-5	А	U	U	PQL	0.50
TOLUENE	108-88-3	А	U	U	PQL	0.50	CIS-1,3-DICHLOROPROPENE	10061-01-5	А	U	U	PQL	0.50
TRANS-1,3-DICHLOROPROPENE	10061-02-6	А	U	U	PQL	0.50	TOLUENE	108-88-3	А	1.0		PQL	0.50
1,1,2-TRICHLOROETHANE	79-00-5	А	U	U	PQL	0.50	TRANS-1,3-DICHLOROPROPENE	10061-02-6	А	U	U	PQL	0.50
TETRACHLOROETHENE	127-18-4	А	U	U	PQL	0.50	1,1,2-TRICHLOROETHANE	79-00-5	А	U	U	PQL	0.50
CHLOROBENZENE	108-90-7	А	U	U	PQL	0.50	TETRACHLOROETHENE	127-18-4	А	U	U	PQL	0.50
ETHYLBENZENE	100-41-4	А	U	U	PQL	0.50	CHLOROBENZENE	108-90-7	А	U	U	PQL	0.50
XYLENE (M,P)	1330-20-7	А	U	U	PQL	0.50	ETHYLBENZENE	100-41-4	А	U	U	PQL	0.50
STYRENE	100-42-5	А	U	U	PQL	0.50	XYLENE (M,P)	1330-20-7	А	1.1		PQL	0.50
XYLENE (O)	95-47-6	А	U	U	PQL	0.50	STYRENE	100-42-5	А	U	U	PQL	0.50
1,1,2,2-TETRACHLOROETHANE	79-34-5	А	U	U	PQL	0.50	XYLENE (O)	95-47-6	А	U	U	PQL	0.50
1,3-DICHLOROBENZENE	541-73-1	А	U	U	PQL	0.50	1,1,2,2-TETRACHLOROETHANE	79-34-5	А	U	U	PQL	0.50
1,4-DICHLOROBENZENE	106-46-7	А	U	U	PQL	0.50	1,3-DICHLOROBENZENE	541-73-1	А	U	U	PQL	0.50
1,2-DICHLOROBENZENE	95-50-1	А	U	U	PQL	0.50	1,4-DICHLOROBENZENE	106-46-7	А	U	U	PQL	0.50
1,2,4-TRICHLOROBENZENE	120-82-1	А	U	U	PQL	0.50	1,2-DICHLOROBENZENE	95-50-1	А	U	U	PQL	0.50
HEXACHLOROBUTADIENE	87-68-3	А	U	U	PQL	0.50	1,2,4-TRICHLOROBENZENE	120-82-1	А	U	U	PQL	0.50
1,3,5-TRIMETHYLBENZENE	108-67-8	А	U	U	PQL	0.50	HEXACHLOROBUTADIENE	87-68-3	А	U	U	PQL	0.50
1,2,4-TRIMETHYLBENZENE	95-63-6	А	U	U	PQL	0.50	1,3,5-TRIMETHYLBENZENE	108-67-8	А	U	U	PQL	0.50
1,2-DICHLOROTETRAFLUOROETHANE	76-14-2	А	U	U	PQL	0.50	1,2,4-TRIMETHYLBENZENE	95-63-6	А	U	U	PQL	0.50

Table 3-12 Results of Outdoor Air Analysis, Stafford Site

Sample ID		0	utdoor Ai	r 73 Bay A	Ave		Sample ID			Outdoor /	Air 22 Park	(
Depth			N	/A			Depth N/A						
Sample Date		11/14/2002					Sample Date 10/24/2002						
Laboratory ID			510	0407			Laboratory ID			507	7440		
Method			TC)-15			Method			TC)-15		
Analysis Date			11/22	2/2002			Analysis Date			10/30)/2002		
			Concen-	Quanti-	Quanti-	Quanti-				Concen-	Quanti-	Quanti-	Quanti-
	CAS		tration	fication	fication	fication		CAS		tration	fication	fication	fication
Chemical	#		(ppb)	Qualifier	Туре	Level	Chemical	#		(ppb)	Qualifier	Туре	Level
1,2-DIBROMOETHANE	106-93-4	А	U	U	PQL	0.50	1,2-DICHLOROTETRAFLUOROETHANE	76-14-2	Α	U	U	PQL	0.50
1,3-BUTADIENE	106-99-0	А	U	U	PQL	0.50	1,2-DIBROMOETHANE	106-93-4	Α	U	U	PQL	0.50
CARBON DISULFIDE	75-15-0	А	U	U	PQL	0.50	1,3-BUTADIENE	106-99-0	Α	U	U	PQL	0.50
CYCLOHEXANE	110-82-7	А	U	U	PQL	0.50	CARBON DISULFIDE	75-15-0	Α	U	U	PQL	0.50
N-HEPTANE	142-82-5	А	U	U	PQL	0.50	CYCLOHEXANE	110-82-7	Α	U	U	PQL	0.50
DIBROMOCHLOROMETHANE	124-48-1	А	U	U	PQL	0.50	N-HEPTANE	142-82-5	Α	U	U	PQL	0.50
N-HEXANE	110-54-3	А	U	U	PQL	0.50	DIBROMOCHLOROMETHANE	124-48-1	Α	U	U	PQL	0.50
BROMOFORM	75-25-2	А	U	U	PQL	0.50	N-HEXANE	110-54-3	А	U	U	PQL	0.50
BROMODICHLOROMETHANE	75-27-4	А	U	U	PQL	0.50	BROMOFORM	75-25-2	Α	U	U	PQL	0.50
TRANS-1,2-DICHLOROETHENE	156-60-5	А	U	U	PQL	0.50	BROMODICHLOROMETHANE	75-27-4	Α	U	U	PQL	0.50
4-ETHYLTOLUENE	622-96-8	А	U	U	PQL	0.50	TRANS-1,2-DICHLOROETHENE	156-60-5	А	U	U	PQL	0.50
3-CHLOROPROPENE	107-05-1	А	U	U	PQL	0.50	4-ETHYLTOLUENE	622-96-8	А	U	U	PQL	0.50
2,2,4-TRIMETHYLPENTANE	540-84-1	А	U	U	PQL	0.50	3-CHLOROPROPENE	107-05-1	Α	U	U	PQL	0.50
BROMOETHENE	593-60-2	А	U	U	PQL	0.50	2,2,4-TRIMETHYLPENTANE	540-84-1	Α	U	U	PQL	0.50
2-CHLOROTOLUENE	95-49-8	А	U	U	PQL	0.50	BROMOETHENE	593-60-2	Α	U	U	PQL	0.50
							2-CHLOROTOLUENE	95-49-8	U	U	U	PQL	0.50

 Table 3-13

 Compilation of Background Indoor Air Quality Data

					Concentrations in Indoor Air (ug/m3)						
Study						Ethyl-	m,p-	0-	n-	n-	
	Date & Time	Statistic	Number	Benzene	Toluene	benzene	Xylene	Xylene	Hexane	Heptane	
Lowry AFB Study (Versa	r. 2000) ⁷										
Colorado	1997 - 1998	Median	12-26	-	-	-	-	-	-	-	
00101000		Arithmetic Mean	12-26	-	-	-	-	-	-	-	
		Maximum	12-26	-	-	-	-	-	-	-	
Podfielde Colorado Stud	(Envirogroup 1000)	7									
Redfields Dopyor	y (Envirogroup, 1999) 1000	Modion	EE 70								
Colorado	1999	Arithmetic Mean	55-78	-	-	-	-	-	-	-	
00101000		90th percentile	55-78	_	_	_	_	_	_	-	
		Maximum	55-78	-	-	-	-	-	-	-	
Demons Oelenede Olude (W-1-1-1 4000) ⁷										
Denver Colorado Study (waish, 1999)			4 74							
Denver, Colorado	1997-1999	Lognormal Mean	55-415	4.71	-	-	-	-	-	-	
		95% Tolerance Limit	55-415	12.2	-	-	-	-	-	-	
		waximum	55-415	41	-	-	-	-	-	-	
Health Canada Study (Da	vis and Otson, 1996) ¹										
Across Canada	1991, 1992	Arithmetic Mean	757	5.4	40.8	8.2	20.7	5.6	1.2	-	
	All seasons	Maximum	757	67.9	5730	540	1470	320	124	-	
U.S. EPA TEAM Study (U	.S. EPA. 1987) ²										
Elizabeth-Bayonne.	Fall 1981	Arithmetic Mean	340	28	-	19	52	16	-	-	
New Jersev	Fall 1981	Maximum	85	120	-	320	120	46	-	-	
	Summer 1982	Arithmetic Mean	150	-	-	9.2	37	12	-	-	
	Summer 1982	Maximum	71	-	-	180	150	100	-	-	
	Winter 1983	Arithmetic Mean	49	-	-	12	36	13	-	-	
	Winter 1983	Maximum	8	-	-	32	63	24	-	-	
Los Angeles, California	Feb-84	Arithmetic Mean	110	18	-	11	28	13	-	-	
	Feb-84	Maximum	25	49	-	29	58	34	-	-	
Los Angeles, California	May-84	Arithmetic Mean	50	9.2	-	7.4	24	7.2	-	-	
	May-84	Maximum	25	29	-	35	94	29	-	-	
Contra Costa, California	Jun-84	Arithmetic Mean	67	7.5	-	3.7	11	4.4	-	-	
	Jun-84	Maximum	10	22	-	9	26	11	-	-	
U.S. National Survey (Sha	ah and Singh, 1988)										
Across U.S.A	pre 1988	Median	96-2278	10.0	6.3	4.8	-	-	-	-	
		Arithmetic Mean	96-2278	16.5	27.9	12.4	-	-	-	-	
		Upper Quartile	96-2278	21.1	28.8	9.3	-	-	-	-	
Dutch Study (Lebret et al	., 1985) ³										
Ede, Netherlands	Winter 81/82	Median	100	7	40	3	12	-	4	3	
Post war		Maximum	100	148	697	45	178	-	107	68	
Rotterdam, Netherlands	Winter 82/83	Median	100	7	23	2	9	-	5	3	
Pre war		Maximum	100	24	526	117	159	-	338	30	
Ede, Netherlands	Winter 82/83	Median	100	5	43	2	10	-	3	2	
< 6 years		Maximum	100	53	2252	138	753	-	178	556	
Greater Toronto Study (C	$tson and Zhu. 1997)^4$										
Greater Toronto	Feb. 12-Apr. 9, 1996	Arithmetic Mean	44	3.42	15.2	1.58	-	-	5.24	-	
		Maximum	44	45.8	186	20.9	-	-	108	-	
Sackatabowan and Onter	in Study (SBC 4000)	;									
Baging Socketeen SA	lon 14 4004	Arithmotic Maar	A A	15	22.0	0.6	24.6	E 7	145		
Tillsonburg Ontario	Jan. 14, 1991 - Eob 11, 1001	Antimietic Mean	44 11	CI 2 CN	∠3.9 110 5	9.0 32.0	∠1.0 7/0	5.7 20.2	14.5	-	
misonburg, Ontano	ו עס ו , ואטו		44	42.J	110.0	32.3	14.2	20.3	33.4	-	
Tennessee Houses (Oak	Ridge National Labor	atory, 1988)°									
East Tennessee Houses	Aug 84 to Jan 85	Median	8	7.5	38.5	6.5	18.5	6	9	-	
		Maximum	8	30	111	82	302	323	113	-	

Above data adapted from Hers et al. (2001). The Use of Indoor Air Measurements To Evaluate Intrusion of Subsurface VOC Vapors into Buildings. J. of Air & Waste Management Assoc. 51: 174-185. September

Notes:

1. OVM 3500 (3M Co.) passive samplers, 24 hour samples, quantified by GC/MSD

2. Personal air samplers using Tenax, arithmetic mean of 12 hour daytime and 12 hour nighttime samples, quantified by GC/MS

3. Charcoal tubes, 5 to 7 day samples at 100 ml/min, GC/FID and GC/MS

4. OVM 3500 passive samplers, 24 hour samples, quantified by GC/MSD

6. Sorbent tubes consisting of Tenax or Tenax-carbonaceous mixtures quantified by GCMS

7. SummaTM steel canisters and EPA Method TO-14 or TO-15.

8. - = not tested or below detection limit

^{5.} OVM 3500 passive samplers, 24 hour samples, quantified by GC/MSD, 20 houses in Sask (Regina and Saskatoon), 24 in Tillsonburg, Ontario

Table 3-14 Compilation of Background Indoor Air Quality Data

					Co	ncentrations	in Indoor	Air (ppbV)		
Study	Dete 0 These	01-11-11-	Normalian	D	T . I	Ethyl-	m,p-	0-	n-	n-
	Date & Time	Statistic	Number	Benzene	loluene	benzene	Xylene	Xylene	Hexane	Heptane
Lowry AFB Study (Ver	rsar, 2000) ⁷									
Colorado	1997 - 1998	Median	12-26	-	-	-	-	-	-	-
		Arithmetic Mean	12-26	-	-	-	-	-	-	-
		Maximum	12-26	-	-	-	-	-	-	-
Podfields Colorado St	udy (Envirograup, 10	00) ⁷								
Redfielde Denver	1000 (Envirogroup, 19:	Madian	FF 70							
Colorado	1999		55-76	-	-	-	-	-	-	-
Colorado		Antimetic Mean	00-70 EE 70	-	-	-	-	-	-	-
		90th percentile	00-70 55 79	-	-	-	-	-	-	-
		IVIAXIIIIUIII	55-76	-	-	-				
Denver Colorado Stud	ly (Walsh, 1999) ⁷									
Denver, Colorado	1997-1999	Lognormal Mean	55-415	1.44	-	-	-	-	-	-
		95% Tolerance Limit	55-415	3.72	-	-	-	-	-	-
		Maximum	55-415	12.5	-	-	-	-	-	-
Health Canada Study	(Davis and Otson 400	6) ¹								
	1001 4000	Vithmotic Maar	757	1.65	10 F	1 0 /	164	1.06	0.22	
ACTOSS Carrada	1991, 1992	Anthrietic Weah	757	1.05	10.5	1.04	4.04	1.20	0.33	-
	All Seasons	IVIAXIIIIUIII	151	20.7	1401	121	330	11.1	34.5	
U.S. EPA TEAM Study	(U.S. EPA, 1987) ²									
Elizabeth-Bayonne.	Fall 1981	Arithmetic Mean	340	8.54	-	4.26	11.7	3.59	-	-
New Jersev	Fall 1981	Maximum	85	36.6	-	71.7	26.9	10.3	-	-
	Summer 1982	Arithmetic Mean	150	-	-	2.06	8.30	2.69	-	-
	Summer 1982	Maximum	71	_	_	40.4	33.6	22.00	_	_
	Winter 1083	Arithmotic Moon	10			2 60	8 07	2 01	_	_
	Winter 1903	Antimetic Mean	49	-	-	2.09	14 12	2.31	-	-
Les Anneles California	VVIIILEI 1903		0	-	-	7.17	14.13	5.30	-	-
Los Angeles, California	Feb-84	Anthmetic Mean	110	5.49	-	2.47	6.28	2.91	-	-
	Feb-84	Maximum	25	14.9	-	6.50	13.0	7.62	-	-
Los Angeles, California	May-84	Arithmetic Mean	50	2.80	-	1.66	5.38	1.61	-	-
	May-84	Maximum	25	8.84	-	7.85	21.1	6.50	-	-
Contra Costa, California	i Jun-84	Arithmetic Mean	67	2.29	-	0.83	2.47	0.99	-	-
	Jun-84	Maximum	10	6.71	-	2.02	5.83	2.47		-
U.S. National Survey (Shah and Singh, 1988)								
	nre 1988	Median	96-2278	3.06	1.62	1.08			-	_
A01033 0.0.A	pre 1300	Arithmetic Mean	96-2278	5.00	7.02	2 77	_	_	_	_
		Linner Quartile	96-2278	6.43	7.21	2.09		-	_	_
Dutch Study (Labratia	tal 1085) ³	oppor additio	00 2210	0.10	1.10	2.00				
Eda Natharlanda	Winter 91/92	Modion	100	2 1 2	10.2	0.67	2.60		1 10	0.71
	WITTER 01/02	Meuineure	100	2.13	10.3	0.07	2.09	-	1.10	0.71
Post war	M/m (Maximum	100	45.1	180	10.1	39.9	-	29.6	16.0
Rotterdam, Netherlands	Winter 82/83	Median	100	2.13	5.94	0.45	2.02	-	1.38	0.71
Pre war		Maximum	100	7.32	136	26.2	35.7	-	93.4	7.06
Ede, Netherlands	Winter 82/83	Median	100	1.52	11.1	0.45	2.24	-	0.83	0.47
< 6 years		Maximum	100	16.2	582	30.9	169	-	49.2	131
Greater Toronto Study	(Otson and 7hu 100	7) ⁴								
Greater Toronto	Eob 12-Apr 0 1006	Arithmotic Moon	11	1.04	3 03	0.35	_	_	1 45	_
Greater Toronito	Feb. 12-Apr. 9, 1990	Maximum	44	1.04	3.93 49.1	0.35	-	-	20.8	-
		WIANITTUTT	44	14.0	40.1	4.09	-	-	23.0	-
Saskatchewan and Or	ntario Study (SRC, 199	2) ⁵								
Regina, Saskatoon. SA	Jan. 14, 1991 -	Arithmetic Mean	44	4.57	6.18	2.15	4.84	1.28	4.01	-
Tillsonburg, Ontario	Feb 11, 1991	Maximum	44	12.9	28.6	7.38	16.6	4.55	27.5	-
	· · · · · · · · · · · · · · · · · ·									
Tennessee Houses (O	ak Ridge National Lak	oratory, 1988)	c.							
East Tennessee Houses	Aug 84 to Jan 85	Median	8	2.29	9.95	1.46	4.15	1.35	2.49	-
		Maximum	8	9.15	28.7	18.4	67.7	72.4	31.2	-

Above data adapted from Hers et al. (2001). The Use of Indoor Air Measurements To Evaluate Intrusion of Subsurface VOC Vapors into Buildings. J. of Air & Waste Management Assoc. 51: 174-185. September

Notes:

2. Personal air samplers using Tenax, arithmetic mean of 12 hour daytime and 12 hour nighttime samples, quantified by GC/MS

3. Charcoal tubes, 5 to 7 day samples at 100 ml/min, GC/FID and GC/MS

4. OVM 3500 passive samplers, 24 hour samples, quantified by GC/MSD

5. OVM 3500 passive samplers, 24 hour samples, quantified by GC/MSD, 20 houses in Sask (Regina and Saskatoon), 24 in Tillsonburg, Ontario

Sorbent tubes consisting of Tenax or Tenax-carbonaceous mixtures quantified by GCMS
 SummaTM steel canisters and EPA Method TO-14 or TO-15.

8. - = not tested or below detection limit

Golder Associates

^{1.} OVM 3500 (3M Co.) passive samplers, 24 hour samples, quantified by GC/MSD

Table 3-15 Vapor Pathway Assessment 63 Bay Avenue, Stafford Site

	Oct-02 Ground-	Oct-02 Predicted		Adj House Measured Soil Vapor	Measured Sub-slab	Measured First	Alpha Predicted Deep	Alpha Measured Deep	Local
	water VP-13 (ug/L)	Deep Vapour (ppbV)		VP-13 10-5 - 11' (ppbV)	Vapor Conc. 5.5-6' (ppbV)	Floor Conc. (ppbV)	Vapor/ First Floor	Vapor/ First Floor	Back- ground (ppbV)
MTBE n-Hexane n-Heptane Cyclohexane 2,2,4-TriMethylPentane	190000 NT NT <5000 NT	1045872 N/A N/A 5649718 N/A	1	120,000 990,000 330,000 200,000 500,000	0.71 <10 <10 <10 <10 <10	0.77 0.51 <0.5 <0.5 <0.5 <0.5	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	0.62 to 2.6 <0.5 to 2.1 <0.5 to 1.1 <0.5 <0.5 to 2.3
Benzene Toluene Ethylbenzene M&P-Xylene O-Xylene Total Xylenes	7500 14000 4200 NT NT 20000	521183 983217 304034 N/A N/A 1165397		120,000 140,000 <15,000 22,000 <15,000 NT	<10 <10 <10 12 <10 NT	<0.5 0.85 <0.5 0.65 <0.5 NT	N/A N/A N/A N/A NT	N/A N/A N/A N/A NT	<0.5-1.2 3.6 to 8.7 <0.5 to 1.3 1.8 to 4.4 0.63 to 1.3 NT
Oxygen % LEL				0.2 to 0.5 % 12 to 100					

Notes:

1. Estimated using 1/2 detection limit for cyclohexane

R = Retention Time, NQ = Not quantified, N/A = Not applicable, NT = Not tested

Table 3-15 Vapor Pathway Assessment 73 Bay Avenue, Stafford Site

			Adjac				Alpha		Alpha		Alpha			
	Oct-02 Ground- water VP-9 (ug/L)	Oct-02 Predicted Deep Vapour (ppbV)	Measured Deep Vapor VP-9D 10-5 - 11' (ppbV)	Measured Mid Vapor VP-9M 6.5 - 7' (ppbV)	Measured Shallow Vapor VP-9S 2.5-3' (ppbV)	Measured Sub-slab Vapor Conc. 5.5-6' (ppbV)	Measured Base- ment Conc. (ppbV)	Measured First Floor Conc. (ppbV)	Predicted Deep Vapor/ Basement		Measured Deep Vapor/ Basement		Measured Subslab Vapor/ Basement	Local Back- ground (ppbV)
MTBE	590000	3247706	1,600,000	450,000	<500	5,000	36	14	1.1E-05		2.2E-05		7.1E-03	0.62 to 2.6
n-Hexane	NT	N/A	1,700,000	880,000	5,000	<300	<2.5	<0.5	N/A		N/A		N/A	<0.5 to 2.1
n-Heptane	NT	N/A	320,000	160,000	550	<300	<2.5	<0.5	N/A		N/A		N/A	<0.5 to 1.1
Cyclohexane	12500	28248588	300,000	150,000	2,900	4,300	36	7.4	1.3E-06		1.2E-04		8.4E-03	<0.5
2,2,4-TriMethylPentane	NT	N/A	400,000	210,000	11,000	20,000	145	34	N/A		3.6E-04		7.3E-03	<0.5 to 2.3
Unknown Alkane R ~ 5.05	NT	N/A	1,200,000	660,000	ND	11,000	63	23	N/A		5.3E-05		5.8E-03	NQ
Unknown Alkane R ~ 6.08	NT	N/A	450,000	250,000	13,000	22,000	85	33	N/A		1.9E-04		3.9E-03	NQ
Unknown Alkane R ~ 6.65	NT	N/A	800,000	370,000	12,000	17,000	79	NQ	N/A		9.9E-05		4.6E-03	NQ
Unknown Alkane R ~ 6.73 Average	NT	N/A	1,900,000	NQ	20,000	15,000	82	33	N/A		4.3E-05 1.3E-04		5.5E-03 6.1E-03	NQ
Benzene	12000	833892	200,000	77,000	<500	<300	<2.5	<0.5	1.5E-06	<	6.3E-06	<	N/A	<0.5-1.2
Toluene	43000	3019881	290,000	150000 J	260 J	<300	<2.5	12.0	4.1E-07	<	4.3E-06	<	N/A	3.6 to 8.7
Ethylbenzene	3500	253362	< 33000	< 15000	<500	<300	<2.5	2.4	4.9E-06		N/A		N/A	<0.5 to 1.3
M&P-Xylene	NT	N/A	< 33000	14,400	<500	<300	3.0	8.9	N/A		N/A		N/A	1.8 to 4.4
O-Xylene	NT	N/A	< 33000	< 15000	<500	<300	<2.5	3.8	N/A		N/A		N/A	0.63 to 1.3
Total Xylenes	24000	1398476	< 33000	< 15000	<500	<300	4.25	6.35	N/A		N/A		N/A	NT
Oxygen			<1.0 %	0.9 to 1.6 %	8.3-10.2 %	NT								
% LEL			N/A	25-100 %	35 to 37 %	NT								

1. Estimated using 1/2 detection limit for cyclohexane R = Retention Time, NQ = Not quantified, N/A = Not applicable, NT = Not tested Background based on indoor air concentrations measured at two nearby off-plume houses

023-6124C

 Table 3-15

 Vapor Pathway Assessment 14 Park Avenue, Stafford Site

	Average		Adjace	nt to House	House (Oct-02)				Alpha	Alpha	Alpha	
	Oct-02	Oct-02	Measured	Measured	Measured	Measured	Measured	Measured	Predicted	Measured	Measured	
	Ground-	Predicted	Soil Vapor	Soil Vapor	Soil Vapor	Sub-slab	Base-	First	Deep	Deep	Subslab	Local
	water	Deep	VP-10D	VP-10M	VP-10S	Vapor Conc.	ment	Floor	Vapor/	Vapor/	Vapor/	Back-
	VP-10&11	Vapour	10-5 - 11'	6.5 - 7'	2.5-3'	5.5-6'	Conc.	Conc.	Basement	Basement	Basement	ground
	(ug/L)	(ppbV)	(ppbV)	(ppbV)	(ppbV)	(ppbV)	(ppbV)	(ppbV)				(ppbV)
МТВЕ	155650	856789	15,000	86	4.8	<1	<0.5	<0.5	N/A	N/A	N/A	0.62 to 2.6
n-Hexane	NT	N/A	360 J	190	28	<1	0.53	<0.5	N/A	N/A	N/A	<0.5 to 2.1
n-Heptane	NT	N/A	<640	140	13	1.0	0.51	0.73	N/A	N/A	N/A	<0.5 to 1.1
Cyclohexane	6262.5	14152542	<640	45	7.3	<1	<0.5	<0.5	N/A	N/A	N/A	<0.5
2,2,4-TriMethylPentane	NT	N/A	350 J	150	16	<1	<0.5	<0.5	N/A	N/A	N/A	<0.5 to 2.3
Benzene	3050	211948	<640	21	1.6 J	<1	<2.5	<0.5	N/A	N/A	N/A	<0.5-1.2
Toluene	6013	422257	860	230	11	9.4	<2.5	2.4	N/A	N/A	N/A	3.6 to 8.7
Ethylbenzene	1110	80352	<640	60	3.1	3.4	<2.5	0.7	N/A	N/A	N/A	<0.5 to 1.3
M&P-Xylene	NT	N/A	650	200	12	12	4.4	2.7	N/A	N/A	N/A	1.8 to 4.4
O-Xylene	NT	N/A	<640	68	4.2	4.9	<2.5	1.2	N/A	N/A	N/A	0.63 to 1.3
Total Xylenes	1663	96874	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Oxygen % LEL												

1. Estimated using 1/2 detection limit for cyclohexane

R = Retention Time, NQ = Not quantified, N/A = Not applicable, NT = Not tested

	Oct-02	/ Oct-02	Adj House Measured	Measured	Measured	Measured	Alpha Predicted	Alpha Measured	Alpha Measured	Ratio	
	Ground-	Predicted	Soil Vapor	Sub-slab	Base-	First	Deep	Deep	Subslab	Base-	Local
	water	Deep	VP-11	Vapor Conc.	ment	Floor	Vapor/	Vapor/	Vapor/	ment /	Back-
	VP-11	Vapour	10-5 - 11'	5.5-6'	Conc.	Conc.	Basement	Basement	Basement	First floor	ground
	(ug/L)	(ppbV)	(ppbV)	(ppbV)	(ppbV)	(ppbV)					(ppbV)
МТВЕ	1300	7156	<2.8	1.4	2.6	1.4	N/A	N/A	N/A	N/A	0.62 to 2.6
n-Hexane	NT	N/A	5.2	0.51	0.68	2.1	N/A	N/A	N/A	N/A	<0.5 to 2.1
n-Heptane	NT	N/A	2.8	1.6	0.57	1.1	N/A	N/A	N/A	N/A	<0.5 to 1.1
Cyclohexane	<50	56497	<2.8	<0.5	<0.5	<0.5	N/A	N/A	N/A	N/A	<0.5
2,2,4-TriMethylPentane	NT	N/A	6.5	1.1	2.3	0.94	N/A	N/A	N/A	N/A	<0.5 to 2.3
Benzene	100	6949	2.8	0.63	1.2	0.9	N/A	N/A	N/A	N/A	<0.5-1.2
Toluene	<50	1756	3.3	9.9	8.7	5.5	N/A	N/A	N/A	N/A	3.6 to 8.7
Ethylbenzene	<40	1448	<2.8	4.0	1.3	0.91	N/A	N/A	N/A	N/A	<0.5 to 1.3
M&P-Xylene	NT	N/A	3.0	16	4.4	3.1	N/A	N/A	N/A	N/A	1.8 to 4.4
O-Xylene	NT	N/A	<2.8	5.0	1.3	0.910	N/A	N/A	N/A	N/A	0.63 to 1.3
Total Xylenes	<50	1457	NT	NT	NT	NT	NT	NT	NT	NT	NT
Oxygen				20.3							
% LEL				0.0							

1. Estimated using 1/2 detection limit for groundwater concentration

R = Retention Time, NQ = Not quantified, N/A = Not applicable, NT = Not tested

			Adj House			Alpha	Alpha		
	Sep-02	Oct-02	Measured	Measured	Measured	Predicted	Measured	Ratio	
	Ground-	Predicted	Soil Vapor	Crawlspace	First	Deep	Deep	Crawl-	Local
	water	Deep	VP-12	Air Conc.	Floor	Vapor/	Vapor/	space /	Back-
	BH-6	Vapour	10-5 - 11'		Conc.	First Floor	First Floor	First floor	ground
	(ug/L)	(ppbV)	(ppbV)	(ppbV)	(ppbV)				(ppbV)
MTBE	16885	1872	<2.8	0.62	<0.5	N/A	N/A	N/A	0.62 to 2.6
n-Hexane	NT	N/A	<2.8	<0.5	<0.5	N/A	N/A	N/A	<0.5 to 2.1
n-Heptane	NT	N/A	<2.8	<0.5	<0.5	N/A	N/A	N/A	<0.5 to 1.1
Cyclohexane	NT	N/A	<2.8	<0.5	<0.5	N/A	N/A	N/A	<0.5
2,2,4-TriMethylPentane	NT	N/A	9.5	<0.5	<0.5	N/A	N/A	N/A	<0.5 to 2.3
Benzene	598	1807	<2.8	<0.5	<0.5	N/A	N/A	N/A	<0.5-1.2
Toluene	17	N/A	3.1	1.3	3.6	N/A	N/A	N/A	3.6 to 8.7
Ethylbenzene	51	N/A	<2.8	<0.5	<0.5	N/A	N/A	N/A	<0.5 to 1.3
M&P-Xylene	68	N/A	5.6	2	1.8	N/A	N/A	N/A	1.8 to 4.4
O-Xylene	4	N/A	<2.8	0.56	0.63	N/A	N/A	N/A	0.63 to 1.3
Total Xylenes	NT	N/A	NT	NT	NT	NT	NT	NT	NT
Oxygen %			19.8	NT					
% LEL			9.0	NT					

1. Estimated using 1/2 detection limit for cyclohexane

R = Retention Time, NQ = Not quantified, N/A = Not applicable, NT = Not tested

Table 3-16Physical-Chemical Parameters for Key Compounds

		Vapor Pi	Vapor Pressure		Log	Henry's La	w Constant	Η'
Chemical	MW	Ра	atm	S (g/m3)	\mathbf{K}_{ow}	(Pa-m3/mol)	(atm-m3/mol)	20 C
Benzene	78.11	12700	0.12573	1780	2.13	557	0.00551	0.229
Toluene	92.13	3800	0.03762	515	2.69	680	0.00673	0.280
Ethylbenzene	106.2	1270	0.012573	152	3.13	887	0.00878	0.365
o-xylene	106.2	1170	0.011583	220	3.15	565	0.00559	0.232
m-xylene	106.2	1100	0.01089	160	3.2	730	0.00723	0.300
p-Xylene	106.2	1170	0.011583	215	3.18	578	0.00572	0.238
n-Hexane	87.17	20200	0.19998	9.5	4.11	183225	1.81	75.4
n-Heptane	100.21	6110	0.060489	2.93	5	208970	2.07	86.0
2,2,4-Trimethypentane	114.23	6560	0.064944	2.44	-	307100	3.04	126.4
Cyclohexane	84.16	12700	0.12573	55	3.44	19433	0.192	8.00
МТВЕ	88.17	33333	0.33	48000	-	49.6	0.000491	0.0204

1. Source of physical-chemical parameters (except MTBE) is Mackay et al. Illustrated Handbook of Physical

- Chemical Properties and Environmental Fate for Organic Chemicals (Table 2.2). Lewis Publishers, Chelsea, Michigan, 1993.

2. Source of physical-chemical parameters for MTBE is RISC 4.0 Computer Program (Lyn Spense Engineering)

5 Table 4-1 Final Summa Canister Pressures Measured at Laboratory

		Final			
		Pressure,	Collection	Collection	
Lab No.	Client ID	(in Hg)	Date	Time	Matrix
558685	SUBSLAB-1	0.4	1/23/2004	1210	Air
558686	SUBSLAB-2	0.4	1/23/2004	1213	Air
558687	BASEMENT-1	0.2	1/23/2004	1233	Air
558688	SUBSLAB-3	0.4	1/23/2004	1233	Air
558689	DUPE	0.4	1/23/2004	1236	Air
558690	FIRST-1	0.0	1/23/2004	1245	Air
558691	EASTVP-S	-4.3	1/22/2004	1410	Air
558692	EASTVP-M	0.7	1/22/2004	1412	Air
558693	EASTVP-D	-9.3	1/22/2004	1422	Air
558694	WESTVP-D	-7.4	1/22/2004	1430	Air

Results of January 2004 Groundwater Testing at Stafford Site

Sample ID	TB01		West-S		West-D		East-S		East-D
Lab Sample No.	495391		495392		495393		495394		495395
Sampling Date	1/16/2004 0:00		1/19/2004 0:00		1/19/2004 0:00		1/19/2004 0:00		1/19/2004 0:00
Matrix	WATER		WATER		WATER		WATER		WATER
Dilution Factor	1		1000		1000		1		50
Units	ug/L		ug/L		ug/L		ug/L		ug/L
VOLATILE COMPOUNDS (GC/MS)									
Chloromethane	5	U	5000	U	5000	U	5	U	250 U
Bromomethane	5	U	5000	U	5000	U	5	U	250 U
Vinyl Chloride	5	U	5000	U	5000	U	5	U	250 U
Chloroethane	5	U	5000	U	5000	U	5	U	250 U
Methylene Chloride	3	U	3000	U	3000	U	3	U	150 U
Acetone	5	U	5000	U	5000	U	5	U	250 U
Carbon Disulfide	5	U	5000	U	5000	U	5	U	250 U
Trichlorofluoromethane	5	U	5000	U	5000	U	5	U	250 U
1,1-Dichloroethene	2	U	2000	U	2000	U	2	U	100 U
1,1-Dichloroethane	5	U	5000	U	5000	U	5	U	250 U
trans-1,2-Dichloroethene	5	U	5000	U	5000	U	5	U	250 U
cis-1,2-Dichloroethene	5	U	5000	U	5000	U	5	U	250 U
Chloroform	5	U	5000	U	5000	U	5	U	250 U
1,2-Dichloroethane	2	U	2000	U	2000	U	2	U	100 U
2-Butanone	5	U	5000	U	5000	U	5	U	250 U
1,1,1-Trichloroethane	5	U	5000	U	5000	U	5	U	250 U
Carbon Tetrachloride	2	U	2000	U	2000	U	2	U	100 U
Bromodichloromethane	1	U	1000	U	1000	U	1	U	50 U
1,2-Dichloropropane	1	U	1000	U	1000	U	1	U	50 U
cis-1,3-Dichloropropene	5	U	5000	U	5000	U	5	U	250 U
Trichloroethene	1	U	1000	U	1000	U	1	U	50 U
Dibromochloromethane	5	U	5000	U	5000	U	5	U	250 U
1,1,2-Trichloroethane	3	U	3000	U	3000	U	3	U	150 U
Benzene	1	U	6300		9600		62		6300
trans-1,3-Dichloropropene	5	U	5000	U	5000	U	5	U	250 U
Bromoform	4	U	4000	U	4000	U	4	U	200 U
4-Methyl-2-Pentanone	5	U	5000	U	5000	U	5	U	250 U
2-Hexanone	5	U	5000	U	5000	U	5	U	250 U
Tetrachloroethene	1	U	1000	U	1000	U	1	U	50 U
1,1,2,2-Tetrachloroethane	1	U	1000	U	1000	U	1	U	50 U
Toluene	5	U	30000		8600		9.5		170 J
Chlorobenzene	5	U	5000	U	5000	U	5	U	250 U
Ethylbenzene	4	U	3200	J	3300	J	12		2700
Styrene	5	U	5000	U	5000	U	5	U	250 U
Xylene (Total)	5	U	18000		15000		30		11000
Freon TF	5	U	5000	U	5000	U	5	U	250 U
МТВЕ	5	U	83000		140000		110		2200
Cyclohexane	5	U	5000	U	5000	U	2.9	J	160 J
1,2-Dibromoethane	5	U	5000	U	5000	U	5	U	250 U
1,3-Dichlorobenzene	5	U	5000	U	5000	U	5	U	250 U
1,4-Dichlorobenzene	5	U	5000	U	5000	U	5	U	250 U
1,2-Dichlorobenzene	5	U	5000	U	5000	U	5	υ	250 U
Dichlorodifluoromethane	5	U	5000	U	5000	U	5	U	250 U
1,2,4-Trichlorobenzene	5	U	5000	U	5000	U	5	U	250 U
1,2-Dibromo-3-chloropropane	5	U	5000	U	5000	U	5	U	250 U
Isopropylbenzene	5	U	5000	U	5000	U	1.5	J	220 J
Methyl Acetate	5	U	5000	U	5000	U	5	U	250 U
Methyl Cyclohexane	5	U	5000	U	5000	U	2	J	92 J
Isooctane	5	U	5000	U	5000	U	5	U	250 U
Total Confident Conc.	0		137300		173200		223.5		22200
Total Estimated Conc. (TICs)	NA		NA		NA		NA		NA

NR - Not analyzed. TB = transport blank U - The compound was not detected at the indicated concentration.

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concentration given is an approximate value.

B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the sample.

Sample ID		VP-WEST Deep					
Depth		9.5-10'					
Sample Date		1/23/2004					
Laboratory ID		558694					
Method			TO-15				
Analysis Date		0'	1/29/2004				
		Concen-	Quanti-	Quanti-	Quanti-		
	CAS	tration	fication	fication	fication		
Chemical	#	(ug/m3)	Qualifier	Туре	Level		
DICHLORODIFLUOROMETHANE	75-71-8	4900	UG/M3	U	0.184		
CHLOROMETHANE	74-87-3	2100	UG/M3	U	0.179		
VINYL CHLORIDE	75-01-4	2600	UG/M3	U	0.191		
BROMOMETHANE	74-83-9	3900	UG/M3	U	0.232		
CHLOROETHANE	75-00-3	2600	UG/M3	U	0.212		
TRICHLOROFLUOROMETHANE	75-69-4	5600	UG/M3	U	0.172		
FREON TF	76-13-1	7700	UG/M3	U	0.159		
1,1-DICHLOROETHENE	75-35-4	4000	UG/M3	U	0.165		
METHYLENE CHLORIDE	75-09-2	3500	UG/M3	U	0.182		
1,1-DICHLOROETHANE	75-34-3	4000	UG/M3	U	0.167		
CIS-1,2-DICHLOROETHENE	156-59-2	4000	UG/M3	U	0.119		
CHLOROFORM	67-66-3	4900	UG/M3	U	0.184		
1,1,1-TRICHLOROETHANE	71-55-6	5500	UG/M3	U	0.167		
CARBON TETRACHLORIDE	56-23-5	6300	UG/M3	U	0.168		
BENZENE	71-43-2	61000	UG/M3		0.150		
1,2-DICHLOROETHANE	107-06-2	4000	UG/M3	U	0.155		
TRICHLOROETHENE	79-01-6	5400	UG/M3	U	0.166		
1,2-DICHLOROPROPANE	78-87-5	4600	UG/M3	U	0.173		
CIS-1,3-DICHLOROPROPENE	0061-01-	4500	UG/M3	U	0.174		
TOLUENE	108-88-3	870000	UG/M3	Е	0.171		
TRANS-1,3-DICHLOROPROPENE	0061-02-0	4500	UG/M3	U	0.167		
1,1,2-TRICHLOROETHANE	79-00-5	5500	UG/M3	U	0.181		
TETRACHLOROETHENE	127-18-4	6800	UG/M3	U	0.173		
CHLOROBENZENE	108-90-7	4600	UG/M3	U	0.151		
ETHYLBENZENE	100-41-4	48000	UG/M3		0.132		
XYLENE (M,P)	1330-20-7	100000	UG/M3		0.312		
STYRENE	100-42-5	4300	UG/M3	U	0.131		
XYLENE (O)	95-47-6	24000	UG/M3		0.160		
1,1,2,2-TETRACHLOROETHANE	79-34-5	6900	UG/M3	U	0.181		
1,3-DICHLOROBENZENE	541-73-1	6000	UG/M3	U	0.179		
1,4-DICHLOROBENZENE	106-46-7	6000	UG/M3	U	0.176		
1,2-DICHLOROBENZENE	95-50-1	6000	UG/M3	U	0.162		
1,2,4-TRICHLOROBENZENE	120-82-1	7400	UG/M3	U	0.193		

Sample ID		VP-V	NEST De	ер		
Depth			9.5-10'	•		
Sample Date	1/23/2004					
Laboratory ID			558694			
Method			TO-15			
Analysis Date		01	1/29/2004			
		Concen-	Quanti-	Quanti-	Quanti-	
	CAS	tration	fication	fication	fication	
Chemical	#	(ug/m3)	Qualifier	Туре	Level	
HEXACHLOROBUTADIENE	87-68-3	11000	UG/M3	U	0.198	
1,3,5-TRIMETHYLBENZENE	108-67-8	4900	UG/M3	U	0.180	
1,2,4-TRIMETHYLBENZENE	95-63-6	4900	UG/M3	U	0.156	
1,2-DICHLOROTETRAFLUOROETHANE	76-14-2	7000	UG/M3	U	0.147	
1,2-DIBROMOETHANE	106-93-4	7700	UG/M3	U	0.170	
1,3-BUTADIENE	106-99-0	2200	UG/M3	U	0.253	
CARBON DISULFIDE	75-15-0	3100	UG/M3	U	0.177	
ACETONE	67-64-1	140000	UG/M3		0.204	
METHYL TERT-BUTYL ETHER	1634-04-4	65000	UG/M3		0.162	
CYCLOHEXANE	110-82-7	280000	UG/M3	Е	0.155	
DIBROMOCHLOROMETHANE	124-48-1	8500	UG/M3	U	0.142	
METHYL ETHYL KETONE	78-93-3	2900	UG/M3	U	0.135	
METHYL ISOBUTYL KETONE	108-10-1	4100	UG/M3	U	0.155	
BROMOFORM	75-25-2	10000	UG/M3	U	0.142	
BROMODICHLOROMETHANE	75-27-4	6700	UG/M3	U	0.152	
TRANS-1,2-DICHLOROETHENE	156-60-5	4000	UG/M3	U	0.162	
4-ETHYLTOLUENE	622-96-8	4900	UG/M3	U	0.111	
3-CHLOROPROPENE	107-05-1	3100	UG/M3	U	0.163	
2,2,4-TRIMETHYLPENTANE	540-84-1	700000	UG/M3	E	0.160	
BROMOETHENE	593-60-2	4400	UG/M3	U	0.186	
2-CHLOROTOLUENE	95-49-8	5200	UG/M3	U	0.160	
N-HEXANE	110-54-3	600000	UG/M3	E	0.233	
N-HEPTANE	142-82-5	450000	UG/M3	Е	0.146	
TERT-BUTYL ALCOHOL	75-65-0	30000	UG/M3	U	0.218	

U - compound not detected at the indicated concentration J = Data indicates the presence of compound that meets the identification criteria. The result is less than the quantification limit but greater than zero. The concentration is approximate E = Exceeds calibration range. D = compound identified at secondary dilution factor

Sample ID	VP-WEST Deep Duplicate							
Depth		9.5-10'						
Sample Date		1/23/2004						
Laboratory ID		558694D1						
Method			TO-15					
Analysis Date		0'	1/29/2004					
		Concen-	Quanti-	Quanti-	Quanti-			
	CAS	tration	fication	fication	fication			
Chemical	#	(ug/m3)	Qualifier	Туре	Level			
DICHLORODIFLUOROMETHANE	75-71-8	12000	UG/M3	U	0.184			
CHLOROMETHANE	74-87-3	5200	UG/M3	U	0.179			
VINYL CHLORIDE	75-01-4	6400	UG/M3	U	0.191			
BROMOMETHANE	74-83-9	9700	UG/M3	U	0.232			
CHLOROETHANE	75-00-3	6600	UG/M3	U	0.212			
TRICHLOROFLUOROMETHANE	75-69-4	14000	UG/M3	U	0.172			
FREON TF	76-13-1	19000	UG/M3	U	0.159			
1,1-DICHLOROETHENE	75-35-4	9900	UG/M3	U	0.165			
METHYLENE CHLORIDE	75-09-2	8700	UG/M3	U	0.182			
1,1-DICHLOROETHANE	75-34-3	10000	UG/M3	U	0.167			
CIS-1,2-DICHLOROETHENE	156-59-2	9900	UG/M3	U	0.119			
CHLOROFORM	67-66-3	12000	UG/M3	U	0.184			
1,1,1-TRICHLOROETHANE	71-55-6	14000	UG/M3	U	0.167			
CARBON TETRACHLORIDE	56-23-5	16000	UG/M3	U	0.168			
BENZENE	71-43-2	45000	UG/M3	D	0.150			
1,2-DICHLOROETHANE	107-06-2	10000	UG/M3	U	0.155			
TRICHLOROETHENE	79-01-6	13000	UG/M3	U	0.166			
1,2-DICHLOROPROPANE	78-87-5	12000	UG/M3	U	0.173			
CIS-1,3-DICHLOROPROPENE	0061-01-	11000	UG/M3	U	0.174			
TOLUENE	108-88-3	600000	UG/M3	D	0.171			
TRANS-1,3-DICHLOROPROPENE	0061-02-	11000	UG/M3	U	0.167			
1,1,2-TRICHLOROETHANE	79-00-5	14000	UG/M3	U	0.181			
TETRACHLOROETHENE	127-18-4	17000	UG/M3	U	0.173			
CHLOROBENZENE	108-90-7	12000	UG/M3	U	0.151			
ETHYLBENZENE	100-41-4	31000	UG/M3	D	0.132			
XYLENE (M,P)	1330-20-7	65000	UG/M3	D	0.312			
STYRENE	100-42-5	11000	UG/M3	U	0.131			
XYLENE (O)	95-47-6	15000	UG/M3	D	0.160			
1,1,2,2-TETRACHLOROETHANE	79-34-5	17000	UG/M3	U	0.181			
1,3-DICHLOROBENZENE	541-73-1	15000	UG/M3	U	0.179			
1,4-DICHLOROBENZENE	106-46-7	15000	UG/M3	U	0.176			
1,2-DICHLOROBENZENE	95-50-1	15000	UG/M3	U	0.162			
1,2,4-TRICHLOROBENZENE	120-82-1	19000	UG/M3	U	0.193			

Sample ID	VP-WEST Deep Duplicate					
Depth	9.5-10'					
Sample Date	1/23/2004					
Laboratory ID		5	58694D1			
Method			TO-15			
Analysis Date		01	1/29/2004			
		Concen-	Quanti-	Quanti-	Quanti-	
	CAS	tration	fication	fication	fication	
Chemical	#	(ug/m3)	Qualifier	Туре	Level	
HEXACHLOROBUTADIENE	87-68-3	27000	UG/M3	U	0.198	
1.3.5-TRIMETHYLBENZENE	108-67-8	12000	UG/M3	Ŭ	0.180	
1.2.4-TRIMETHYLBENZENE	95-63-6	12000	UG/M3	Ŭ	0.156	
1.2-DICHLOROTETRAFLUOROETHANE	76-14-2	17000	UG/M3	Ŭ	0.147	
1,2-DIBROMOETHANE	106-93-4	19000	UG/M3	U	0.170	
1,3-BUTADIENE	106-99-0	5500	UG/M3	U	0.253	
CARBON DISULFIDE	75-15-0	7800	UG/M3	U	0.177	
ACETONE	67-64-1	59000	UG/M3	U	0.204	
METHYL TERT-BUTYL ETHER	1634-04-4	47000	UG/M3	D	0.162	
CYCLOHEXANE	110-82-7	590000	UG/M3	D	0.155	
DIBROMOCHLOROMETHANE	124-48-1	21000	UG/M3	U	0.142	
METHYL ETHYL KETONE	78-93-3	7400	UG/M3	U	0.135	
METHYL ISOBUTYL KETONE	108-10-1	10000	UG/M3	U	0.155	
BROMOFORM	75-25-2	26000	UG/M3	U	0.142	
BROMODICHLOROMETHANE	75-27-4	17000	UG/M3	U	0.152	
TRANS-1,2-DICHLOROETHENE	156-60-5	9900	UG/M3	U	0.162	
4-ETHYLTOLUENE	622-96-8	12000	UG/M3	U	0.111	
3-CHLOROPROPENE	107-05-1	7800	UG/M3	U	0.163	
2,2,4-TRIMETHYLPENTANE	540-84-1	890000	UG/M3	D	0.160	
BROMOETHENE	593-60-2	11000	UG/M3	U	0.186	
2-CHLOROTOLUENE	95-49-8	13000	UG/M3	U	0.160	
N-HEXANE	110-54-3	670000	UG/M3	D	0.233	
N-HEPTANE	142-82-5	450000	UG/M3	D	0.146	
TERT-BUTYL ALCOHOL	75-65-0	76000	UG/M3	U	0.218	
1						

Sample ID	VP-EAST Shallow						
Depth	2.5-3'						
Sample Date	1/23/2004						
Laboratory ID	558691						
Method			TO-15				
Analysis Date		01	/29/2004				
		Concen-	Quanti-	Quanti-	Quanti-		
	CAS	tration	fication	fication	fication		
Chemical	#	(ug/m3)	Qualifier	Туре	Level		
TERT-BUTYL ALCOHOL	75-65-0	30	UG/M3	U	0.218		
DICHLORODIFLUOROMETHANE	75-71-8	2.8	UG/M3		0.184		
CHLOROMETHANE	74-87-3	1.0	UG/M3	U	0.179		
VINYL CHLORIDE	75-01-4	1.3	UG/M3	U	0.191		
BROMOMETHANE	74-83-9	1.9	UG/M3	U	0.232		
CHLOROETHANE	75-00-3	1.3	UG/M3	U	0.212		
TRICHLOROFLUOROMETHANE	75-69-4	2.8	UG/M3	U	0.172		
FREON TF	76-13-1	3.8	UG/M3	U	0.159		
1,1-DICHLOROETHENE	75-35-4	2.0	UG/M3	U	0.165		
METHYLENE CHLORIDE	75-09-2	2.2	UG/M3		0.182		
1,1-DICHLOROETHANE	75-34-3	2.0	UG/M3	U	0.167		
CIS-1,2-DICHLOROETHENE	156-59-2	2.0	UG/M3	U	0.119		
CHLOROFORM	67-66-3	2.4	UG/M3	U	0.184		
1,1,1-TRICHLOROETHANE	71-55-6	2.7	UG/M3	U	0.167		
CARBON TETRACHLORIDE	56-23-5	3.1	UG/M3	U	0.168		
BENZENE	71-43-2	1.6	UG/M3	U	0.150		
1,2-DICHLOROETHANE	107-06-2	2.0	UG/M3	U	0.155		
TRICHLOROETHENE	79-01-6	2.7	UG/M3	U	0.166		
1,2-DICHLOROPROPANE	78-87-5	2.3	UG/M3	U	0.173		
CIS-1,3-DICHLOROPROPENE	10061-01-5	2.3	UG/M3	U	0.174		
TOLUENE	108-88-3	3.2	UG/M3		0.171		
TRANS-1,3-DICHLOROPROPENE	10061-02-6	2.3	UG/M3	U	0.167		
1,1,2-TRICHLOROETHANE	79-00-5	2.7	UG/M3	U	0.181		
TETRACHLOROETHENE	127-18-4	3.4	UG/M3	U	0.173		
CHLOROBENZENE	108-90-7	2.3	UG/M3	U	0.151		
ETHYLBENZENE	100-41-4	2.2	UG/M3	U	0.132		
XYLENE (M,P)	1330-20-7	6.5	UG/M3		0.312		
STYRENE	100-42-5	2.1	UG/M3	U	0.131		
XYLENE (O)	95-47-6	2.2	UG/M3	U	0.160		
1,1,2,2-TETRACHLOROETHANE	79-34-5	3.4	UG/M3	U	0.181		
1,3-DICHLOROBENZENE	541-73-1	3.0	UG/M3	U	0.179		
1,4-DICHLOROBENZENE	106-46-7	3.0	UG/M3	U	0.176		
1,2-DICHLOROBENZENE	95-50-1	3.0	UG/M3	U	0.162		

Comple ID							
	VF-EAST Shallow						
Depth Depth	2.5-3						
Sample Date		1/	23/2004				
Laboratory ID		5	58691				
Method			TO-15				
Analysis Date	01/29/2004 Concent Quanti Quanti Quanti						
		Concen-	Quanti-	Quanti-	Quanti-		
	CAS	tration	fication	fication	fication		
Chemical	#	(ug/m3)	Qualifier	Туре	Level		
1.2.4-TRICHLOROBENZENE	120-82-1	3.7	UG/M3	U	0.193		
HEXACHLOROBUTADIENE	87-68-3	5.3	UG/M3	Ū	0.198		
1,3,5-TRIMETHYLBENZENE	108-67-8	2.5	UG/M3	U	0.180		
1,2,4-TRIMETHYLBENZENE	95-63-6	4.4	UG/M3		0.156		
1,2-DICHLOROTETRAFLUOROETHANE	76-14-2	3.5	UG/M3	U	0.147		
1,2-DIBROMOETHANE	106-93-4	3.8	UG/M3	U	0.170		
1,3-BUTADIENE	106-99-0	1.1	UG/M3	U	0.253		
CARBON DISULFIDE	75-15-0	1.6	UG/M3	U	0.177		
ACETONE	67-64-1	12	UG/M3	U	0.204		
METHYL TERT-BUTYL ETHER	1634-04-4	21	UG/M3		0.162		
CYCLOHEXANE	110-82-7	6.9	UG/M3		0.155		
DIBROMOCHLOROMETHANE	124-48-1	4.3	UG/M3	U	0.142		
METHYL ETHYL KETONE	78-93-3	1.5	UG/M3	U	0.135		
METHYL ISOBUTYL KETONE	108-10-1	2.0	UG/M3	U	0.155		
BROMOFORM	75-25-2	5.2	UG/M3	U	0.142		
BROMODICHLOROMETHANE	75-27-4	3.4	UG/M3	U	0.152		
TRANS-1,2-DICHLOROETHENE	156-60-5	2.0	UG/M3	U	0.162		
4-ETHYLTOLUENE	622-96-8	3.4	UG/M3		0.111		
3-CHLOROPROPENE	107-05-1	1.6	UG/M3	U	0.163		
2,2,4-TRIMETHYLPENTANE	540-84-1	2.3	UG/M3	U	0.160		
BROMOETHENE	593-60-2	2.2	UG/M3	U	0.186		
2-CHLOROTOLUENE	95-49-8	2.6	UG/M3	U	0.160		
N-HEXANE	110-54-3	13	UG/M3		0.233		
N-HEPTANE	142-82-5	4.1	UG/M3		0.146		
TERT-BUTYL ALCOHOL	75-65-0	15	UG/M3	U	0.218		

Sample ID	VP-EAST Mid						
Depth	6-6.5'						
Sample Date	1/23/2004						
Laboratory ID	558692						
Method		Т	0-15				
Analysis Date		01/2	29/2004				
		Concen-	Quanti-	Quanti-	Quanti-		
	CAS	tration	fication	fication	fication		
Chemical	#	(ug/m3)	Qualifier	Туре	Level		
DICHLORODIFLUOROMETHANE	75-71-8	3.2	UG/M3		0.184		
CHLOROMETHANE	74-87-3	1.0	UG/M3	U	0.179		
VINYL CHLORIDE	75-01-4	1.3	UG/M3	U	0.191		
BROMOMETHANE	74-83-9	1.9	UG/M3	U	0.232		
CHLOROETHANE	75-00-3	1.3	UG/M3	U	0.212		
TRICHLOROFLUOROMETHANE	75-69-4	2.8	UG/M3	U	0.172		
FREON TF	76-13-1	3.8	UG/M3	U	0.159		
1,1-DICHLOROETHENE	75-35-4	2.0	UG/M3	U	0.165		
METHYLENE CHLORIDE	75-09-2	2.3	UG/M3		0.182		
1,1-DICHLOROETHANE	75-34-3	2.0	UG/M3	U	0.167		
CIS-1,2-DICHLOROETHENE	156-59-2	156-59-2 2.0 UG/M3 U					
CHLOROFORM	67-66-3	67-66-3 2.4 UG/M3 U					
1,1,1-TRICHLOROETHANE	71-55-6	2.7	UG/M3	U	0.167		
CARBON TETRACHLORIDE	56-23-5	3.1	UG/M3	U	0.168		
BENZENE	71-43-2	1.6	UG/M3	U	0.150		
1,2-DICHLOROETHANE	107-06-2	2.0	UG/M3	U	0.155		
TRICHLOROETHENE	79-01-6	2.7	UG/M3	U	0.166		
1,2-DICHLOROPROPANE	78-87-5	2.3	UG/M3	U	0.173		
CIS-1,3-DICHLOROPROPENE	10061-01-5	2.3	UG/M3	U	0.174		
TOLUENE	108-88-3	2.2	UG/M3		0.171		
TRANS-1,3-DICHLOROPROPENE	10061-02-6	2.3	UG/M3	U	0.167		
1,1,2-TRICHLOROETHANE	79-00-5	2.7	UG/M3	U	0.181		
TETRACHLOROETHENE	127-18-4	3.4	UG/M3	U	0.173		
CHLOROBENZENE	108-90-7	2.3	UG/M3	U	0.151		
ETHYLBENZENE	100-41-4	2.2	UG/M3	U	0.132		
XYLENE (M,P)	1330-20-7	4.0	UG/M3		0.312		
STYRENE	100-42-5	2.1	UG/M3	U	0.131		
XYLENE (O)	95-47-6	2.2	UG/M3	U	0.160		
1,1,2,2-TETRACHLOROETHANE	79-34-5	3.4	UG/M3	U	0.181		
1,3-DICHLOROBENZENE	541-73-1	3.0	UG/M3	U	0.179		
1,4-DICHLOROBENZENE	106-46-7	3.0	UG/M3	U	0.176		
1,2-DICHLOROBENZENE	95-50-1	3.0	UG/M3	U	0.162		
1,2,4-TRICHLOROBENZENE	120-82-1	3.7	UG/M3	U	0.193		

Sample ID		VP-F				
Denth	6-6 5'					
Sample Date	1/23/2004					
Laboratory ID		5	58692			
Method		Т	0.15			
Analysis Date		01/	29/2004			
		Concen-	Ouanti-	Quanti-	Quanti-	
	CAS	tration	fication	fication	fication	
Chemical	#	(ua/m3)	Qualifier	Type	Level	
	07 60 2	<u> </u>			0 109	
	01-00-3	0.0 0.5		0	0.190	
	100-07-0	2.0			0.100	
	95-63-6	2.5		U	0.150	
	76-14-2	3.5		U	0.147	
	106-93-4	3.8		U	0.170	
	106-99-0	1.1		U	0.253	
	75-15-0	1.6	UG/IVI3	U	0.177	
	67-64-1	12	UG/M3	U	0.204	
	1634-04-4	20	UG/M3		0.162	
	110-82-7	1.7	UG/M3	U	0.155	
	124-48-1	4.3	UG/M3	U	0.142	
METHYL ETHYL KETONE	78-93-3	1.5	UG/M3	U	0.135	
METHYL ISOBUTYL KETONE	108-10-1	2.0	UG/M3	U	0.155	
BROMOFORM	75-25-2	5.2	UG/M3	U	0.142	
BROMODICHLOROMETHANE	75-27-4	3.4	UG/M3	U	0.152	
TRANS-1,2-DICHLOROETHENE	156-60-5	2.0	UG/M3	U	0.162	
4-ETHYLTOLUENE	622-96-8	2.5	UG/M3	U	0.111	
3-CHLOROPROPENE	107-05-1	1.6	UG/M3	U	0.163	
2,2,4-TRIMETHYLPENTANE	540-84-1	2.3	UG/M3	U	0.160	
BROMOETHENE	593-60-2	2.2	UG/M3	U	0.186	
2-CHLOROTOLUENE	95-49-8	2.6	UG/M3	U	0.160	
N-HEXANE	110-54-3	12	UG/M3		0.233	
N-HEPTANE	142-82-5	2.5	UG/M3		0.146	
TERT-BUTYL ALCOHOL	75-65-0	15	UG/M3	U	0.218	

Sample ID	VP-EAST Deep					
Depth	9.5-10'					
Sample Date	1/23/2004					
Laboratory ID	558693					
Method		Т	O-15			
Analysis Date		01/2	29/2004			
		Concen-	Quanti-	Quanti-	Quanti-	
	CAS	tration	fication	fication	fication	
Chemical	#	(ug/m3)	Qualifier	Туре	Level	
DICHLORODIFLUOROMETHANE	75-71-8	2.7	UG/M3		0.184	
CHLOROMETHANE	74-87-3	1.0	UG/M3	U	0.179	
VINYL CHLORIDE	75-01-4	1.3	UG/M3	U	0.191	
BROMOMETHANE	74-83-9	1.9	UG/M3	U	0.232	
CHLOROETHANE	75-00-3	1.3	UG/M3	U	0.212	
TRICHLOROFLUOROMETHANE	75-69-4	2.8	UG/M3	U	0.172	
FREON TF	76-13-1	3.8	UG/M3	U	0.159	
1,1-DICHLOROETHENE	75-35-4	2.0	UG/M3	U	0.165	
METHYLENE CHLORIDE	75-09-2	2.7	UG/M3		0.182	
1,1-DICHLOROETHANE	75-34-3	2.0	UG/M3	U	0.167	
CIS-1,2-DICHLOROETHENE	156-59-2	2.0	UG/M3	U	0.119	
CHLOROFORM	67-66-3	2.4	UG/M3	U	0.184	
1,1,1-TRICHLOROETHANE	71-55-6	2.7	UG/M3	U	0.167	
CARBON TETRACHLORIDE	56-23-5	3.1	UG/M3	U	0.168	
BENZENE	71-43-2	1.6	UG/M3	U	0.150	
1,2-DICHLOROETHANE	107-06-2	2.0	UG/M3	U	0.155	
TRICHLOROETHENE	79-01-6	2.7	UG/M3	U	0.166	
1,2-DICHLOROPROPANE	78-87-5	2.3	UG/M3	U	0.173	
CIS-1,3-DICHLOROPROPENE	10061-01-5	2.3	UG/M3	U	0.174	
TOLUENE	108-88-3	4.1	UG/M3		0.171	
TRANS-1,3-DICHLOROPROPENE	10061-02-6	2.3	UG/M3	U	0.167	
1,1,2-TRICHLOROETHANE	79-00-5	2.7	UG/M3	U	0.181	
TETRACHLOROETHENE	127-18-4	3.4	UG/M3	U	0.173	
CHLOROBENZENE	108-90-7	2.3	UG/M3	U	0.151	
ETHYLBENZENE	100-41-4	2.2	UG/M3		0.132	
XYLENE (M,P)	1330-20-7	10	UG/M3		0.312	
STYRENE	100-42-5	2.1	UG/M3	U	0.131	
XYLENE (O)	95-47-6	3.6	UG/M3		0.160	
1,1,2,2-TETRACHLOROETHANE	79-34-5	3.4	UG/M3	U	0.181	
1,3-DICHLOROBENZENE	541-73-1	3.0	UG/M3	U	0.179	
1,4-DICHLOROBENZENE	106-46-7	3.0	UG/M3	U	0.176	
1,2-DICHLOROBENZENE	95-50-1	3.0	UG/M3	U	0.162	
1,2,4-TRICHLOROBENZENE	120-82-1	3.7	UG/M3	U	0.193	

Sample ID		VP-E	AST Deer)			
Depth	9.5-10'						
Sample Date	1/23/2004						
Laboratory ID		55	58693				
Method		Т	O-15				
Analysis Date	01/29/2004						
		Concen-	Quanti-	Quanti-	Quanti-		
	CAS	tration	fication	fication	fication		
Chemical	#	(ug/m3)	Qualifier	Туре	Level		
HEXACHLOROBUTADIENE	87-68-3	5.3	UG/M3	U	0.198		
1.3.5-TRIMETHYLBENZENE	108-67-8	2.5	UG/M3	Ū	0.180		
1.2.4-TRIMETHYLBENZENE	95-63-6	5.4	UG/M3	-	0.156		
1.2-DICHLOROTETRAFLUOROETHANE	76-14-2	3.5	UG/M3	U	0.147		
1,2-DIBROMOETHANE	106-93-4	3.8	UG/M3	Ū	0.170		
1,3-BUTADIENE	106-99-0	1.1	UG/M3	U	0.253		
CARBON DISULFIDE	75-15-0	1.6	UG/M3	U	0.177		
ACETONE	67-64-1	12	UG/M3	U	0.204		
METHYL TERT-BUTYL ETHER	1634-04-4	22	UG/M3		0.162		
CYCLOHEXANE	110-82-7	18	UG/M3		0.155		
DIBROMOCHLOROMETHANE	124-48-1	4.3	UG/M3	U	0.142		
METHYL ETHYL KETONE	78-93-3	1.5	UG/M3	U	0.135		
METHYL ISOBUTYL KETONE	108-10-1	2.0	UG/M3	U	0.155		
BROMOFORM	75-25-2	5.2	UG/M3	U	0.142		
BROMODICHLOROMETHANE	75-27-4	3.4	UG/M3	U	0.152		
TRANS-1,2-DICHLOROETHENE	156-60-5	2.0	UG/M3	U	0.162		
4-ETHYLTOLUENE	622-96-8	4.7	UG/M3		0.111		
3-CHLOROPROPENE	107-05-1	1.6	UG/M3	U	0.163		
2,2,4-TRIMETHYLPENTANE	540-84-1	2.3	UG/M3	U	0.160		
BROMOETHENE	593-60-2	2.2	UG/M3	U	0.186		
2-CHLOROTOLUENE	95-49-8	2.6	UG/M3	U	0.160		
N-HEXANE	110-54-3	14	UG/M3		0.233		
N-HEPTANE	142-82-5	13	UG/M3		0.146		
TERT-BUTYL ALCOHOL	75-65-0	15	UG/M3	U	0.218		

2004 Subslab and Indoor Air Testing Results, Stafford Site

Sample ID	73 Bay Subslab #1									
Depth		0.1'								
Sample Date		1/2	23/2004							
Laboratory ID		5	58685							
Method		-	TO-15							
Analysis Date		01/	/29/2004							
		Concen-	Quanti-	Quanti-	Quanti-					
	CAS	tration	fication	fication	fication					
Chemical	#	(ug/m3)	Qualifier	Туре	Level					
DICHLORODIFLUOROMETHANE	75-71-8	3.0	UG/M3		0.184					
CHLOROMETHANE	74-87-3	1.2	UG/M3		0.179					
VINYL CHLORIDE	75-01-4	1.3	UG/M3	U	0.191					
BROMOMETHANE	74-83-9	1.9	UG/M3	Ū	0.232					
CHLOROETHANE	75-00-3	1.3	UG/M3	U	0.212					
TRICHLOROFLUOROMETHANE	75-69-4	2.8	UG/M3	U	0.172					
FREON TF	76-13-1	3.8	UG/M3	U	0.159					
1,1-DICHLOROETHENE	75-35-4	2.0	UG/M3	U	0.165					
METHYLENE CHLORIDE	75-09-2	1.7	UG/M3	U	0.182					
1,1-DICHLOROETHANE	75-34-3	2.0	UG/M3	U	0.167					
CIS-1,2-DICHLOROETHENE	156-59-2	2.0	UG/M3	U	0.119					
CHLOROFORM	67-66-3	2.4	UG/M3	U	0.184					
1,1,1-TRICHLOROETHANE	71-55-6	2.7	UG/M3	U	0.167					
CARBON TETRACHLORIDE	56-23-5	3.1	UG/M3	U	0.168					
BENZENE	71-43-2	1.6	UG/M3	U	0.150					
1,2-DICHLOROETHANE	107-06-2	2.0	UG/M3	U	0.155					
TRICHLOROETHENE	79-01-6	2.7	UG/M3	U	0.166					
1,2-DICHLOROPROPANE	78-87-5	2.3	UG/M3	U	0.173					
CIS-1,3-DICHLOROPROPENE	10061-01-5	2.3	UG/M3	U	0.174					
TOLUENE	108-88-3	2.3	UG/M3		0.171					
TRANS-1,3-DICHLOROPROPENE	10061-02-6	2.3	UG/M3	U	0.167					
1,1,2-TRICHLOROETHANE	79-00-5	2.7	UG/M3	U	0.181					
TETRACHLOROETHENE	127-18-4	3.4	UG/M3	U	0.173					
CHLOROBENZENE	108-90-7	2.3	UG/M3	U	0.151					
ETHYLBENZENE	100-41-4	2.2	UG/M3	U	0.132					
XYLENE (M,P)	1330-20-7	2.2	UG/M3	U	0.312					
STYRENE	100-42-5	2.1	UG/M3	U	0.131					
XYLENE (O)	95-47-6	2.2	UG/M3	U	0.160					
1,1,2,2-TETRACHLOROETHANE	79-34-5	3.4	UG/M3	U	0.181					
1,3-DICHLOROBENZENE	541-73-1	3.0	UG/M3	U	0.179					
1,4-DICHLOROBENZENE	106-46-7	3.0	UG/M3	U	0.176					
1,2-DICHLOROBENZENE	95-50-1	3.0	UG/M3	U	0.162					
1,2,4-TRICHLOROBENZENE	<u>120-82-</u> 1	3.7	UG/M3	U	0.193					

2004 Subslab and	Indoor Air Testing	Results , Staffo	ord Site

Sample ID	73 Bay Subslab #1				
Depth	0.1'				
Sample Date	1/23/2004				
Laboratory ID	558685				
Method	TO-15				
Analysis Date	01/29/2004				
		Concen-	Quanti-	Quanti-	Quanti-
	CAS	tration	fication	fication	fication
Chemical	#	(ug/m3)	Qualifier	Туре	Level
HEXACHLOROBUTADIENE	87-68-3	5.3	UG/M3	U	0.198
1.3.5-TRIMETHYLBENZENE	108-67-8	2.5	UG/M3	Ū	0.180
1.2.4-TRIMETHYLBENZENE	95-63-6	2.5	UG/M3	Ŭ	0.156
1.2-DICHLOROTETRAFLUOROET	76-14-2	3.5	UG/M3	Ū	0.147
1,2-DIBROMOETHANE	106-93-4	3.8	UG/M3	Ŭ	0.170
1,3-BUTADIENE	106-99-0	1.1	UG/M3	U	0.253
CARBON DISULFIDE	75-15-0	1.6	UG/M3	U	0.177
ACETONE	67-64-1	52	UG/M3		0.204
METHYL TERT-BUTYL ETHER	1634-04-4	1.8	UG/M3	U	0.162
CYCLOHEXANE	110-82-7	29	UG/M3		0.155
DIBROMOCHLOROMETHANE	124-48-1	4.3	UG/M3	U	0.142
METHYL ETHYL KETONE	78-93-3	1.5	UG/M3	U	0.135
METHYL ISOBUTYL KETONE	108-10-1	2.0	UG/M3	U	0.155
BROMOFORM	75-25-2	5.2	UG/M3	U	0.142
BROMODICHLOROMETHANE	75-27-4	3.4	UG/M3	U	0.152
TRANS-1,2-DICHLOROETHENE	156-60-5	2.0	UG/M3	U	0.162
4-ETHYLTOLUENE	622-96-8	2.5	UG/M3	U	0.111
3-CHLOROPROPENE	107-05-1	1.6	UG/M3	U	0.163
2,2,4-TRIMETHYLPENTANE	540-84-1	170	UG/M3		0.160
BROMOETHENE	593-60-2	2.2	UG/M3	U	0.186
2-CHLOROTOLUENE	95-49-8	2.6	UG/M3	U	0.160
N-HEXANE	110-54-3	1.8	UG/M3	U	0.233
N-HEPTANE	142-82-5	2.0	UG/M3	U	0.146
TERT-BUTYL ALCOHOL	75-65-0	15	UG/M3	U	0.218

U - compound not detected at the indicated concentration J = Data indicates the presence of compound that meets the identification criteria. The result is less than the quantification limit but greater than zero. The concentration is approximate E = Exceeds calibration range. D = compound identified at secondary dilution factor

2004 Subslab and Indoor Air Testing Results, Stafford Site

Sample ID	73 Bay Subslab #2				
Depth		,	0.1'		
Sample Date	1/23/2004				
Laboratory ID		5	58686		
Method			TO-15		
Analysis Date	01/29/2004				
		Concen-	Quanti-	Quanti-	Quanti-
	CAS	tration	fication	fication	fication
Chemical	#	(ug/m3)	Qualifier	Туре	Level
DICHI ORODIFI UOROMETHANE	75-71-8	3.0	UG/M3		0.184
CHLOROMETHANE	74-87-3	1.5	UG/M3		0.179
VINYL CHLORIDE	75-01-4	1.3	UG/M3	U	0.191
BROMOMETHANE	74-83-9	1.9	UG/M3	Ŭ	0.232
CHLOROETHANE	75-00-3	1.3	UG/M3	Ŭ	0.212
TRICHLOROFLUOROMETHANE	75-69-4	2.8	UG/M3	Ū	0.172
FREON TF	76-13-1	3.8	UG/M3	Ū	0.159
1.1-DICHLOROETHENE	75-35-4	2.0	UG/M3	Ū	0.165
METHYLENE CHLORIDE	75-09-2	1.7	UG/M3	Ū	0.182
1,1-DICHLOROETHANE	75-34-3	2.0	UG/M3	U	0.167
CIS-1,2-DICHLOROETHENE	156-59-2	2.0	UG/M3	U	0.119
CHLOROFORM	67-66-3	2.4	UG/M3	U	0.184
1,1,1-TRICHLOROETHANE	71-55-6	2.7	UG/M3	U	0.167
CARBON TETRACHLORIDE	56-23-5	3.1	UG/M3	U	0.168
BENZENE	71-43-2	1.6	UG/M3	U	0.150
1,2-DICHLOROETHANE	107-06-2	2.0	UG/M3	U	0.155
TRICHLOROETHENE	79-01-6	2.7	UG/M3	U	0.166
1,2-DICHLOROPROPANE	78-87-5	2.3	UG/M3	U	0.173
CIS-1,3-DICHLOROPROPENE	10061-01-5	2.3	UG/M3	U	0.174
TOLUENE	108-88-3	2.1	UG/M3		0.171
TRANS-1,3-DICHLOROPROPENE	10061-02-6	2.3	UG/M3	U	0.167
1,1,2-TRICHLOROETHANE	79-00-5	2.7	UG/M3	U	0.181
TETRACHLOROETHENE	127-18-4	3.4	UG/M3	U	0.173
CHLOROBENZENE	108-90-7	2.3	UG/M3	U	0.151
ETHYLBENZENE	100-41-4	2.2	UG/M3	U	0.132
XYLENE (M,P)	1330-20-7	2.2	UG/M3	U	0.312
STYRENE	100-42-5	2.1	UG/M3	U	0.131
XYLENE (O)	95-47-6	2.2	UG/M3	U	0.160
1,1,2,2-TETRACHLOROETHANE	79-34-5	3.4	UG/M3	U	0.181
1,3-DICHLOROBENZENE	541-73-1	3.0	UG/M3	U	0.179
1,4-DICHLOROBENZENE	106-46-7	3.0	UG/M3	U	0.176
1,2-DICHLOROBENZENE	95-50-1	3.0	UG/M3	U	0.162
1,2,4-TRICHLOROBENZENE	120-82-1	3.7	UG/M3	U	0.193

2004 Subslab and Indoor Air Testing Results, Stafford Site

Sample ID	73 Bay Subslab #2							
Depth	0.1'							
Sample Date	1/23/2004							
Laboratory ID	558686							
Method		-	TO-15					
Analysis Date	01/29/2004							
		Concen-	Quanti-	Quanti-	Quanti-			
	CAS	tration	fication	fication	fication			
Chemical	#	(ug/m3)	Qualifier	Туре	Level			
HEXACHLOROBUTADIENE	87-68-3	5.3	UG/M3	U	0.198			
1,3,5-TRIMETHYLBENZENE	108-67-8	2.5	UG/M3	Ū	0.180			
1,2,4-TRIMETHYLBENZENE	95-63-6	2.5	UG/M3	U	0.156			
1,2-DICHLOROTETRAFLUOROETH	76-14-2	3.5	UG/M3	U	0.147			
1,2-DIBROMOETHANE	106-93-4	3.8	UG/M3	U	0.170			
1,3-BUTADIENE	106-99-0	1.1	UG/M3	U	0.253			
CARBON DISULFIDE	75-15-0	1.6	UG/M3	U	0.177			
ACETONE	67-64-1	29	UG/M3		0.204			
METHYL TERT-BUTYL ETHER	1634-04-4	1.8	UG/M3	U	0.162			
CYCLOHEXANE	110-82-7	41	UG/M3		0.155			
DIBROMOCHLOROMETHANE	124-48-1	4.3	UG/M3	U	0.142			
METHYL ETHYL KETONE	78-93-3	1.5	UG/M3	U	0.135			
METHYL ISOBUTYL KETONE	108-10-1	2.0	UG/M3	U	0.155			
BROMOFORM	75-25-2	5.2	UG/M3	U	0.142			
BROMODICHLOROMETHANE	75-27-4	3.4	UG/M3	U	0.152			
TRANS-1,2-DICHLOROETHENE	156-60-5	2.0	UG/M3	U	0.162			
4-ETHYLTOLUENE	622-96-8	2.5	UG/M3	U	0.111			
3-CHLOROPROPENE	107-05-1	1.6	UG/M3	U	0.163			
2,2,4-TRIMETHYLPENTANE	540-84-1	240	UG/M3	Е	0.160			
BROMOETHENE	593-60-2	2.2	UG/M3	U	0.186			
2-CHLOROTOLUENE	95-49-8	2.6	UG/M3	U	0.160			
N-HEXANE	110-54-3	1.8	UG/M3	U	0.233			
N-HEPTANE	142-82-5	2.0	UG/M3	U	0.146			
TERT-BUTYL ALCOHOL	75-65-0	15	UG/M3	U	0.218			
Sample ID	73 Bay Subslab #2 dilution							
---------------------------	----------------------------	----------	-----------	----------	----------	--	--	--
Depth	0.1'							
Sample Date	1/23/2004							
Laboratory ID		558686D1						
Method	TO-15							
Analysis Date		01	/29/2004					
		Concen-	Quanti-	Quanti-	Quanti-			
	CAS	tration	fication	fication	fication			
Chemical	#	(ug/m3)	Qualifier	Туре	Level			
DICHLORODIFLUOROMETHANE	75-71-8	4.9	UG/M3	U	0.184			
CHLOROMETHANE	74-87-3	2.1	UG/M3	U	0.179			
VINYL CHLORIDE	75-01-4	2.6	UG/M3	U	0.191			
BROMOMETHANE	74-83-9	3.9	UG/M3	U	0.232			
CHLOROETHANE	75-00-3	2.6	UG/M3	U	0.212			
TRICHLOROFLUOROMETHANE	75-69-4	5.6	UG/M3	U	0.172			
FREON TF	76-13-1	7.7	UG/M3	U	0.159			
1,1-DICHLOROETHENE	75-35-4	4.0	UG/M3	U	0.165			
METHYLENE CHLORIDE	75-09-2	3.5	UG/M3	U	0.182			
1,1-DICHLOROETHANE	75-34-3	4.0	UG/M3	U	0.167			
CIS-1,2-DICHLOROETHENE	156-59-2	4.0	UG/M3	U	0.119			
CHLOROFORM	67-66-3	4.9	UG/M3	U	0.184			
1,1,1-TRICHLOROETHANE	71-55-6	5.5	UG/M3	U	0.167			
CARBON TETRACHLORIDE	56-23-5	6.3	UG/M3	U	0.168			
BENZENE	71-43-2	3.2	UG/M3	U	0.150			
1,2-DICHLOROETHANE	107-06-2	4.0	UG/M3	U	0.155			
TRICHLOROETHENE	79-01-6	5.4	UG/M3	U	0.166			
1,2-DICHLOROPROPANE	78-87-5	4.6	UG/M3	U	0.173			
CIS-1,3-DICHLOROPROPENE	10061-01-5	4.5	UG/M3	U	0.174			
TOLUENE	108-88-3	3.8	UG/M3	U	0.171			
TRANS-1,3-DICHLOROPROPENE	10061-02-6	4.5	UG/M3	U	0.167			
1,1,2-TRICHLOROETHANE	79-00-5	5.5	UG/M3	U	0.181			
TETRACHLOROETHENE	127-18-4	6.8	UG/M3	U	0.173			
CHLOROBENZENE	108-90-7	4.6	UG/M3	U	0.151			
ETHYLBENZENE	100-41-4	4.3	UG/M3	U	0.132			
XYLENE (M,P)	1330-20-7	4.3	UG/M3	U	0.312			
STYRENE	100-42-5	4.3	UG/M3	U	0.131			
XYLENE (O)	95-47-6	4.3	UG/M3	U	0.160			
1,1,2,2-TETRACHLOROETHANE	79-34-5	6.9	UG/M3	U	0.181			
1,3-DICHLOROBENZENE	541-73-1	6.0	UG/M3	U	0.179			
1,4-DICHLOROBENZENE	106-46-7	6.0	UG/M3	U	0.176			
1,2-DICHLOROBENZENE	95-50-1	6.0	UG/M3	U	0.162			
1,2,4-TRICHLOROBENZENE	120-82-1	7.4	UG/M3	U	0.193			

Sample ID	73 Bay Subslab #2 dilution							
Depth	0.1'							
Sample Date	1/23/2004							
Laboratory ID		5	58686D1					
Method			TO-15					
Analysis Date	01/29/2004							
		Concen-	Quanti-	Quanti-	Quanti-			
	CAS	tration	fication	fication	fication			
Chemical	#	(ug/m3)	Qualifier	Туре	Level			
HEXACHI OROBUTADIENE	87-68-3	11	UG/M3	U	0.198			
1.3.5-TRIMETHYLBENZENE	108-67-8	4.9	UG/M3	Ŭ	0.180			
1.2.4-TRIMETHYLBENZENE	95-63-6	4.9	UG/M3	Ŭ	0.156			
1.2-DICHLOROTETRAFLUOROETHANE	76-14-2	7.0	UG/M3	Ŭ	0.147			
1,2-DIBROMOETHANE	106-93-4	7.7	UG/M3	Ū	0.170			
1,3-BUTADIENE	106-99-0	2.2	UG/M3	U	0.253			
CARBON DISULFIDE	75-15-0	3.1	UG/M3	U	0.177			
ACETONE	67-64-1	29	UG/M3	D	0.204			
METHYL TERT-BUTYL ETHER	1634-04-4	3.6	UG/M3	U	0.162			
CYCLOHEXANE	110-82-7	48	UG/M3	D	0.155			
DIBROMOCHLOROMETHANE	124-48-1	8.5	UG/M3	U	0.142			
METHYL ETHYL KETONE	78-93-3	2.9	UG/M3	U	0.135			
METHYL ISOBUTYL KETONE	108-10-1	4.1	UG/M3	U	0.155			
BROMOFORM	75-25-2	10	UG/M3	U	0.142			
BROMODICHLOROMETHANE	75-27-4	6.7	UG/M3	U	0.152			
TRANS-1,2-DICHLOROETHENE	156-60-5	4.0	UG/M3	U	0.162			
4-ETHYLTOLUENE	622-96-8	4.9	UG/M3	U	0.111			
3-CHLOROPROPENE	107-05-1	3.1	UG/M3	U	0.163			
2,2,4-TRIMETHYLPENTANE	540-84-1	250	UG/M3	D	0.160			
BROMOETHENE	593-60-2	4.4	UG/M3	U	0.186			
2-CHLOROTOLUENE	95-49-8	5.2	UG/M3	U	0.160			
N-HEXANE	110-54-3	3.5	UG/M3	U	0.233			
N-HEPTANE	142-82-5	4.1	UG/M3	U	0.146			
TERT-BUTYL ALCOHOL	75-65-0	30	UG/M3	U	0.218			

Sample ID	73 Bay Subslab #3						
Depth		-	0.1				
Sample Date		1/23/2004					
Laboratory ID			558688				
Method			TO-15				
Analvsis Date		01	/29/2004				
		Concen-	Quanti-	Quanti-	Quanti-		
	CAS	tration	fication	fication	fication		
Chemical	#	(ug/m3)	Qualifier	Туре	Level		
DICHLORODIFLUOROMETHANE	75-71-8	49	UG/M3	U	0.184		
CHLOROMETHANE	74-87-3	21	UG/M3	U	0.179		
VINYL CHLORIDE	75-01-4	26	UG/M3	U	0.191		
BROMOMETHANE	74-83-9	39	UG/M3	U	0.232		
CHLOROETHANE	75-00-3	26	UG/M3	U	0.212		
TRICHLOROFLUOROMETHANE	75-69-4	56	UG/M3	U	0.172		
FREON TF	76-13-1	77	UG/M3	U	0.159		
1,1-DICHLOROETHENE	75-35-4	40	UG/M3	U	0.165		
METHYLENE CHLORIDE	75-09-2	35	UG/M3	U	0.182		
1,1-DICHLOROETHANE	75-34-3	40	UG/M3	U	0.167		
CIS-1,2-DICHLOROETHENE	156-59-2	40	UG/M3	U	0.119		
CHLOROFORM	67-66-3	49	UG/M3	U	0.184		
1,1,1-TRICHLOROETHANE	71-55-6	55	UG/M3	U	0.167		
CARBON TETRACHLORIDE	56-23-5	63	UG/M3	U	0.168		
BENZENE	71-43-2	32	UG/M3	U	0.150		
1,2-DICHLOROETHANE	107-06-2	40	UG/M3	U	0.155		
TRICHLOROETHENE	79-01-6	54	UG/M3	U	0.166		
1,2-DICHLOROPROPANE	78-87-5	46	UG/M3	U	0.173		
CIS-1,3-DICHLOROPROPENE	10061-01-5	45	UG/M3	U	0.174		
TOLUENE	108-88-3	38	UG/M3	U	0.171		
TRANS-1,3-DICHLOROPROPENE	10061-02-6	45	UG/M3	U	0.167		
1,1,2-TRICHLOROETHANE	79-00-5	55	UG/M3	U	0.181		
TETRACHLOROETHENE	127-18-4	68	UG/M3	U	0.173		
CHLOROBENZENE	108-90-7	46	UG/M3	U	0.151		
ETHYLBENZENE	100-41-4	43	UG/M3	U	0.132		
XYLENE (M,P)	1330-20-7	43	UG/M3	U	0.312		
STYRENE	100-42-5	43	UG/M3	U	0.131		
XYLENE (O)	95-47-6	43	UG/M3	U	0.160		
1,1,2,2-TETRACHLOROETHANE	79-34-5	69	UG/M3	U	0.181		
1,3-DICHLOROBENZENE	541-73-1	60	UG/M3	U	0.179		
1,4-DICHLOROBENZENE	106-46-7	60	UG/M3	U	0.176		
1,2-DICHLOROBENZENE	95-50-1	60	UG/M3	U	0.162		
1,2,4-TRICHLOROBENZENE	120-82-1	74	UG/M3	U	0.193		

Sample ID		73 Ba	y Subslat	o #3			
Depth			0.1'				
Sample Date	1/23/2004						
Laboratory ID		:	558688				
Method			TO-15				
Analysis Date	01/29/2004						
		Concen-	Quanti-	Quanti-	Quanti-		
	CAS	tration	fication	fication	fication		
Chemical	#	(ug/m3)	Qualifier	Туре	Level		
HEXACHLOROBUTADIENE	87-68-3	110	UG/M3	U	0.198		
1,3,5-TRIMETHYLBENZENE	108-67-8	49	UG/M3	Ū	0.180		
1,2,4-TRIMETHYLBENZENE	95-63-6	49	UG/M3	U	0.156		
1,2-DICHLOROTETRAFLUOROETHANE	76-14-2	70	UG/M3	U	0.147		
1,2-DIBROMOETHANE	106-93-4	77	UG/M3	U	0.170		
1,3-BUTADIENE	106-99-0	22	UG/M3	U	0.253		
CARBON DISULFIDE	75-15-0	31	UG/M3	U	0.177		
ACETONE	67-64-1	240	UG/M3	U	0.204		
METHYL TERT-BUTYL ETHER	1634-04-4	36	UG/M3	U	0.162		
CYCLOHEXANE	110-82-7	1800	UG/M3		0.155		
DIBROMOCHLOROMETHANE	124-48-1	85	UG/M3	U	0.142		
METHYL ETHYL KETONE	78-93-3	29	UG/M3	U	0.135		
METHYL ISOBUTYL KETONE	108-10-1	41	UG/M3	U	0.155		
BROMOFORM	75-25-2	100	UG/M3	U	0.142		
BROMODICHLOROMETHANE	75-27-4	67	UG/M3	U	0.152		
TRANS-1,2-DICHLOROETHENE	156-60-5	40	UG/M3	U	0.162		
4-ETHYLTOLUENE	622-96-8	49	UG/M3	U	0.111		
3-CHLOROPROPENE	107-05-1	31	UG/M3	U	0.163		
2,2,4-TRIMETHYLPENTANE	540-84-1	8400	UG/M3	E	0.160		
BROMOETHENE	593-60-2	44	UG/M3	U	0.186		
2-CHLOROTOLUENE	95-49-8	52	UG/M3	U	0.160		
N-HEXANE	110-54-3	35	UG/M3	U	0.233		
N-HEPTANE	142-82-5	41	UG/M3	U	0.146		
TERT-BUTYL ALCOHOL	75-65-0	2100	UG/M3		0.218		

Sample ID	73 Bay Subslab #3 Dilution						
Depth		-	0.1'				
Sample Date		1	/23/2004				
Laboratory ID	558688D1						
Method	TO-15						
Analysis Date	01/29/2004						
-		Concen-	Quanti-	Quanti-	Quanti-		
	CAS	tration	fication	fication	fication		
Chemical	#	(ug/m3)	Qualifier	Туре	Level		
DICHLORODIFLUOROMETHANE	75-71-8	200	UG/M3	U	0.184		
CHLOROMETHANE	74-87-3	83	UG/M3	U	0.179		
VINYL CHLORIDE	75-01-4	100	UG/M3	U	0.191		
BROMOMETHANE	74-83-9	160	UG/M3	U	0.232		
CHLOROETHANE	75-00-3	110	UG/M3	U	0.212		
TRICHLOROFLUOROMETHANE	75-69-4	220	UG/M3	U	0.172		
FREON TF	76-13-1	310	UG/M3	U	0.159		
1,1-DICHLOROETHENE	75-35-4	160	UG/M3	U	0.165		
METHYLENE CHLORIDE	75-09-2	140	UG/M3	U	0.182		
1,1-DICHLOROETHANE	75-34-3	160	UG/M3	U	0.167		
CIS-1,2-DICHLOROETHENE	156-59-2	160	UG/M3	U	0.119		
CHLOROFORM	67-66-3	200	UG/M3	U	0.184		
1,1,1-TRICHLOROETHANE	71-55-6	220	UG/M3	U	0.167		
CARBON TETRACHLORIDE	56-23-5	250	UG/M3	U	0.168		
BENZENE	71-43-2	130	UG/M3	U	0.150		
1,2-DICHLOROETHANE	107-06-2	160	UG/M3	U	0.155		
TRICHLOROETHENE	79-01-6	210	UG/M3	U	0.166		
1,2-DICHLOROPROPANE	78-87-5	180	UG/M3	U	0.173		
CIS-1,3-DICHLOROPROPENE	10061-01-5	180	UG/M3	U	0.174		
TOLUENE	108-88-3	150	UG/M3	U	0.171		
TRANS-1,3-DICHLOROPROPENE	10061-02-6	180	UG/M3	U	0.167		
1,1,2-TRICHLOROETHANE	79-00-5	220	UG/M3	U	0.181		
TETRACHLOROETHENE	127-18-4	270	UG/M3	U	0.173		
CHLOROBENZENE	108-90-7	180	UG/M3	U	0.151		
ETHYLBENZENE	100-41-4	170	UG/M3	U	0.132		
XYLENE (M,P)	1330-20-7	170	UG/M3	U	0.312		
STYRENE	100-42-5	170	UG/M3	U	0.131		
XYLENE (O)	95-47-6	170	UG/M3	U	0.160		
1,1,2,2-TETRACHLOROETHANE	79-34-5	270	UG/M3	U	0.181		
1,3-DICHLOROBENZENE	541-73-1	240	UG/M3	U	0.179		
1,4-DICHLOROBENZENE	106-46-7	240	UG/M3	U	0.176		
1,2-DICHLOROBENZENE	95-50-1	240	UG/M3	U	0.162		
1,2,4-TRICHLOROBENZENE	120-82-1	300	UG/M3	U	0.193		

Sample ID	73 Bay Subslab #3 Dilution							
Depth	0.1'							
Sample Date	1/23/2004							
Laboratory ID		5	58688D1					
Method			TO-15					
Analysis Date	01/29/2004							
		Concen-	Quanti-	Quanti-	Quanti-			
	CAS	tration	fication	fication	fication			
Chemical	#	(ug/m3)	Qualifier	Туре	Level			
HEXACHLOROBUTADIENE	87-68-3	430	UG/M3	U	0.198			
1.3.5-TRIMETHYLBENZENE	108-67-8	200	UG/M3	Ŭ	0.180			
1.2.4-TRIMETHYLBENZENE	95-63-6	200	UG/M3	Ū	0.156			
1,2-DICHLOROTETRAFLUOROETHANE	76-14-2	280	UG/M3	U	0.147			
1,2-DIBROMOETHANE	106-93-4	310	UG/M3	U	0.170			
1,3-BUTADIENE	106-99-0	88	UG/M3	U	0.253			
CARBON DISULFIDE	75-15-0	120	UG/M3	U	0.177			
ACETONE	67-64-1	950	UG/M3	U	0.204			
METHYL TERT-BUTYL ETHER	1634-04-4	140	UG/M3	U	0.162			
CYCLOHEXANE	110-82-7	1300	UG/M3	D	0.155			
DIBROMOCHLOROMETHANE	124-48-1	340	UG/M3	U	0.142			
METHYL ETHYL KETONE	78-93-3	120	UG/M3	U	0.135			
METHYL ISOBUTYL KETONE	108-10-1	160	UG/M3	U	0.155			
BROMOFORM	75-25-2	410	UG/M3	U	0.142			
BROMODICHLOROMETHANE	75-27-4	270	UG/M3	U	0.152			
TRANS-1,2-DICHLOROETHENE	156-60-5	160	UG/M3	U	0.162			
4-ETHYLTOLUENE	622-96-8	200	UG/M3	U	0.111			
3-CHLOROPROPENE	107-05-1	130	UG/M3	U	0.163			
2,2,4-TRIMETHYLPENTANE	540-84-1	7500	UG/M3	D	0.160			
BROMOETHENE	593-60-2	170	UG/M3	U	0.186			
2-CHLOROTOLUENE	95-49-8	210	UG/M3	U	0.160			
N-HEXANE	110-54-3	140	UG/M3	U	0.233			
N-HEPTANE	142-82-5	160	UG/M3	U	0.146			
TERT-BUTYL ALCOHOL	75-65-0	1200	UG/M3	U	0.218			

Sample ID	73 Bay Basement					
Depth		N/A				
Sample Date		1,	/23/2004			
Laboratory ID		1	558687			
Method	TO-15					
Analvsis Date		01	/29/2004			
		Concen-	Quanti-	Quanti-	Quanti-	
	CAS	tration	fication	fication	fication	
Chemical	#	(ug/m3)	Qualifier	Туре	Level	
DICHLORODIFLUOROMETHANE	75-71-8	3.2	UG/M3		0.184	
CHLOROMETHANE	74-87-3	1.7	UG/M3		0.179	
VINYL CHLORIDE	75-01-4	1.3	UG/M3	U	0.191	
BROMOMETHANE	74-83-9	1.9	UG/M3	U	0.232	
CHLOROETHANE	75-00-3	1.3	UG/M3	U	0.212	
TRICHLOROFLUOROMETHANE	75-69-4	2.8	UG/M3	U	0.172	
FREON TF	76-13-1	3.8	UG/M3	U	0.159	
1,1-DICHLOROETHENE	75-35-4	2.0	UG/M3	U	0.165	
METHYLENE CHLORIDE	75-09-2	1.7	UG/M3	U	0.182	
1,1-DICHLOROETHANE	75-34-3	2.0	UG/M3	U	0.167	
CIS-1,2-DICHLOROETHENE	156-59-2	2.0	UG/M3	U	0.119	
CHLOROFORM	67-66-3	2.4	UG/M3	U	0.184	
1,1,1-TRICHLOROETHANE	71-55-6	2.7	UG/M3	U	0.167	
CARBON TETRACHLORIDE	56-23-5	3.1	UG/M3	U	0.168	
BENZENE	71-43-2	1.6	UG/M3	U	0.150	
1,2-DICHLOROETHANE	107-06-2	2.0	UG/M3	U	0.155	
TRICHLOROETHENE	79-01-6	2.7	UG/M3	U	0.166	
1,2-DICHLOROPROPANE	78-87-5	2.3	UG/M3	U	0.173	
CIS-1,3-DICHLOROPROPENE	10061-01-5	2.3	UG/M3	U	0.174	
TOLUENE	108-88-3	1.9	UG/M3		0.171	
TRANS-1,3-DICHLOROPROPENE	10061-02-6	2.3	UG/M3	U	0.167	
1,1,2-TRICHLOROETHANE	79-00-5	2.7	UG/M3	U	0.181	
TETRACHLOROETHENE	127-18-4	3.4	UG/M3	U	0.173	
CHLOROBENZENE	108-90-7	2.3	UG/M3	U	0.151	
ETHYLBENZENE	100-41-4	2.2	UG/M3	U	0.132	
XYLENE (M,P)	1330-20-7	2.2	UG/M3	U	0.312	
STYRENE	100-42-5	2.1	UG/M3	U	0.131	
XYLENE (O)	95-47-6	2.2	UG/M3	U	0.160	
1,1,2,2-TETRACHLOROETHANE	79-34-5	3.4	UG/M3	U	0.181	
1,3-DICHLOROBENZENE	541-73-1	3.0	UG/M3	U	0.179	
1,4-DICHLOROBENZENE	106-46-7	3.0	UG/M3	U	0.176	
1,2-DICHLOROBENZENE	95-50-1	3.0	UG/M3	U	0.162	
1,2,4-TRICHLOROBENZENE	120-82-1	3.7	UG/M3	U	0.193	

Sample ID		73 Ba	y Baseme	ent		
Depth			N/A			
Sample Date	1/23/2004					
Laboratory ID		;	558687			
Method			TO-15			
Analysis Date		01	/29/2004			
		Concen-	Quanti-	Quanti-	Quanti-	
	CAS	tration	fication	fication	fication	
Chemical	#	(ug/m3)	Qualifier	Туре	Level	
HEXACHLOROBUTADIENE	87-68-3	5.3	UG/M3	U	0.198	
1.3.5-TRIMETHYLBENZENE	108-67-8	2.5	UG/M3	Ŭ	0.180	
1.2.4-TRIMETHYLBENZENE	95-63-6	2.5	UG/M3	Ū	0.156	
1.2-DICHLOROTETRAFLUOROETHANE	76-14-2	3.5	UG/M3	Ū	0.147	
1,2-DIBROMOETHANE	106-93-4	3.8	UG/M3	U	0.170	
1,3-BUTADIENE	106-99-0	1.1	UG/M3	U	0.253	
CARBON DISULFIDE	75-15-0	1.6	UG/M3	U	0.177	
ACETONE	67-64-1	13	UG/M3		0.204	
METHYL TERT-BUTYL ETHER	1634-04-4	1.8	UG/M3	U	0.162	
CYCLOHEXANE	110-82-7	41	UG/M3		0.155	
DIBROMOCHLOROMETHANE	124-48-1	4.3	UG/M3	U	0.142	
METHYL ETHYL KETONE	78-93-3	1.5	UG/M3	U	0.135	
METHYL ISOBUTYL KETONE	108-10-1	2.0	UG/M3	U	0.155	
BROMOFORM	75-25-2	5.2	UG/M3	U	0.142	
BROMODICHLOROMETHANE	75-27-4	3.4	UG/M3	U	0.152	
TRANS-1,2-DICHLOROETHENE	156-60-5	2.0	UG/M3	U	0.162	
4-ETHYLTOLUENE	622-96-8	2.5	UG/M3	U	0.111	
3-CHLOROPROPENE	107-05-1	1.6	UG/M3	U	0.163	
2,2,4-TRIMETHYLPENTANE	540-84-1	310	UG/M3	E	0.160	
BROMOETHENE	593-60-2	2.2	UG/M3	U	0.186	
2-CHLOROTOLUENE	95-49-8	2.6	UG/M3	U	0.160	
N-HEXANE	110-54-3	1.8	UG/M3	U	0.233	
N-HEPTANE	142-82-5	2.0	UG/M3	U	0.146	
TERT-BUTYL ALCOHOL	75-65-0	15	UG/M3	U	0.218	

Sample ID	73 Bay Basement Dilution						
Depth	N/A						
Sample Date	1/23/2004						
Laboratory ID	558687D1						
Method	TO-15						
Analysis Date	01/29/2004						
		Concen-	Quanti-	Quanti-	Quanti-		
	CAS	tration	fication	fication	fication		
Chemical	#	(ug/m3)	Qualifier	Туре	Level		
DICHLORODIFLUOROMETHANE	75-71-8	4.9	UG/M3	U	0.184		
CHLOROMETHANE	74-87-3	2.1	UG/M3	Ū	0.179		
VINYL CHLORIDE	75-01-4	2.6	UG/M3	U	0.191		
BROMOMETHANE	74-83-9	3.9	UG/M3	U	0.232		
CHLOROETHANE	75-00-3	2.6	UG/M3	U	0.212		
TRICHLOROFLUOROMETHANE	75-69-4	5.6	UG/M3	U	0.172		
FREON TF	76-13-1	7.7	UG/M3	U	0.159		
1,1-DICHLOROETHENE	75-35-4	4.0	UG/M3	U	0.165		
METHYLENE CHLORIDE	75-09-2	3.5	UG/M3	U	0.182		
1,1-DICHLOROETHANE	75-34-3	4.0	UG/M3	U	0.167		
CIS-1,2-DICHLOROETHENE	156-59-2	4.0	UG/M3	U	0.119		
CHLOROFORM	67-66-3	4.9	UG/M3	U	0.184		
1,1,1-TRICHLOROETHANE	71-55-6	5.5	UG/M3	U	0.167		
CARBON TETRACHLORIDE	56-23-5	6.3	UG/M3	U	0.168		
BENZENE	71-43-2	3.2	UG/M3	U	0.150		
1,2-DICHLOROETHANE	107-06-2	4.0	UG/M3	U	0.155		
TRICHLOROETHENE	79-01-6	5.4	UG/M3	U	0.166		
1,2-DICHLOROPROPANE	78-87-5	4.6	UG/M3	U	0.173		
CIS-1,3-DICHLOROPROPENE	10061-01-5	4.5	UG/M3	U	0.174		
TOLUENE	108-88-3	3.8	UG/M3	U	0.171		
TRANS-1,3-DICHLOROPROPENE	10061-02-6	4.5	UG/M3	U	0.167		
1,1,2-TRICHLOROETHANE	79-00-5	5.5	UG/M3	U	0.181		
TETRACHLOROETHENE	127-18-4	6.8	UG/M3	U	0.173		
CHLOROBENZENE	108-90-7	4.6	UG/M3	U	0.151		
ETHYLBENZENE	100-41-4	4.3	UG/M3	U	0.132		
XYLENE (M,P)	1330-20-7	4.3	UG/M3	U	0.312		
STYRENE	100-42-5	4.3	UG/M3	U	0.131		
XYLENE (O)	95-47-6	4.3	UG/M3	U	0.160		
1,1,2,2-TETRACHLOROETHANE	79-34-5	6.9	UG/M3	U	0.181		
1,3-DICHLOROBENZENE	541-73-1	6.0	UG/M3	U	0.179		
1,4-DICHLOROBENZENE	106-46-7	6.0	UG/M3	U	0.176		
1,2-DICHLOROBENZENE	95-50-1	6.0	UG/M3	U	0.162		
1,2,4-TRICHLOROBENZENE	120-82-1	7.4	UG/M3	U	0.193		

2005Table 4-72004 Subslab and Indoor Air Testing Results, Stafford Site

Sample ID	73 Bay Basement Dilution					
Depth	N/A					
Sample Date	1/23/2004					
Laboratory ID		5	58687D1			
Method			TO-15			
Analysis Date		0	1/29/2004			
		Concen-	Quanti-	Quanti-	Quanti-	
	CAS	tration	fication	fication	fication	
Chemical	#	(ug/m3)	Qualifier	Туре	Level	
HEXACHLOROBUTADIENE	87-68-3	11	UG/M3	U	0.198	
1.3.5-TRIMETHYLBENZENE	108-67-8	4.9	UG/M3	Ū	0.180	
1.2.4-TRIMETHYLBENZENE	95-63-6	4.9	UG/M3	Ū	0.156	
1.2-DICHLOROTETRAFLUOROETHANE	76-14-2	7.0	UG/M3	Ū	0.147	
1,2-DIBROMOETHANE	106-93-4	7.7	UG/M3	U	0.170	
1,3-BUTADIENE	106-99-0	2.2	UG/M3	U	0.253	
CARBON DISULFIDE	75-15-0	3.1	UG/M3	U	0.177	
ACETONE	67-64-1	24	UG/M3	U	0.204	
METHYL TERT-BUTYL ETHER	1634-04-4	3.6	UG/M3	U	0.162	
CYCLOHEXANE	110-82-7	45	UG/M3	D	0.155	
DIBROMOCHLOROMETHANE	124-48-1	8.5	UG/M3	U	0.142	
METHYL ETHYL KETONE	78-93-3	2.9	UG/M3	U	0.135	
METHYL ISOBUTYL KETONE	108-10-1	4.1	UG/M3	U	0.155	
BROMOFORM	75-25-2	10	UG/M3	U	0.142	
BROMODICHLOROMETHANE	75-27-4	6.7	UG/M3	U	0.152	
TRANS-1,2-DICHLOROETHENE	156-60-5	4.0	UG/M3	U	0.162	
4-ETHYLTOLUENE	622-96-8	4.9	UG/M3	U	0.111	
3-CHLOROPROPENE	107-05-1	3.1	UG/M3	U	0.163	
2,2,4-TRIMETHYLPENTANE	540-84-1	300	UG/M3	D	0.160	
BROMOETHENE	593-60-2	4.4	UG/M3	U	0.186	
2-CHLOROTOLUENE	95-49-8	5.2	UG/M3	U	0.160	
N-HEXANE	110-54-3	3.5	UG/M3	U	0.233	
N-HEPTANE	142-82-5	4.1	UG/M3	U	0.146	
TERT-BUTYL ALCOHOL	75-65-0	30	UG/M3	U	0.218	

Sample ID	73 Bay Basement Duplicate						
Depth	N/A						
Sample Date		1	/23/2004				
Laboratory ID	558689						
Method	TO-15						
Analysis Date	01/29/2004						
· · · · · · · · · · · · · · · · · · ·		Concen-	Quanti-	Quanti-	Quanti-		
	CAS	tration	fication	fication	fication		
Chemical	#	(ug/m3)	Qualifier	Туре	Level		
DICHLORODIFLUOROMETHANE	75-71-8	3.0	UG/M3		0.184		
CHLOROMETHANE	74-87-3	1.6	UG/M3		0.179		
VINYL CHLORIDE	75-01-4	1.3	UG/M3	U	0.191		
BROMOMETHANE	74-83-9	1.9	UG/M3	U	0.232		
CHLOROETHANE	75-00-3	1.3	UG/M3	U	0.212		
TRICHLOROFLUOROMETHANE	75-69-4	2.8	UG/M3	U	0.172		
FREON TF	76-13-1	3.8	UG/M3	U	0.159		
1,1-DICHLOROETHENE	75-35-4	2.0	UG/M3	U	0.165		
METHYLENE CHLORIDE	75-09-2	1.7	UG/M3	U	0.182		
1,1-DICHLOROETHANE	75-34-3	2.0	UG/M3	U	0.167		
CIS-1,2-DICHLOROETHENE	156-59-2	2.0	UG/M3	U	0.119		
CHLOROFORM	67-66-3	2.4	UG/M3	U	0.184		
1,1,1-TRICHLOROETHANE	71-55-6	2.7	UG/M3	U	0.167		
CARBON TETRACHLORIDE	56-23-5	3.1	UG/M3	U	0.168		
BENZENE	71-43-2	1.6	UG/M3	U	0.150		
1,2-DICHLOROETHANE	107-06-2	2.0	UG/M3	U	0.155		
TRICHLOROETHENE	79-01-6	2.7	UG/M3	U	0.166		
1,2-DICHLOROPROPANE	78-87-5	2.3	UG/M3	U	0.173		
CIS-1,3-DICHLOROPROPENE	10061-01-5	2.3	UG/M3	U	0.174		
TOLUENE	108-88-3	3.4	UG/M3		0.171		
TRANS-1,3-DICHLOROPROPENE	10061-02-6	2.3	UG/M3	U	0.167		
1,1,2-TRICHLOROETHANE	79-00-5	2.7	UG/M3	U	0.181		
TETRACHLOROETHENE	127-18-4	3.4	UG/M3	U	0.173		
CHLOROBENZENE	108-90-7	2.3	UG/M3	U	0.151		
ETHYLBENZENE	100-41-4	2.2	UG/M3	U	0.132		
XYLENE (M,P)	1330-20-7	2.2	UG/M3	U	0.312		
STYRENE	100-42-5	2.1	UG/M3	U	0.131		
XYLENE (O)	95-47-6	2.2	UG/M3	U	0.160		
1,1,2,2-TETRACHLOROETHANE	79-34-5	3.4	UG/M3	U	0.181		
1,3-DICHLOROBENZENE	541-73-1	3.0	UG/M3	U	0.179		
1,4-DICHLOROBENZENE	106-46-7	3.0	UG/M3	U	0.176		
1,2-DICHLOROBENZENE	95-50-1	3.0	UG/M3	U	0.162		
1,2,4-TRICHLOROBENZENE	120-82-1	3.7	UG/M3	U	0.193		

DepthN/ASample Date1/23/2004Laboratory ID558689MethodTO-15Analysis Date01/29/2004Concen- Quanti-Quanti-CAStrationtrationficationChemical#HEXACHLOROBUTADIENE87-68-35.3UG/M3U0.198	Sample ID	7	3 Bay Ba	sement D	uplicate			
Sample Date1/23/2004Laboratory ID558689MethodTO-15Analysis Date01/29/2004Concen- Quanti-Quanti-CAStrationtrationficationChemical#HEXACHLOROBUTADIENE87-68-35.3UG/M3U0.198	Depth	N/A						
Laboratory ID558689MethodTO-15Analysis Date01/29/2004Concen- Quanti- Quanti- Quanti- CASConcen- Quanti- fication fication fication fication fication (ug/m3) Qualifier Type LevelHEXACHLOROBUTADIENE87-68-35.3UG/M3U0.198	Sample Date	1/23/2004						
MethodTO-15Analysis Date01/29/2004Concen- Quanti- Quanti- Quanti- CASConcen- Quanti- Quanti- fication fication fication ficationChemical#HEXACHLOROBUTADIENE87-68-35.3UG/M3U0.198	Laboratory ID			558689				
Analysis Date01/29/2004Concen- Quanti- Quanti- Quanti- CAS (ug/m3) QualifierQuanti- fication fication trationChemical#(ug/m3) Qualifier 5.3TypeHEXACHLOROBUTADIENE87-68-35.3UG/M3U	Method			TO-15				
Concen-Quanti-Quanti-Quanti-CAStrationficationficationChemical#(ug/m3)QualifierTypeLevelHEXACHLOROBUTADIENE87-68-35.3UG/M3U0.198	Analysis Date	01/29/2004						
CAStrationficationficationChemical#(ug/m3)QualifierTypeLevelHEXACHLOROBUTADIENE87-68-35.3UG/M3U0.198			Concen-	Quanti-	Quanti-	Quanti-		
Chemical#(ug/m3)QualifierTypeLevelHEXACHLOROBUTADIENE87-68-35.3UG/M3U0.198		CAS	tration	fication	fication	fication		
HEXACHLOROBUTADIENE 87-68-3 5.3 UG/M3 U 0.198	Chemical	#	(ug/m3)	Qualifier	Туре	Level		
	HEXACHLOROBUTADIENE	87-68-3	5.3	UG/M3	U	0.198		
1,3,5-TRIMETHYLBENZENE 108-67-8 2.5 UG/M3 U 0.180	1,3,5-TRIMETHYLBENZENE	108-67-8	2.5	UG/M3	U	0.180		
1,2,4-TRIMETHYLBENZENE 95-63-6 2.5 UG/M3 U 0.156	1,2,4-TRIMETHYLBENZENE	95-63-6	2.5	UG/M3	U	0.156		
1,2-DICHLOROTETRAFLUOROETHANE 76-14-2 3.5 UG/M3 U 0.147	1,2-DICHLOROTETRAFLUOROETHANE	76-14-2	3.5	UG/M3	U	0.147		
1,2-DIBROMOETHANE 106-93-4 3.8 UG/M3 U 0.170	1,2-DIBROMOETHANE	106-93-4	3.8	UG/M3	U	0.170		
1,3-BUTADIENE 106-99-0 1.1 UG/M3 U 0.253	1,3-BUTADIENE	106-99-0	1.1	UG/M3	U	0.253		
CARBON DISULFIDE 75-15-0 1.6 UG/M3 U 0.177	CARBON DISULFIDE	75-15-0	1.6	UG/M3	U	0.177		
ACETONE 67-64-1 26 UG/M3 0.204	ACETONE	67-64-1	26	UG/M3		0.204		
METHYL TERT-BUTYL ETHER 1634-04-4 1.8 UG/M3 U 0.162	METHYL TERT-BUTYL ETHER	1634-04-4	1.8	UG/M3	U	0.162		
CYCLOHEXANE 110-82-7 55 UG/M3 0.155	CYCLOHEXANE	110-82-7	55	UG/M3		0.155		
DIBROMOCHLOROMETHANE 124-48-1 4.3 UG/M3 U 0.142	DIBROMOCHLOROMETHANE	124-48-1	4.3	UG/M3	U	0.142		
METHYL ETHYL KETONE 78-93-3 1.5 UG/M3 U 0.135	METHYL ETHYL KETONE	78-93-3	1.5	UG/M3	U	0.135		
METHYL ISOBUTYL KETONE 108-10-1 2.0 UG/M3 U 0.155	METHYL ISOBUTYL KETONE	108-10-1	2.0	UG/M3	U	0.155		
BROMOFORM 75-25-2 5.2 UG/M3 U 0.142	BROMOFORM	75-25-2	5.2	UG/M3	U	0.142		
BROMODICHLOROMETHANE75-27-43.4UG/M3U0.152	BROMODICHLOROMETHANE	75-27-4	3.4	UG/M3	U	0.152		
TRANS-1,2-DICHLOROETHENE 156-60-5 2.0 UG/M3 U 0.162	TRANS-1,2-DICHLOROETHENE	156-60-5	2.0	UG/M3	U	0.162		
4-ETHYLTOLUENE 622-96-8 2.5 UG/M3 U 0.111	4-ETHYLTOLUENE	622-96-8	2.5	UG/M3	U	0.111		
3-CHLOROPROPENE 107-05-1 1.6 UG/M3 U 0.163	3-CHLOROPROPENE	107-05-1	1.6	UG/M3	U	0.163		
2,2,4-TRIMETHYLPENTANE 540-84-1 320 UG/M3 E 0.160	2,2,4-TRIMETHYLPENTANE	540-84-1	320	UG/M3	Е	0.160		
BROMOETHENE 593-60-2 2.2 UG/M3 U 0.186	BROMOETHENE	593-60-2	2.2	UG/M3	U	0.186		
2-CHLOROTOLUENE 95-49-8 2.6 UG/M3 U 0.160	2-CHLOROTOLUENE	95-49-8	2.6	UG/M3	U	0.160		
N-HEXANE 110-54-3 1.8 UG/M3 U 0.233	N-HEXANE	110-54-3	1.8	UG/M3	U	0.233		
N-HEPTANE 142-82-5 2.0 UG/M3 U 0.146	N-HEPTANE	142-82-5	2.0	UG/M3	U	0.146		
TERT-BUTYL ALCOHOL 75-65-0 15 UG/M3 U 0.218	TERT-BUTYL ALCOHOL	75-65-0	15	UG/M3	U	0.218		

Sample ID	73 Bay First Floor											
Depth			N/A									
Sample Date		1/	/23/2004									
Laboratory ID		ļ	558690									
Method			TO-15									
Analysis Date		01	/29/2004									
		Concen-	Quanti-	Quanti-	Quanti-							
	CAS	tration	fication	fication	fication							
Chemical	#	(ug/m3)	Qualifier	Туре	Level							
DICHLORODIFLUOROMETHANE	75-71-8	3.0	UG/M3		0.184							
CHLOROMETHANE	74-87-3	1.7	UG/M3		0.179							
VINYL CHLORIDE	75-01-4	1.3	UG/M3	U	0.191							
BROMOMETHANE	74-83-9	1.9	UG/M3	U	0.232							
CHLOROETHANE	75-00-3	1.3	UG/M3	U	0.212							
TRICHLOROFLUOROMETHANE	75-69-4	2.8	UG/M3	U	0.172							
FREON TF	76-13-1	3.8	UG/M3	U	0.159							
1,1-DICHLOROETHENE	75-35-4	2.0	UG/M3	U	0.165							
METHYLENE CHLORIDE	75-09-2	1.7	UG/M3	U	0.182							
1,1-DICHLOROETHANE	75-34-3	2.0	UG/M3	U	0.167							
CIS-1,2-DICHLOROETHENE	156-59-2	2.0	UG/M3	U	0.119							
CHLOROFORM	67-66-3	2.4	UG/M3	U	0.184							
1,1,1-TRICHLOROETHANE	71-55-6	2.7	UG/M3	U	0.167							
CARBON TETRACHLORIDE	56-23-5	3.1	UG/M3	U	0.168							
BENZENE	71-43-2	1.6	UG/M3	U	0.150							
1,2-DICHLOROETHANE	107-06-2	2.0	UG/M3	U	0.155							
TRICHLOROETHENE	79-01-6	2.7	UG/M3	U	0.166							
1,2-DICHLOROPROPANE	78-87-5	2.3	UG/M3	U	0.173							
CIS-1,3-DICHLOROPROPENE	10061-01-5	2.3	UG/M3	U	0.174							
TOLUENE	108-88-3	4.1	UG/M3		0.171							
TRANS-1,3-DICHLOROPROPENE	10061-02-6	2.3	UG/M3	U	0.167							
1,1,2-TRICHLOROETHANE	79-00-5	2.7	UG/M3	U	0.181							
TETRACHLOROETHENE	127-18-4	3.4	UG/M3	U	0.173							
CHLOROBENZENE	108-90-7	2.3	UG/M3	U	0.151							
ETHYLBENZENE	100-41-4	2.2	UG/M3	U	0.132							
XYLENE (M,P)	1330-20-7	2.2	UG/M3	U	0.312							
STYRENE	100-42-5	2.1	UG/M3	U	0.131							
XYLENE (O)	95-47-6	2.2	UG/M3	U	0.160							
1,1,2,2-TETRACHLOROETHANE	79-34-5	3.4	UG/M3	U	0.181							
	541-73-1	3.0	UG/M3	U	0.179							
	106-46-7	3.0	UG/M3	U	0.176							
	95-50-1	3.0		U	0.162							
11.2.4-1 RICHLOROBENZENE	120-82-1	3.7	UG/M3	U	0.193							

Sample ID		73 Bay	y First Flo	or							
Depth			N/A								
Sample Date		1/	23/2004								
Laboratory ID		Ę	558690								
Method			TO-15								
Analysis Date	01/29/2004										
		Concen-	Quanti-	Quanti-	Quanti-						
	CAS	tration	fication	fication	fication						
Chemical	#	(ug/m3)	Qualifier	Туре	Level						
HEXACHI OROBUTADIENE	87-68-3	5.3	UG/M3	IJ	0.198						
1.3.5-TRIMETHYLBENZENE	108-67-8	2.5	UG/M3	Ŭ	0.180						
1.2.4-TRIMETHYLBENZENE	95-63-6	2.5	UG/M3	Ŭ	0.156						
1.2-DICHLOROTETRAFLUOROETHANE	76-14-2	3.5	UG/M3	Ū	0.147						
1.2-DIBROMOETHANE	106-93-4	3.8	UG/M3	Ū	0.170						
1,3-BUTADIENE	106-99-0	1.1	UG/M3	U	0.253						
CARBON DISULFIDE	75-15-0	1.6	UG/M3	U	0.177						
ACETONE	67-64-1	26	UG/M3		0.204						
METHYL TERT-BUTYL ETHER	1634-04-4	1.8	UG/M3	U	0.162						
CYCLOHEXANE	110-82-7	41	UG/M3		0.155						
DIBROMOCHLOROMETHANE	124-48-1	4.3	UG/M3	U	0.142						
METHYL ETHYL KETONE	78-93-3	1.5	UG/M3	U	0.135						
METHYL ISOBUTYL KETONE	108-10-1	2.0	UG/M3	U	0.155						
BROMOFORM	75-25-2	5.2	UG/M3	U	0.142						
BROMODICHLOROMETHANE	75-27-4	3.4	UG/M3	U	0.152						
TRANS-1,2-DICHLOROETHENE	156-60-5	2.0	UG/M3	U	0.162						
4-ETHYLTOLUENE	622-96-8	2.5	UG/M3	U	0.111						
3-CHLOROPROPENE	107-05-1	1.6	UG/M3	U	0.163						
2,2,4-TRIMETHYLPENTANE	540-84-1	210	UG/M3	Е	0.160						
BROMOETHENE	593-60-2	2.2	UG/M3	U	0.186						
2-CHLOROTOLUENE	95-49-8	2.6	UG/M3	U	0.160						
N-HEXANE	110-54-3	1.8	UG/M3	U	0.233						
N-HEPTANE	142-82-5	2.0	UG/M3	U	0.146						
TERT-BUTYL ALCOHOL	75-65-0	15	UG/M3	U	0.218						

Sample ID	73 Bay First Floor Dilution										
Depth		•	N/A								
Sample Date		1	/23/2004								
Laboratory ID		5	58690D1								
Method			TO-15								
Analysis Date		0)1/29/2004								
		Concen-	Quanti-	Quanti-	Quanti-						
	CAS	tration	fication	fication	fication						
Chemical	#	(ug/m3)	Qualifier	Туре	Level						
DICHLORODIFLUOROMETHANE	75-71-8	4.9	UG/M3	U	0.184						
CHLOROMETHANE	74-87-3	2.1	UG/M3	Ū	0.179						
VINYL CHLORIDE	75-01-4	2.6	UG/M3	U	0.191						
BROMOMETHANE	74-83-9	3.9	UG/M3	U	0.232						
CHLOROETHANE	75-00-3	2.6	UG/M3	U	0.212						
TRICHLOROFLUOROMETHANE	75-69-4	5.6	UG/M3	U	0.172						
FREON TF	76-13-1	7.7	UG/M3	U	0.159						
1,1-DICHLOROETHENE	75-35-4	4.0	UG/M3	U	0.165						
METHYLENE CHLORIDE	75-09-2	3.5	UG/M3	U	0.182						
1,1-DICHLOROETHANE	75-34-3	4.0	UG/M3	U	0.167						
CIS-1,2-DICHLOROETHENE	156-59-2	4.0	UG/M3	U	0.119						
CHLOROFORM	67-66-3	4.9	UG/M3	U	0.184						
1,1,1-TRICHLOROETHANE	71-55-6	5.5	UG/M3	U	0.167						
CARBON TETRACHLORIDE	56-23-5	6.3	UG/M3	U	0.168						
BENZENE	71-43-2	3.2	UG/M3	U	0.150						
1,2-DICHLOROETHANE	107-06-2	4.0	UG/M3	U	0.155						
TRICHLOROETHENE	79-01-6	5.4	UG/M3	U	0.166						
1,2-DICHLOROPROPANE	78-87-5	4.6	UG/M3	U	0.173						
CIS-1,3-DICHLOROPROPENE	10061-01-5	4.5	UG/M3	U	0.174						
TOLUENE	108-88-3	4.5	UG/M3	D	0.171						
TRANS-1,3-DICHLOROPROPENE	10061-02-6	4.5	UG/M3	U	0.167						
1,1,2-TRICHLOROETHANE	79-00-5	5.5	UG/M3	U	0.181						
TETRACHLOROETHENE	127-18-4	6.8	UG/M3	U	0.173						
CHLOROBENZENE	108-90-7	4.6	UG/M3	U	0.151						
ETHYLBENZENE	100-41-4	4.3	UG/M3	U	0.132						
XYLENE (M,P)	1330-20-7	4.3	UG/M3	U	0.312						
STYRENE	100-42-5	4.3	UG/M3	U	0.131						
XYLENE (O)	95-47-6	4.3	UG/M3	U	0.160						
1,1,2,2-TETRACHLOROETHANE	79-34-5	6.9	UG/M3	U	0.181						
1,3-DICHLOROBENZENE	541-73-1	6.0	UG/M3	U	0.179						
1,4-DICHLOROBENZENE	106-46-7	6.0	UG/M3	U	0.176						
1,2-DICHLOROBENZENE	95-50-1	6.0	UG/M3	U	0.162						
11.2.4-TRICHLOROBENZENE	120-82-1	7.4	UG/M3	U	0.193						

Sample ID	-	73 Bay Fi	rst Floor	Dilution	
Depth			N/A		
Sample Date		1	/23/2004		
Laboratory ID		5	58690D1		
Method			TO-15		
Analysis Date		01	1/29/2004		
		Concen-	Quanti-	Quanti-	Quanti-
	CAS	tration	fication	fication	fication
Chemical	#	(ug/m3)	Qualifier	Туре	Level
HEXACHLOROBUTADIENE	87-68-3	11	UG/M3	U	0.198
1.3.5-TRIMETHYLBENZENE	108-67-8	4.9	UG/M3	Ŭ	0.180
1,2,4-TRIMETHYLBENZENE	95-63-6	4.9	UG/M3	Ū	0.156
1,2-DICHLOROTETRAFLUOROETHANE	76-14-2	7.0	UG/M3	U	0.147
1,2-DIBROMOETHANE	106-93-4	7.7	UG/M3	U	0.170
1,3-BUTADIENE	106-99-0	2.2	UG/M3	U	0.253
CARBON DISULFIDE	75-15-0	3.1	UG/M3	U	0.177
ACETONE	67-64-1	26	UG/M3	D	0.204
METHYL TERT-BUTYL ETHER	1634-04-4	3.6	UG/M3	U	0.162
CYCLOHEXANE	110-82-7	38	UG/M3	D	0.155
DIBROMOCHLOROMETHANE	124-48-1	8.5	UG/M3	U	0.142
METHYL ETHYL KETONE	78-93-3	2.9	UG/M3	U	0.135
METHYL ISOBUTYL KETONE	108-10-1	4.1	UG/M3	U	0.155
BROMOFORM	75-25-2	10	UG/M3	U	0.142
BROMODICHLOROMETHANE	75-27-4	6.7	UG/M3	U	0.152
TRANS-1,2-DICHLOROETHENE	156-60-5	4.0	UG/M3	U	0.162
4-ETHYLTOLUENE	622-96-8	4.9	UG/M3	U	0.111
3-CHLOROPROPENE	107-05-1	3.1	UG/M3	U	0.163
2,2,4-TRIMETHYLPENTANE	540-84-1	190	UG/M3	D	0.160
BROMOETHENE	593-60-2	4.4	UG/M3	U	0.186
2-CHLOROTOLUENE	95-49-8	5.2	UG/M3	U	0.160
N-HEXANE	110-54-3	3.5	UG/M3	U	0.233
N-HEPTANE	142-82-5	4.1	UG/M3	U	0.146
TERT-BUTYL ALCOHOL	75-65-0	30	UG/M3	U	0.218

2005Table 4-8Weather Conditions at Atlantic City Airport - January 2004

		Temp	Temp	Pressure	Wind	Wind		
Date	Time	(oF)	(oC)	(mbar)	direction	MPH	Weather	Comments
1								
Jan. 14	9:00 AM	10	7.0	1024	N	0		
	10.00 AM	19	-7.2	1024		0		
	Noon	21 0	-0.1	1024		0		
		21.9	-5.0	1022		9		
	2:00 PM	21.9	-5.0	1020	Colm	0		
	2.00 FM	21.9	-5.0	1019		2		
	3.00 FIM	24.1	-4.4	1017	50	0		
	4.00 PM	21.9	-5.0	1016		0		
	5.00 PM	21	-0.1	1016		0		
	0.00 PM	210	-0.1	1010	ESE	6		
		21.9	-5.0	1013	ESE	11		
		23	-5	1013	ESE	14		
	9.00 FIN	24.1	-4.4	1011	ESE	10		
	10.00 FM	20	-3.9	1011	ESE	10	light spow	
	Midnight	20.1	-3.3	1009	E3E E	12	light snow: mist	
lan 15		20.1	-3.3	1007		12	light snow; mist	
Jan. 15	1.00 AM	20	-2	1004		0	light snow; mist	This overtwee a
	2:00 AM	20	- <u>-</u> 1 1	1003		9 10	light snow; mist	total of 2.0" of snow
	3.00 AM	20	-1.1	1003		0	light snow; mist	(0.2" water equivalent)
	4.00 AM	20	-2.2 1	1002	VVINVV	3	light snow; mist	(0.2 water equivalent)
	5.00 AM	24 23	-4 -5	1003	N	22 18	light show, mist	
	7:00 AM	23	-6.1	1004	N	10	light show	
	8:00 AM	21 17	-0.1	1005	N	20	light snow	
		15	-0	1007	N	17	light show	
	10.00 AM	15	-3	1010		17	light show	
	11.00 AM	17 1	-83	1012		16		
	Noon	19	-7.2	1012	NW	22		
	1.00 PM	19.9	-6.7	1011	WNW	18		
	2:00 PM	21.9	-5.6	1010	NW	17		
	3:00 PM	21.0	-5.6	1010	NW	14		
	4:00 PM	21.0	-6.1	1011	NW	25		
	5:00 PM	18	-7.8	1011	NW	15		
	6:00 PM	16	-8.9	1012	NW	10		
	7:00 PM	16	-8.9	1013	NNW	12		
	8:00 PM	14	-10	1013	NNW	12		
	9:00 PM	10.9	-11.7	1014	NW	9		
	10:00 PM	8.1	-13.3	1014	NNW	6		
	11:00 PM	7	-13.9	1014	NW	7		
	Midnight	6.1	-14.4	1014	NW	13		
Jan. 16	1:00 AM	8.1	-13.3	1014	NW	21		
	2:00 AM	7	-13.9	1014	WNW	21		
	3:00 AM	6.1	-14.4	1014	WNW	15		
	4:00 AM	7	-13.9	1013	W	18		Jan. 16: High was 26°F
	5:00 AM	7	-13.9	1012	W	20		Low was 6°F
	6:00 AM	8.1	-13.3	1012	Ŵ	20		No precipitation
	7:00 AM	8.1	-13.3	1012	WNW	18		Average wind speed:
	8:00 AM	9	-12.8	1012	W	20		21.9 mph
	9:00 AM	12.9	-10.6	1012	WNW	20		,

2005Table 4-8Weather Conditions at Atlantic City Airport - January 2004

023-6124C

Date	Time	Temp (oF)	Temp (oC)	Pressure (mbar)	Wind direction	Wind MPH	Weather	Comments
	10:00 AM	16	-8.9	1013	WNW	29		
lon 19	9.00 AM	22	1	1004	SS/M		provinitation	
Jan. 10	0.00 AN	33 25 4	17	1004	3310	r C		
	9.00 AN	30. I 25	1.7	1003	3	0	light roin	
	10.00 AM	30 25	2	1002	3	ა ი	light rain	On lon 18 there was
	11.00 AIVI	30 25	2	1000	3 Variabla	ა ი	light rain, mist	On Jan. 16, there was
		35	2	998	variable	3	light rain; mist	0.4 Of Show, but most
	1:00 PM	37	3	996	VV5VV	6	light rain; mist	precipitation was rain
	2:00 PM	37	3	995	NW	5	light rain; mist	(0.41" water equivalent)
	3:00 PM	37	3	994	NW	12	mist	
	4:00 PM	37	2.8	995	NW	10	light rain; mist	
	5:00 PM	36	2.2	995	NNW	13	mist	
	6:00 PM	34	1.1	996	NW	12	light snow; mist	
	7:00 PM	33	1	997	NW	13		
	8:00 PM	34	1.1	998	WNW	13		
	9:00 PM	33	1	999	NW	14		
	10:00 PM	32	0	1000	WNW	10		
	11:00 PM	30.9	-0.6	1001	NW	12		
	Midnight	28.9	-1.7	1002	NW	18		
Jan. 19	1:00 AM	28	-2.2	1003	WNW	18		
	2:00 AM	26.1	-3.3	1004				
	3:00 AM	24.1	-4.4	1005				
	4:00 AM	24.1	-4.4	1005				
	5:00 AM	23	-5	1005				
	6:00 AM	23	-5	1006				
	7:00 AM	23	-5	1006				
	8:00 AM							
	9:00 AM	24.1	-4.4	1006				
	10:00 AM	28	-2.2	1006	WNW	23		
	11:00 AM	28.9	-1.7	1006	WNW	21		
	Noon	28.9	-1.7	1006	WNW	24		
	1:00 PM	28.9	-1.7	1006	WNW	18		
	2:00 PM	30	-1.1	1006	W	23		
	3:00 PM	30	-1.1	1006	W	22		
	4:00 PM	28.9	-1.7	1007	W	20		
	5:00 PM	26.1	-3.3	1007	WNW	24		
	6:00 PM	25	-3.9	1008	W	17		
	7:00 PM	25	-3.9	1009	W	15		
	8:00 PM	24.1	-4.4	1010	W	16		
	9:00 PM	24.1	-4.4	1010	W	16		
	10:00 PM	23	-5	1011	W	16		
	11:00 PM	23	-5	1011	W	13		
	Midnight	21.9	-5.6	1011	W	16		
Jan. 20	1:00 AM	21.9	-5.6	1011	W	18		
	2:00 AM	21	-6.1	1012	Ŵ	12		
	3:00 AM	21	-6.1	1012	Ŵ	14		
	4:00 AM	19.9	-6.7	1012	Ŵ	13		
	5:00 AM	19.9	-6.7	1013	W	8		

2005Table 4-8Weather Conditions at Atlantic City Airport - January 2004

Dete	Time	Temp	Temp	Pressure	Wind	Wind	Weether	Commente
Date	Time	(0г)	(00)	(noar)	direction		weather	Comments
	6:00 AM	19.9	-6.7	1013	W	10		
	7:00 AM	21	-6.1	1017	WNW	13		
	8:00 AM	21.9	-5.6	1017	WNW	12		
	9:00 AM	25	-3.9	1015	WNW	14		
	10:00 AM	27	-2.8	1015	NW	22		
	11:00 AM	28	-2.2	1015	NW	22		
	Noon	28	-2.2	1014	WNW	28		
	1:00 PM	30	-1.1	1014	WNW	25		
	2:00 PM	30	-1.1	1014	NW	26		
	3:00 PM	28.9	-1.7	1015	W	25		
	4:00 PM	28.9	-1.7	1015	WNW	15		
	5:00 PM	27	-2.8	1016	W	16		
	6:00 PM	25	-3.9	1017	W	13		
	7:00 PM	25	-3.9	1017	W	14		
	8:00 PM	24.1	-4.4	1017	W	14		
	9:00 PM	23	-5	1018	WNW	13		
	10:00 PM	21.9	-5.6	1018	WNW	12		
	11:00 PM	19.9	-6.7	1019	WNW	10		
	Midnight	19	-7.2	1019	WNW	9		
Jan. 21	1:00 AM	19	-7.2	1019	WNW	12		
	2:00 AM	19	-7.2	1020	WNW	12		
	3:00 AM	19	-7.2	1020	WNW	14		
	4:00 AM	18	-7.8	1020	WNW	12		
	5:00 AM	17.1	-8.3	1020	WNW	14		
	6:00 AM	17.1	-8.3	1020	WNW	12		
	7:00 AM	17.1	-8.3	1020	WNW	13		
	8:00 AM	17.1	-8.3	1021	WNW	12		
	9:00 AM	19.9	-6.7	1021	WNW	14		
	10:00 AM	24	-4	1021	NW	16		
	11:00 AM	26.1	-3.3	1021	WNW	16		
	Noon	28	-2.2	1020	NW	9		
	1:00 PM	30	-1.1	1019	WNW	14		
	2:00 PM	30	-1.1	1018	WSW	10		
	3:00 PM	30	-1.1	1018	W	14		
	4:00 PM	28	-2.2	1018	W	10		
	5:00 PM	27	-2.8	1018	WSW	13		
	6:00 PM	26.1	-3.3	1018	W	8		
	7:00 PM	24.1	-4.4	1018	W	6		
	8:00 PM	23	-5	1018	WSW	7		
	9:00 PM	21.9	-5.6	1017	SSW	3		
	10:00 PM	21	-6.1	1017	SW	3		
	11:00 PM	19	-7.2	1017	SW	3		
	Midnight	18	-7.8	1017	SSW	3		
Jan. 22	1:00 AM	19	-7	1016	Calm	0		
	2:00 AM	15.1	-9.4	1015	Calm	0		
	3:00 AM	21	-6.1	1015	Calm	0		
	4:00 AM	24.1	-4.4	1014	SSW	7		
	5:00 AM	25	-3.9	1013	SSW	7		
	6:00 AM							

2005Table 4-8Weather Conditions at Atlantic City Airport - January 2004

		Temp	Temp	Pressure	Wind	Wind		
Date	Time	(oF)	(oC)	(mbar)	direction	MPH	Weather	Comments
	7:00 AM							
	8:00 AM							
	9.00 AM	33.1	0.6	1010	SSW/	13		
	10.00 AM	36	2.2	1009	S	12		
	11:00 AM	37.9	2.2	1008	S	12		
	Noon	37.9	3.3	1000	S	10		
	1:00 PM	37.9	3.3	1006	SW	13		
	2:00 PM	39.9	44	1005	WSW	13		
	3:00 PM	39	3.9	1005	WSW	12		
	4:00 PM	37.9	3.3	1005	WSW	13		
	5:00 PM	34.9	3.3	1005	W	13		
	6:00 PM	36	22	1005	WSW	8		
	7:00 PM	35.1	1.7	1006	W	10		
	8:00 PM	35.1	1.7	1007	NW	20		
	9:00 PM	32	0	1008	NW	20		
	10:00 PM	28.9	-1.7	1009	NW	20		
	11:00 PM	26.1	-3.3	1010	NW	17		
	Midnight	23	-5	1011	NW	24		
Jan. 23	1:00 AM	21	-6.1	1012	NW	20		
	2:00 AM	19	-7.2	1013	NW	22		
	3:00 AM	17.1	-8.3	1013	NW	16		
	4:00 AM	16	-8.9	1013	WNW	13		
	5:00 AM	15.1	-9.4	1014	WNW	12		
	6:00 AM	12.9	-10.6	1014	WNW	8		
	7:00 AM	14	-10	1015	W	13		
	8:00 AM	14	-10	1015	WNW	17		
	9:00 AM	17.1	-8.3	1015	WNW	22		
	10:00 AM	18	-7.8	1015	W	24		
	11:00 AM	19	-7.2	1015	W	22		
	Noon	19	-7.2	1015	NW	24		
	1:00 PM	19	-7	1014	W	23		
	2:00 PM	19	-7.2	1014	W	22		
	3:00 PM	19	-7.2	1014	NW	25		
	4:00 PM	18	-7.8	1014	W	22		

Note: Jan. 17: High was 36°F; low was 16°F, 0.3" of snow (0.02" water equivalent), Avg. wind speed = 10.7 mph

 Table 4-9

 2004 Vapor Pathway Assessment 73 Bay Avenue Details, Stafford Site

	Jan-04 Ground- water VP-WEST (ug/L)	Jan-04 Ground- water VP-EAST (ug/L)	Henry's Law Constant (-)	Jan-04 Max Predicted Deep soil Vapor (ug/m³)	Jan-04 Avg Predicted Deep soil Vapor (ug/m ³)	Conver- sion ug/m3 to ppbV	Jan-04 Max Predicted Deep soil Vapour (ppbV)	Jan-04 Avg Predicted Deep soil Vapour (ppbV)	Measured Deep Vapor VP-WESTD 9.5-10' (ppbV)	Measured Deep Vapor VP-WESTDil 9.5-10' (ppbV)	Measured Deep Vapor VP-WEST Avg 9.5-10' (ppbV)	Measured Deep Vapor VP-EASTD 9.5-10' (ppbV)
МТВЕ	83000	110	0.0204	1693200	847722	3.706	456.881	228.743	65.000	47.000	56.000	22
n-Hexane	NT	NT	75.4	N/A	N/A	3.622	N/A	N/A	600,000E	670,000	670,000	14
n-Heptane	NT	NT	86.0	N/A	N/A	4.253	N/A	N/A	450,000E	450,000	450,000	13
Cyclohexane	<5000	2.9	8.00	20000000	10011600	3.54	5,649,718	2,828,136	280,000E	590,000	590,000	18
2,2,4-TriMethylPentane	NT	NT	126.4	N/A	N/A	4.8	N/A	N/A	700,000E	890,000	890,000	<2.3
Benzene	6300	62	0.228	1,436,400	725,268	3.281	437,793	221,051	61,000	45,000	53,000	<1.6
Toluene	30000	9.5	0.272	8,160,000	4,081,292	3.873	2,106,894	1,053,781	N/A	600,000	600,000	4.1
Ethylbenzene	3200	12	0.323	1,033,600	518,738	4.462	231,645	116,257	48,000	31,000	39,500	2.2
M&P-Xylene	NT	NT	0.307	N/A	N/A	4.462	N/A	N/A	100,000	65,000	82,500	10
O-Xylene	NT	NT	0.213	N/A	N/A	4.462	N/A	N/A	24,000	15,000	19,500	3.6
Total Xylenes	18000	30	0.26	4,680,000	2,343,900	4.462	1,048,857	525,303	124,000	80,000	102,000	14
Oxygen									4.6			21

Notes:

1. Estimated using 1/2 detection limit for cyclohexane

NQ = Not quantified, N/A = Not applicable, NT = Not tested, DIL = dilution = E = Out of calibration range Background based on indoor air concentrations measured at two nearby off-plume houses

Date Printed:2/9/2005

 Table 4-9

 2004 Vapor Pathway Assessment 73 Bay Avenue Details, Stafford Site

Measured Mid Vapor VP-EASTM 6.5 - 7' (ppbV)	Measured Shallow Vapor VP-EASTS 2.5-3' (ppbV)	Measured Sub-slab #1 Vapor Conc. 5.5-6' (ppbV)	Measured Sub-slab #2 Vapor Conc. 5.5-6' (ppbV)	Measured Sub-slab #2 dil Vapor Conc. 5.5-6' (ppbV)	Measured Sub-slab #2 Avg Vapor Conc. 5.5-6' (ppbV)	Measured Sub-slab #3 Vapor Conc. 5.5-6' (ppbV)	Measured Sub-slab #3 dil Vapor Conc. 5.5-6' (ppbV)	Measured Sub-slab #3 Avg Vapor Conc. 5.5-6' (ppbV)	Measured Basement Conc. (ppbV)	Measured Basement Dil Conc. (ppbV)
20	21	<1.8	<1.8	<3.6	<3.6	<36	<140	<140	<1.8	<3.6
12	13	<1.8	<1.8	<3.5	<3.5	<35	<140	<140	<1.8	<3.5
3	4.1	<2.0	<2.0	<4.1	<4.1	<41	<160	<160	<2.0	<4.1
<1.7	6.9	29	41	48	45	1,800	1,300	1,550	41	45
<2.3	<2.3	170	240E	250	250	8,400E	7,500	7,500	310E	300
<1.6	<1.6	<1.6	<1.6	<3.2	<3.2	<32	<130	<130	<1.6	<3.2
2.2	3.2	2.3	2.1	<3.8	<3.8	<38	<150	<150	1.9	<3.8
<2.2	<2.2	<2.2	<2.2	<4.3	<4.3	<43	<170	<170	<2.2	<4.3
4.0	6.5	<2.2	<2.2	<4.3	<4.3	<43	<170	<170	<2.2	<4.3
<2.2	<2.2	<2.2	<2.2	<4.3	<4.3	<43	<170	<170	<2.2	<4.3
5.1	7.6	<2.2	<2.2	<4.3	<4.3	<43	<170	<170	<2.2	<4.3
21	22									

023-6124C

 Table 4-9

 2004 Vapor Pathway Assessment 73 Bay Avenue Details, Stafford Site

Measured Basement Dup Conc.	Measured Base- ment Avg Conc.	Measured First Floor Conc.	Measured First Floor Dil Conc.	Measured First Floor Avg Conc.	Gdw Alpha Max	Gdw Alpha Avg	Vapor Alpha Max	Vapor Alpha Avg	Subslab Alpha using Subslab #3	Ratio Base- ment / First	Local Back- ground Stage 2
(ppbV)	(ppbV)	(ppbV)								floor	(ppbV)
<1.8	<3.6	<1.8	<3.6	<3.6	N/A	N/A	N/A	N/A	N/A	N/A	0.62 to 2.6
<1.8	<3.5	<1.8	<3.5	<3.5	N/A	N/A	N/A	N/A	N/A	N/A	<0.5 to 2.1
<2.0	<4.1	<2.0	<4.1	<4.1	N/A	N/A	N/A	N/A	N/A	N/A	<0.5 to 1.1
55	47	41	38	40	8.3E-06	1.7E-05	8.0E-05	1.6E-04	3.0E-02	1.2	<0.5
320E	300	210E	190	190	N/A	N/A	3.4E-04	6.7E-04	4.0E-02	1.6	<0.5 to 2.3
<1.6	<3.2	<1.6	<3.2	<3.2	< 3.7E-06 <	< 7.2E-06 <	3.0E-05	< 6.0E-05	N/A	N/A	<0.5-1.2
3.4	<3.8	4.1	<4.5	<4.5	< 1.6E-06	< 3.2E-06 <	5.7E-06	< 1.1E-05	N/A	N/A	3.6 to 8.7
<2.2	<4.3	<2.2	<4.3	<4.3	< 9.5E-06	< 1.9E-05 <	5.6E-05	< 1.1E-04	N/A	N/A	<0.5 to 1.3
<2.2	<4.3	<2.2	<4.3	<4.3	N/A	N/A	N/A	N/A	N/A	N/A	1.8 to 4.4
<2.2	<4.3	<2.2	<4.3	<4.3	N/A	N/A	N/A	N/A	N/A	N/A	0.63 to 1.3
<2.2	<4.3	<2.2	<4.3	<4.3	< 2.1E-06 •	< 4.2E-06 <	2.2E-05	< 4.3E-05	N/A	N/A	NT

Table 4-10 2004 Vapor Pathway Assessment 73 Bay Avenue Summary, Stafford Site

														ALPHA'S		
	Jan-04 Ground- water VP-WEST	Jan-04 Ground- water VP-EAST	Jan-04 Max Predicted Deep soil Vapor	Jan-04 Avg Predicted Deep soil Vapor	Measured Deep Vapor VP-WEST 9.5-10' (ppb)()	Measured Deep Vapor VP-EASTD 9.5-10' (ppb)()	Measured Mid Vapor VP-EASTM 6.5 - 7'	Measured Shallow Vapor VP-EASTS 2.5-3'	Measured Sub-slab (#3) Vapor Conc. 5.5-6'	Measured Base- ment Conc.	Measured First Floor Conc.	Gdw Alpha Max	Gdw Alpha Avg	Vapor Alpha Max	Vapor Alpha Avg	Subslab Alpha #3
	(ug/L)	(ug/L)	(ppbv)	(ppbv)	(ppbv)	(ppbv)	(ppbv)	(ppbv)	(ppbv)	(pppv)	(pppv)	INIAX	Avg	WIGA	Avg	
MTBE	83000	110	456,881	228,743	56,000	22	20	21	<140	<3.6	<3.6	N/A	N/A	N/A	N/A	N/A
n-Hexane	NT	NT	N/A	N/A	670,000	14	12	13	<140	<3.5	<3.5	N/A	N/A	N/A	N/A	N/A
n-Heptane	NT	NT	N/A	N/A	450,000	13	3	4.1	<160	<4.1	<4.1	N/A	N/A	N/A	N/A	N/A
Cyclohexane	<5000	2.9	5,649,718	2,828,136	590,000	18	<1.7	6.9	1,550	47	40	8.3E-06	1.7E-05	8.0E-05	1.6E-04	3.0E-02
2,2,4-Trimethylpentane	NT	NT	N/A	N/A	890,000	<2.3	<2.3	<2.3	7,500	300	190	N/A	N/A	3.4E-04	6.7E-04	4.0E-02
Benzene	6300	62	437,793	221,051	53,000	<1.6	<1.6	<1.6	<130	<3.2	<3.2	< 3.7E-06	< 7.2E-06	< 3.0E-05	< 6.0E-05	N/A
Toluene	30000	9.5	2,106,894	1,053,781	600,000	4.1	2.2	3.2	<150	<3.8	<4.5	< 1.6E-06 ·	< 3.2E-06	< 5.7E-06	< 1.1E-05	N/A
Ethylbenzene	3200	12	231,645	116,257	39,500	2.2	<2.2	<2.2	<170	<4.3	<4.3	< 9.5E-06	< 1.9E-05	< 5.6E-05	< 1.1E-04	N/A
M&P-Xylene	NT	NT	N/A	N/A	82,500	10	4.0	6.5	<170	<4.3	<4.3	N/A	N/A	N/A	N/A	N/A
O-Xylene	NT	NT	N/A	N/A	19,500	3.6	<2.2	<2.2	<170	<4.3	<4.3	N/A	N/A	N/A	N/A	N/A
Total Xylenes	18000	30	1,048,857	525,303	102,000	14	5.1	7.6	<170	<4.3	<4.3	< 2.1E-06	< 4.2E-06	< 2.2E-05	< 4.3E-05	N/A
Oxygen					4.6	21	21	22								

Notes: 1. Estimated using 1/2 detection limit for cyclohexane NQ = Not quantified, N/A = Not applicable, NT = Not tested

Input Prameter Units Value Rationale Chemical Properties Immensionless 2.56E-02 USEPA Spreadsheet Arr Diffusion Coefficient cm ² sec 1.02E-01 USEPA Spreadsheet Arr Diffusion Coefficient cm ² sec 1.02E-01 USEPA Spreadsheet 224 Time/hybenrane cm ² sec 1.02E-01 USEPA Spreadsheet Arr Diffusion Coefficient cm ² sec 5.00E-62 TPHCWG Volume 3 Arr Diffusion Coefficient cm ² sec 5.00E-62 TPHCWG Volume 3 Arr Diffusion Coefficient cm ² sec 5.00E-60 TPHCWG Volume 3 Arr Diffusion Coefficient cm ² sec 5.00E-60 TPHCWG Volume 3 Arr Diffusion Coefficient cm ² sec 3.35 Measured Arr Diffusion Coefficient cm ² sec 3.35 Measured Coll Properties m 3.35 Measured solid appacity State of measurements two solid amples Call Prostity cm ² sec 0.378 Average measurements two solid amples Call Prostity cm ² sec 0.253 Drottt USEPA Vi Guidance de						
Chemical Properties MPTGE dimensionless 2.50E-62 USEPA Spreadsheet Henry's Law Constant om*sec 1.02E-01 USEPA Spreadsheet Water Diffusion Coefficient om*sec 1.05E-05 USEPA Spreadsheet Water Diffusion Coefficient om*sec 1.05E-05 USEPA Spreadsheet Water Diffusion Coefficient om*sec 5.00E-02 TPHCWG Volume 3 Cyclohesame om*sec 5.00E-02 TPHCWG Volume 3 Henry's Law Constant om*sec 5.00E-02 TPHCWG Volume 3 At Diffusion Coefficient om*sec 5.00E-06 TPHCWG Volume 3 Soli Properties om*sec 5.00E-06 TPHCWG Volume 3 Soli Properties m 3.30 Measured Depth to Groundwater m 3.20 Average measurements two soli samples Col Forosity om*om* 0.238 Mid-point residual saturation and field capacity based on measurements two soli samples Col Tameraturate om*om* 0.233 Draft USEPA VI Guidance default Col Tameraturate C 15 Estimated value based on CO2 tracer t	Input Parameter	Units	Value	Rationale		
MT2E dimensionless 2.56E-02 USEPA Spreadsheet Arr Difusion Coefficient cm ² sec 1.02E-01 USEPA Spreadsheet Arr Difusion Coefficient cm ² sec 1.02E-01 USEPA Spreadsheet 224 Timeshypenane dimensionless 1.24E-101 USEPA Spreadsheet Arr Difusion Coefficient cm ² sec 5.09E-02 TPHCWG Volume 3 Arr Difusion Coefficient cm ² sec 5.09E-02 TPHCWG Volume 3 Arr Difusion Coefficient cm ² sec 5.09E-02 TPHCWG Volume 3 Arr Difusion Coefficient cm ² sec 5.09E-02 TPHCWG Volume 3 Arr Difusion Coefficient cm ² sec 5.09E-02 TPHCWG Volume 3 Arr Difusion Coefficient cm ² sec 5.09E-02 TPHCWG Volume 3 Arr Difusion Coefficient cm ² sec 5.09E-02 TPHCWG Volume 3 Arr Difusion Coefficient cm ² sec 3.35 Measured Deph to Groundwater m 3.35 Measured Call Porosity cm ² cm ² 0.78 Average measurements tw soil samples m ³ cm ² cm ² 0.7253 Draft USEPA VI Guidance default Calling Transition Zone Height m ² 0.47 Estimated value based on Co ₂ tracer test onducted in January 2004, the e exchange rate measurem	Chemical Properties					
Henry's Law Constant dimensionless 2.56E-62 USEPA Spreadsheet Water Diffusion Coefficient om*jeec 0.52E-01 USEPA Spreadsheet 2.4 Timetrypenane om*jeec 0.52E-05 USEPA Spreadsheet Henry's Law Constant om*jeec 0.59E-06 TPHCWG Volume 3 A Diffusion Coefficient om*jeec 5.9E-69 TPHCWG Volume 3 Cycloheane om*jeec 5.9E-69 TPHCWG Volume 3 Henry's Law Constant om*jeec 5.9E-69 TPHCWG Volume 3 A Diffusion Coefficient om*jeec om*jeec 5.9E-69 TPHCWG Volume 3 A Diffusion Coefficient om*jeec 3.9E-12 TPHCWG Volume 3 A Diffusion Coefficient om*jeec 3.9E-12 TPHCWG Volume 3 A Soft Properties m 3.20 Average measurements two soil samples Depth to Soil Ageour Samples m 3.20 Average measurements two soil samples Capier 1 Unsaturated Zone Water-filled Porosity (0.84 cm*jem³ 0.028 Mid-point residual saturation and field capacity based on measurements two soil samples Capilary Transition Zone Weight m* 2.13 Drat USEPA Vi Guidance default Capilary Transition Zone Weight m* 2.13 Measured Building Arepreter m* <td>MTBE</td> <td></td> <td></td> <td></td>	MTBE					
Ar Diffusion Coefficient cm ² sec 1.02E-01 USEPA Spreadsheet 224 Trimetryloperane cm ² sec 1.02E-01 USEPA Spreadsheet 224 Trimetryloperane dimensionicss 1.24E+02 TPHCWG Volume 31 Ar Diffusion Coefficient cm ² sec 6.00E-02 TPHCWG Volume 3 Ar Diffusion Coefficient cm ² sec 6.00E-02 TPHCWG Volume 3 Ar Diffusion Coefficient cm ² sec 6.39E-06 TPHCWG Volume 3 Ar Diffusion Coefficient cm ² sec 8.39E-02 TPHCWG Volume 3 Are Diffusion Coefficient cm ² sec 3.35 Measured Are Diffusion Coefficient cm ² sec 3.35 Measured Depth to Groundwater m 3.20 Average measurements two soll samples Capitary Transition Zone Water-filied Porosity (0.84 cm ³ /cm ³ 0.428 Mid-point residual saturation and flet capacity based on measurements two soll samples Capillary Transition Zone Water-filied Porosity (0.84 m ³ /cm ³ 0.425 Field capacity based on measurements two soll samples Building Porperise cm ³ /cm ³ 0.253 Draft USEPA VI Guidance default Building Arextange Transition Zone Meight m 2.13 Measured Basement Mixing Height m 2.13 Measured	Henry's Law Constant	dimensionless	2.56E-02	USEPA Spreadsheet		
Water Diffusion Coefficient m ² /sec 1.05E-05 USEPA Spreadsheet Henry's Law Constant dimensionless 1.24E+02 TPHCWG Volume 3' Ar Diffusion Coefficient m ² /sec 6.59E-06 TPHCWG Volume 3' Arb Diffusion Coefficient m ² /sec 6.59E-06 TPHCWG Volume 3 Arb Diffusion Coefficient m ² /sec 8.39E-02 TPHCWG Volume 3 Arb Diffusion Coefficient m ² /sec 9.10E-06 TPHCWG Volume 3 Soll Properties m 3.25 Measured Depth to Groundwater m 0.028 Mid-point residual saturation and field capacity based on measurements two soil samples Layer 1 Unsaturated Zone Water-filled Porosity (0.84 m ³ /cm ³ 0.045 Field capacity based on measurements two soil samples Capillary Transition Zone Water-filled Porosity (0.84 m ³ /cm ³ 0.17 Draft USEPA VI Guidance default Capillary Transition Zone Water-filled Porosity (0.84 m ³ 7.7 Draft USEPA VI Guidance default Capillary Transition Zone Water-filled Po	Air Diffusion Coefficient	cm ² /sec	1.02E-01	USEPA Spreadsheet		
224 Timeshyperatere Immeshyperatere Harry SLaw Constant dimensionese Are Diffusion Coefficient om*/sec Soll Properties m Berght to Soundwater m Mater Diffusion Coefficient m Mater Diffusion Coefficient m Soll Properties m Berght to Soundwater m Mater Diffusion Coefficient m Mater Diffusion Coefficient m Mater Diffusion Coefficient m Soll Properties m Bay Into Soundwater m Mater Offusion Coefficient m Capilary Transition Zone Water-filled Porosity (0.84 m*/om* Capilary Transition Zone Water-filled Porosity (0.84 cm*/om* Capilary Transition Zone Water filled Porosity (0.84 cm*/om* Soll Transperature C 15 Building Properties n*1*	Water Diffusion Coefficient	cm ² /sec	1.05E-05	USEPA Spreadsheet		
Henry's Law Constant dimensionless 1.24E+02 TPHCWG Volume 3' Ar Diffusion Coefficient cm'/sec 6.00E-02 TPHCWG Volume 3' Arb Diffusion Coefficient cm'/sec 6.59E-06 TPHCWG Volume 3' Arb Diffusion Coefficient cm'/sec 7.84E+00 TPHCWG Volume 3 Arb Diffusion Coefficient cm'/sec 9.10E-06 TPHCWG Volume 3 Arb Diffusion Coefficient m'/sec 9.10E-06 TPHCWG Volume 3 Soll Properties m 3.35 Measured Depth to Groundwater m 3.35 Measured Depth to Groundwater m 3.20 Measured Depth to Groundwater m 3.20 Measured Corolity cm'/cm ² 0.228 Mid-point residual saturation and field capacity based on measurements two soil samples Layer 1 Unasturated Zone Water-filled Porosity (0.84 cm'/cm ² 0.425 Draft USEPA VI Guidance default Capillary Transition Zone Water-filled Porosity (0.84 cm'/cm ² 0.475 Estimated value based on CO, tracer test conducted in January 2004, the a exchange rate measured in basement was 0.59; however, some of this sec transitient at 80 percent of air transe default Cm'//cm ²	224 Trimethylpentane					
Air Diffusion Coefficient cm ² /sec Cyclobrazane 6:39E-02 TPHCWG Volume 3 Henry's Law Constant dimensionless 7.84E+00 TPHCWG Volume 3 Air Diffusion Coefficient cm ² /sec 8:39E+02 TPHCWG Volume 3 Water Diffusion Coefficient cm ² /sec 9:10E-06 TPHCWG Volume 3 Soil Properties cm ² /sec 9:10E-06 TPHCWG Volume 3 Soil Properties m 3.23 Measured Depth to Groundwater m 3.20 Average measurements two soil samples Layer 1 Unsaturated Zone Water-filled Porosity (0.84 cm ² /cm ² 0.028 Mid-point residual saturation and field capacity based on measurements two soil samples Layer 2 Unsaturated Zone Water-filled Porosity (0.84 cm ² /cm ² 0.253 Draft USEPA VI Guidance default Capilary Transition Zone Water-filled Porosity (0.84 cm ² /cm ² 0.47 Estimated value based on CO ₂ tracer test conducted in January 2004, the solutions / arcar in residual saturation and field capacity based on these variange is due to noising of tracer inset of house, estimated Soil Temperature C 15 Estimated value based on CO ₂ tracer test conducted in January 2004, the solutions / arcar in residual capacity based on CO ₂ tracer test conducted in January 2004, the solutions / arcar in residual capola	Henry's Law Constant	dimensionless	1.24E+02	TPHCWG Volume 3 ¹		
Water Diffusion Coefficient cm ² /sec 6.59E-U0 TPHCNG Volume 3 Henry's Law Constant dimensionless 7.84E+00 TPHCNG Volume 3 At Diffusion Coefficient cm ² /sec 9.10E-06 TPHCNG Volume 3 Soil Properties m 3.35 Measured Depth to Groundwater m 3.35 Measured Depth to Groundwater m 3.20 Measured Depth to Groundwater m 3.20 Measured Layer 1 Unsaturated Zone Water-filled Porosity (0.84 cm ² /cm ² 0.028 Mid-point residual saturation and field copacity based on measurements two soil samples Capilary Transition Zone Water-filled Porosity (0.84 cm ² /cm ² 0.045 Field capacity based on measurements two soil samples Capilary Transition Zone Water-filled Porosity (0.84 cm ² /cm ² 0.17 Draft USEPA VI Guidance default Soil Temperature C 15 Estimated Estimated Building Ari Exchange Rate m ² 79.6 Measured Basement Mixing Height m 2.13 Measured Basement Mixing Height m 2.5 Measured Basement Portinif	Air Diffusion Coefficient	cm²/sec	6.00E-02	TPHCWG Volume 3		
Cyclohexarie dimensionless 7.84E+00 TPHCWG Volume 3 Air Diffusion Coefficient cm ² /sec 8.39E+02 TPHCWG Volume 3 Water Diffusion Coefficient cm ² /sec 9.10E-06 TPHCWG Volume 3 Soil Properties m 3.20 Measured Depth to Groundwater m 3.20 Measured Depth to Soul Vapour Samples m 3.20 Measured Call Porosity cm ³ /cm ² 0.045 Field capacity based on measurements two soil samples Layer 1 Unsaturated Zone Water-filled Porosity cm ³ /cm ² 0.045 Field capacity based on measurements two soil samples Capillary Transition Zone Water-filled Porosity cm ³ /cm ² 0.045 Field capacity based on measurements two soil samples Soil Temperature C 15 Estimated value based on Cytacer test conducted in January 204, the 6 Basement Foundation Area m ² 79.6 Measured 0 at charges vet default Suburdace Foundation Area m ² 79.6 Measured Calculated Basement Foundation Area m ² 79.6 Measured Calculated Roid VolumeAred m 2.6	Water Diffusion Coefficient	cm ² /sec	6.59E-06	TPHCWG Volume 3		
referity Eaw Unitsant primerisoness 1.248-2400 TPHCWG Volume 3 Ab Diffusion Coefficient cm ² /sec 8.33E-02 TPHCWG Volume 3 Soil Properties nm 3.35 Measured Depth to Groundwater m 3.35 Measured Dopth to Groundwater m 3.35 Measured Dopth Soil Voportis m 3.35 Measured Layer 1 Unstructed Zone Water-filled Porosity (0.84 cm ² /cm ³ 0.028 Mid-point residual saturation and filed capacity based on measurements two soil samples Layer 2 Unstructed Zone Water-filled Porosity (0.84 cm ² /cm ³ 0.253 Draft USEPA VI Guidance default Capillary Transition Zone Water-filled Porosity cm ³ /cm ³ 0.253 Draft USEPA VI Guidance default Capillary Transition Zone Water-filled Porosity cm ³ /cm ³ 0.47 Estimated value based on Co ₂ tracer test conducted in January 2004, the z Building Are Exchange Rate m ³ 7.7 Galculated Galcary Capillary Transitor Coptrint Area Subsurface Foundation Area m ³ 7.7 Galculated Galcary Capillary Capillar	Cyclohexane	-li	7.045.00			
All Diffusion Orderingent om*/sec 6.338-5.42 IPPROVM Volume 3 Soil Properties s.10E-06 TPHCWG Volume 3 Soil Properties m 3.35 Measured Depth to Groundwater m 3.35 Measured Depth to Soil Vapour Samples m 3.35 Measured Total Pronsity m**/orm* 0.028 Mid-point residual saturation and field capacity based on measurements two soil samples Layer 1 Unsaturated Zone Water-filled Porosity cm*/cm* 0.045 Field capacity based on measurements two soil samples Capillary Transition Zone Height cm*/cm* 0.253 Draft USEPA VI Guidance default Capillary Transition Zone Height cm*/cm* 0.253 Draft USEPA VI Guidance default Soil Ternerature C 15 Estimated Estimated Building Properties Building Air Exchange Rate hr 0.47 Estimated value based on Co ₂ tracer test conducted in January 2004, the exchange is due to mixing of tracer in rest of house, selfmate that 80 percer Basement Kixing Height m 2.13 Measured Soil archange due to outside air Basement Kixing Height m 0.38 Calculated Calcula	Henry's Law Constant	dimensionless	7.84E+00	TPHCWG Volume 3		
oral properties om 7/sec s. 10E-vide IPHCWRS Volume 3 Depth to Groundwater m 3.35 Measured Depth to Groundwater m 3.35 Measured Depth to Soll yapour Samples m 3.35 Measured Total Porosity cm ³ /cm ³ 0.378 Average measurements two soil samples Layer 1 Unsaturated Zone Water-filled Porosity (0.84 cm ³ /cm ³ 0.028 Mid-point residual saturation and field capacity based on measurements two soil samples Layer 2 Unsaturated Zone Water-filled Porosity cm ³ /cm ³ 0.045 Field capacity based on measurements two soil samples Capillary Transition Zone Water-filled Porosity cm ³ /cm ³ 0.17 Dart USEPA VI Guidance default Soil Temperature C 15 Estimated VI Guidance default Building Porperties m ² 7.9.6 Measured Buiserner Foundation Area m ² 7.9.6 Measured Volume Basement Footprint Area m ³ 7.7.9 Calculated Suid Outmack/rea m 0.98 Calculated Assumed Primeter Crack Width cm 0.16 Assumed primeter crack width <td< td=""><td>All Diffusion Coefficient</td><td>cm²/sec</td><td>8.39E-02</td><td colspan="3">TPHCWG Volume 3</td></td<>	All Diffusion Coefficient	cm²/sec	8.39E-02	TPHCWG Volume 3		
Soil Properties m 3.35 Measured Depth to Soil Vapour Samples m 3.20 Measured Total Proteity cm ³ cm ³ 0.378 Average measurements two soil samples Layer 1 Unsaturated Zone Water-filled Porosity (0.84 cm ³ cm ³ 0.028 Mid-point residual saturation and field capacity based on measurements two soil samples Layer 2 Unsaturated Zone Water-filled Porosity (0.84 cm ³ cm ³ 0.045 Field capacity based on measurements two soil samples Capillary Transition Zone Water-filled Porosity cm ³ cm ³ 0.253 Draft USEPA VI Guidance default Capillary Transition Zone Water-filled Porosity cm ³ cm ³ 0.47 Draft USEPA VI Guidance default Soil Temperature C 15 Estimated Estimated Building Arie Exchange Rate hr ⁻¹ 0.47 Estimated value based on C0, tracer test conducted in January 2004, the e Subsurdace Condation Area m ² 73.6 Measured Volume Basement m ² 73.6 Measured Volume Basement Foroptrint Area m 2.5 Calculated Rest Volume/Area m 2.5 Calculated Building Crack Area <	water Diffusion Coefficient	cm²/sec	9.10E-06	TPHCWG volume 3		
Depth Decry Logroup Samples m 3.35 Measured Total Porosity cm ³ /cm ³ 0.378 Average measurements two soil samples Layer 1 Unsaturated Zone Water-filled Porosity (0.84 m) cm ³ /cm ³ 0.228 Mid-point residual saturation and field capacity based on measurements two soil samples Layer 2 Unsaturated Zone Water-filled Porosity cm ³ /cm ³ 0.223 Draft USERA VI Guidance default Capillary Transition Zone Water-filled Porosity cm ³ /cm ³ 0.17 Draft USERA VI Guidance default Capillary Transition Zone Water-filled Porosity cm ³ /cm ³ 0.17 Draft USERA VI Guidance default Soil Temperature C 15 Estimated Value based on CO, tracer test conducted in January 2004, the exchange rate measured in basement two Solls manuary 2004, the exchange rate measured in basement two Solls on the exchange rate measured in basement two Solls on the exchange rate measured in basement two Solls on the exchange rate measured in basement two Solls on the exchange is due to mixing of tracer in rest of house, estimate that 80 percer of air change due to outide air Building Properties m ² 36.5 Measured Building Crack Rate m ² 79.6 Measured Kato Volume/Yaa m 0.8 Calculated Depth D Base of Foundation m 1.8	Soil Properties					
Depth is Soli Vapour Samples m 3.20 Measured Layer 1 Unsaturated Zone Water-filled Porosity (0.84 m²/cm³ cm³/cm³ 0.328 Mid-point residual saturation and field capacity based on measurements tw soil samples Layer 2 Unsaturated Zone Water-filled Porosity (0.84 m²/cm³ cm³/cm³ 0.253 Draft USEPA VI Guidance default Capillary Transition Zone Water-filled Porosity cm³/cm³ 0.253 Draft USEPA VI Guidance default Capillary Transition Zone Water-filled Porosity cm³/cm³ 0.47 Estimated Soil Termeenture C 15 Estimated Building Properties hr1 0.47 Estimated value based on CO, tracer test conducted in January 2004, the e exchange rate measured in basement twas 0.59; however, some of this exchange rate measured in tose estimate that 80 percer of air change due to outside air Basement Mixing Height m 2.13 Measured Basement Footprint Area m² 79.6 Measured Volume Basement m³ 77.9 Calculated Building Crack Area m² 0.40 Assumed perimeter crack width (1 mm) times perimeter foundation crack Usept A VI Guidance default Carlous and the massured m² 0.40 Assumed perimeter crack width (1 mm) times perimeter founda	Depth to Groundwater	m	3.35	Measured		
Inda Polosity 0.376 Writige filesurements two son samples Layer 1 Unsaturated Zone Water-filled Porosity (0.84 m) 0.028 Mid-point residual saturation and field capacity based on measurements two soil samples Capillary Transition Zone Water-filled Porosity (0.84 m) cm³/cm³ 0.253 Draft USEPA VI Guidance default Capillary Transition Zone Height cm³/cm³ 0.253 Draft USEPA VI Guidance default Soil Temperature C 15 Estimated value based on Co2 tracer test conducted in January 2004, the a exchange rate measured in basement was 0.59; however, some of this exchange is due to mixing of tracer in rest of house, estimate that 80 percer of air change due to outside air Basement Noting Height m 2.13 Measured Basement Solution Area m² 79.6 Measured Volume Basement m³ 77.9 Calculated Ratio Volume/Area m 1.68 Measured Buiding Crack Area m² <t< td=""><td>Depth to Soil Vapour Samples</td><td>m 3/3</td><td>3.20</td><td>Measured</td></t<>	Depth to Soil Vapour Samples	m 3/3	3.20	Measured		
Layer 1 Orisaturated Zone Vrater-filled Porosity (0.84 m²) cm²/cm² 0.028 m³/cm³ 0.045 Field capacity based on measurements two soil samples soil samples Capillary Transition Zone Water-filled Porosity (0.84 m²) cm³/cm³ 0.253 Draft USEPA VI Guidance default Capillary Transition Zone Height cm³/cm³ 0.253 Draft USEPA VI Guidance default Soil Temperature C 15 Estimated Building Properties building Air Exchange Rate hr¹ Basement Mixing Height m 2.13 Measured Measured Basement Mixing Height m 2.13 Measured Measured Basement Footprint Area m² 36.5 Measured Measured Subsurface Foundation Area m² 79.6 Measured Measured Volume Basement m³ 77.9 Calculated Calculated Building Crack Kata m 0.98 Calculated Calculated Building Crack Area m² 79.6 Measured; Measured Subsurface Foundation Area m² 79.6 Calculated Calculated Assumed Parimeter Crack Width cm 0.1 Assumed; draft USEPA VI Guidance default Calculated Building Crack Area m² 0.40 Assum	Total Polosity	cm°/cm°	0.378	Average measurements two soil samples		
minutestreet Cm ³ /cm ³ 0.045 Field capacity based on measurements two soil samples minutestreet Capiliary Transition Zone Water-filled Porosity cm ³ /cm ³ 0.045 Field capacity based on measurements two soil samples Capiliary Transition Zone Water-filled Porosity cm ³ /cm ³ 0.17 Draft USEPA VI Guidance default Soil Temperature C 15 Estimated Estimated Building Air Exchange Rate hr ⁻¹ 0.47 Estimated value based on Co ₂ tracer test conducted in January 2004, the a exchange rate measured in basement was 0.59; however, some of this exchange rate measured in basement was 0.59; however, some of this exchange rate measured in basement was 0.59; however, some of this exchange rate measured in basement was 0.59; however, some of this exchange rate measured in basement was 0.59; however, some of this exchange rate measured in basement was 0.59; however, some of this exchange so foundation Area m ² 79.6 Measured Volume Basement m ³ 77.9 Calculated Calculated Calculated Perinter Foundation Area m ³ 77.9 Calculated Calculated Building Crack Area m ³ 7.9 Calculated Calculated Building Crack Area m ³ 0.1 Assumed perimeter frack width (1 mm) times perimeter foundation crack length	Layer 1 Unsaturated Zone Water-filled Porosity (0.84	cm³/cm³	0.028	Mid-point residual saturation and field capacity based on measurements two		
m) cm view cm view cm view Capillary Transition Zone Water-filled Porosity cm ³ /cm ³ 0.253 Draft USEPA VI Guidance default Soll Temperature C 15 Estimated Building Properties hr ¹ 0.47 Estimated value based on CO ₂ tracer test conducted in January 2004, the a exchange rate measured in basement was 0.59; however, some of this exchange rate measured in basement was 0.59; however, some of this exchange is due to wiking of tracer in rest of house, estimate that 80 percer of air change due to outside air Basement Mixing Height m 2.13 Measured Basement Footprint Area m ² 79.6 Measured Outome Basement m ³ 77.9 Calculated Ratio Volume/Area m ³ 77.9 Calculated Depth to Base of Foundation Area m ³ 77.9 Calculated Building Crack Area m ² 0.40 Assumed Primeter Crack Width Cm Perimeter Foundation Area m ² 0.40 Assumed primeter Crack Width Cm Perimeter Foundation Area m ² 0.40 Assumed primeter Crack Width Cm Perimeter Foundation Area m ² 0.40 Assumed primeter Crack Width Cm Depth to Base of Foundation Stab Thickness 0.1 Assumed primeter Crack Width Cm<	Laver 2 Unsaturated Zone Water-filled Porosity (0.84	cm ³ /cm ³	0.045	Field capacity based on measurements two soil samples		
Capillary Transition Zone Water-filled Porosity cm ³ /cm ³ 0.253 Draft USEPA VI Guidance default Capillary Transition Zone Height C 15 Estimated Building Properties hr ⁻¹ 0.47 Estimated value based on CO ₂ tracer test conducted in January 2004, the <i>e</i> exchange is due to mixing of tracer in rest of house, estimate that 80 percer of air change due to outside air Basement Mixing Height m 2.13 Measured Basement Footprint Area m ² 36.5 Measured Suburface Foundation Area m ² 79.6 Measured Suburface Foundation Area m ³ 77.9 Calculated Perimeter Crack Width cm 1.68 Measured Perimeter Foundation Crack Length m 2.66 Calculated Building Crack Area m ² 0.40 Assumed Perimeter acts with (1 mm) times perimeter foundation crack Length Building Crack Area m ² 0.40 Assumed perimeter acts with (1 mm) times perimeter foundation crack Length Building Crack Ratio cm ³ /cm ³ Dry Assumed perimeter acts with (1 mm) times perimeter foundation crack Length Building Crack Ratio cm ³ /cm ³ Dry Assumed perimeter acts with (1	m)	ciii /ciii		· · · · · · · · · · · · · · · · · · ·		
Capillary Transition Zone Height cm ³ /cm ³ 0.17 Draft USEPA VI Guidance default Soil Temperature C 15 Estimated Building Properties hr ⁻¹ 0.47 Estimated value based on CO ₂ tracer test conducted in January 2004, the e exchange rate measured in basement was 0.59; however, some of this exchange is due to mixing of tracer in rest of house, estimate that 80 percer of air change due to outside air Basement Mixing Height m 2.13 Measured Basement Footprint Area m ² 36.5 Measured Subsurface Foundation Area m ³ 77.9 Calculated Optim Loss of Foundation m 0.88 Measured Assumed Perimeter Crack Width cm 0.1 Assumed perimeter code with 1 (Use Crack Width Calculated Perimeter Foundation Crack Length m ² 0.0050 Calculated Building Crack Ratio dimensionless 0.0050 Calculated Building Foundation Slab Thickness m 0.1 Assumed; draft USEPA VI Guidance default Gasid gasid m ² 0.0050 Calculated Building Crack Ratio dimensionless 0.0050 Calculated Gasid cm ³ /cm ³ Dry Assumed; draft USEPA VI Guidance default Building Crack Ratio dimensionless 0.0033 </td <td>Capillary Transition Zone Water-filled Porosity</td> <td>cm³/cm³</td> <td>0.253</td> <td>Draft USEPA VI Guidance default</td>	Capillary Transition Zone Water-filled Porosity	cm ³ /cm ³	0.253	Draft USEPA VI Guidance default		
Soil Temperature C 15 Estimated Building Properties Building Air Exchange Rate hr ⁻¹ 0.47 Estimated value based on CO ₂ tracer test conducted in January 2004, the exchange rate measured in basement was 0.59; however, some of this exchange is due to mixing of tracer in rest of house, estimate that 80 percer of air change due to outside air exchange is due to mixing of tracer in rest of house, estimate that 80 percer of air change due to outside air Basement Footprint Area m ² 36.5 Measured Subsurface Foundation Area m ² 79.6 Measured Volume Basement m ³ 77.9 Calculated Ratio Volume/Area m 1.68 Measured Perimeter Foundation Crack Width m 2.6.6 Assumed perimeter Crack Width Perimeter Foundation Crack Length m 2.6.6 Assumed perimeter Crack width (1 mm) times perimeter foundation crack length Building Foundation Slab Thickness m 0.1 Assumed perimeter Crack width (1 mm) times perimeter foundation crack length Building Foundation Slab Thickness m 0.1 Measured Goal cm ³ /sec 33 Adjust such that Qsoil/Qbuild = 0.0033 (EPA value) Quol cac	Capillary Transition Zone Height	cm ³ /cm ³	0.17	Draft USEPA VI Guidance default		
Building Properties hr ⁻¹ 0.47 Estimated value based on CO2 tracer test conducted in January 2004, the is exchange rate measured in basement was 0.59; however, some of this exchange is due to mixing of tracer in rest of house, estimate that 80 percer of air change due to outside air Basement Mixing Height m 2.13 Measured Basement Footprint Area m ² 36.5 Measured Subsurface Foundation Area m ² 36.5 Measured Volume Basement m3 77.9 Calculated Depth to Base of Foundation Area m 0.98 Calculated Perimeter Crack Width cm 0.1 Assumed; draft USEPA VI Guidance default Perimeter Foundation Crack Length m 25.6 Calculated Building Crack Area m ² 0.40 Assumed perimeter crack width (1 mm) times perimeter foundation crack Building Crack Ratio dimensionless 0.0050 Calculated Crack Dust Water-Filled Porosity cm ³ /cm ³ Dry Assumed; draft USEPA VI Guidance default Goad L/min 2.0 Adjust such that Qsoil/Qbuild = 0.0033 (EPA value) Qualue Qual L/min 6.13 Calculated Qualue Qualue	Soil Temperature	С	15	Estimated		
Building Air Exchange Rate hr ⁻¹ 0.47 Estimated value based on CO ₂ tracer test conducted in January 2004, the <i>e</i> exchange rate measured in basement was 0.59; however, some of this exchange is due to mixing of tracer in rest of house, estimate that 80 percer of air change due to outside air Basement Mixing Height m 2.13 Measured Basement Footprint Area m ² 36.5 Measured Subsurface Foundation Area m ² 79.6 Measured Volume Basement m 0.98 Calculated Depth to Base of Foundation m 1.68 Measured Assumed Perimeter Crack Width cm 2.56 Calculated Building Crack Area m ² 0.40 Assumed perimeter crack width (1 mm) times perimeter foundation crack length Building Crack Ratio dimensionless 0.0050 Calculated Building Foundation Slab Thickness m 0.1 Measured Method 1 (Estimate Q _{soil} based on Q _{soil} /Q _{build} ratio) cm ³ /cm ³ Dry Assumed Perimeter crack width (1 mm) times perimeter foundation crack length Building Crack Ratio cm ³ /cm ³ Dry Assumed Perimeter Crack Width Perimeter Grack Width Q _{soil} L/min 2.0 <td>Building Properties</td> <td></td> <td></td> <td></td>	Building Properties					
Assumed Perimeter Crack Width m 2.13 Measured Basement Mixing Height m 2.13 Measured Basement Footprint Area m ² 36.5 Measured Subsurface Foundation Area m ² 79.6 Measured Volume Basement m ³ 77.9 Calculated Depth to Base of Foundation m 0.98 Calculated Assumed Perimeter Crack Width cm 0.1 Assumed; draft USEPA VI Guidance default Perimeter Foundation Crack Length m 25.6 Calculated Building Crack Area m ² 0.40 Assumed perimeter crack width (1 mm) times perimeter foundation crack length Building Crack Area m ² 0.40 Assumed perimeter crack width (1 mm) times perimeter foundation crack length by 0.6 m) Building Crack Ratio dimensionless 0.0050 Calculated Crack Dust Water-Filled Porosity cm ³ /sec 33 Adjust such that Qsoil/Qbuild = 0.0033 (EPA value) Qsoil Qsoil Qsoil/Qbuild cm ³ /sec 33 Adjust such that Qsoil/Qbuild = 0.0033 (EPA value) Qsoil Calculated calculated Umin 613 Calculated<	Building Air Exchange Rate	hr ⁻¹	0.47	Estimated value based on CO2 tracer test conducted in January 2004, the air		
Basement Mixing Height m 2.13 Measured Basement Footprint Area m ² 36.5 Measured Subsurface Foundation Area m ² 79.6 Measured Volume Basement m ³ 77.9 Calculated Depth to Base of Foundation m 0.98 Calculated Assumed Perimeter Crack Width cm 0.1 Assumed Perimeter Crack Width Perimeter Foundation Crack Length m 25.6 Calculated Building Crack Area m ² 0.40 Assumed perimeter crack width (1000000000000000000000000000000000000				exchange rate measured in basement was 0.59; however, some of this		
Basement Mixing Height m 2.13 Measured Basement Footprint Area m² 36.5 Measured Subsurface Foundation Area m² 79.6 Measured Volume Basement m³ 77.9 Calculated Ratio Volume/Area m 0.98 Calculated Depth to Base of Foundation m 1.68 Measured Perimeter Foundation Crack Length m 25.6 Calculated Building Crack Area m² 0.40 Assumed perimeter crack Width (1 mm) times perimeter foundation crack Building Crack Area m² 0.40 Assumed perimeter crack width (1 mm) times perimeter foundation crack Building Foundation Slab Thickness m 0.1 Measured Method 1 (Estimate Q _{soil} Based on Q _{soil} /Q _{build} ratio) m³.cm³/cm³ Dry Assumed; draft USEPA VI Guidance default Q _{soil} cm³/cm³ Dry Assumed; draft USEPA VI Guidance default Depth value) Q _{soil} cm³/cm³ Dry Assumed; draft USEPA VI Guidance default Depth value) Q _{soil} cm³/cm³ Dry Assumed; draft USEPA VI Guidance default Depth value				exchange is due to mixing of tracer in rest of house, estimate that 80 percent		
Basement Mixing Height m 2.13 Measured Basement Footprint Area m ² 36.5 Measured Subsurface Foundation Area m ² 79.6 Measured Volume Basement m ³ 77.9 Calculated Ratio Volume/Area m 0.98 Calculated Depth to Base of Foundation m 1.68 Measured Assumed Perimeter Crack Width cm 0.1 Assumed; draft USEPA VI Guidance default Perimeter Foundation Crack Length m 25.6 Calculated Building Crack Area m ² 0.40 Assumed perimeter crack width (1 mm) times perimeter foundation crack Building Crack Ratio dimensionless 0.0050 Calculated Crack Dust Water-Filled Porosity cm ³ /cm ³ Dry Assumed; draft USEPA VI Guidance default Building Foundation Slab Thickness m 0.1 Measured Method 1 (Estimate Q _{soll} based on Q _{soll} /Q _{build} ratio) cm ³ /sec 33 Adjust such that Qsoil/Quild = 0.0033 (EPA value) Q _{soll} cm ³ /sec 33 Adjust such that Qsoil/Quild = 0.0033 (EPA value) Q _{soll} cm ³ /sec 33 Adjust such that Qsoil/Quild = 0.0033 (EPA value) Q _{soll} cm ³ /sec 33 Adjust such that Qsoil/Quild =				of air change due to outside air		
Basement Pootprint Area m ² 36.5 Measured Subsurface Foundation Area m ² 79.6 Measured Volume Basement m ³ 77.9 Calculated Ratio Volume/Area m 0.98 Calculated Depth to Base of Foundation m 1.68 Measured Assumed Perimeter Crack Width cm 0.1 Assumed; draft USEPA VI Guidance default Perimeter Crack Width cm 0.1 Assumed; draft USEPA VI Guidance default Perimeter Crack Width cm 25.6 Calculated Building Crack Area m ² 0.40 Assumed perimeter crack width (1 mm) times perimeter foundation crack Building Crack Area m ² 0.40 Assumed perimeter crack width (1 mm) times perimeter foundation crack Building Crack Ratio dimensionless 0.0050 Calculated Crack Dust Water-Filled Porosity cm ³ /cm ³ Dry Assumed; draft USEPA VI Guidance default Building Foundation Slab Thickness m 0.1 Measured Method 1 (Estimate Q _{soil} A _{build} ratio) Q _{soil} C _{alcul} cm ³ /sec 33 Adjust such that Qsoil/Qbuild = 0.0033 (EPA value) Q _{soil} Calculated Method 2 (Calculate Q _{soil} using Perimeter Crack Model) Soil air permeability cm ² 1.00E-07 Estimated, input directly into spreadsheet Building Depressurization Pa Building Depressurization Pa	Basement Mixing Height	m	2.13	Measured		
Subsurface Foundation Area m ² 79.6 Measured Volume Basement m ³ 77.9 Calculated Ratio Volume/Area m 0.98 Calculated Depth to Base of Foundation m 1.68 Measured Assumed Perimeter Crack Width cm 0.1 Assumed; draft USEPA VI Guidance default Perimeter Foundation Crack Length m 25.6 Calculated Building Crack Area m ² 0.40 Assumed perimeter crack width (1 mm) times perimeter foundation crack Building Crack Ratio dimensionless 0.0050 Calculated Crack Dust Water-Filled Porosity cm ³ /cm ³ Dry Assumed; draft USEPA VI Guidance default Building Foundation Slab Thickness m 0.1 Measured Method 1 (Estimate Q _{soil} based on Q _{soil} /Q _{build} ratio) L/min 2.0 Adjust such that Qsoil/Qbuild = 0.0033 (EPA value) Q _{soil} cm ³ /sec 33 Adjust such that Qsoil/Qbuild = 0.0033 (EPA value) Q _{soil} cm ³ /sec 33 Adjust such that Qsoil/Qbuild = 0.0033 (EPA value) Q _{soil} cm ² 1.00E-07 Estimated, input directly into spreadsheet	Basement Footprint Area	m²	36.5	Measured		
Volume Basement m³ 77.9 Calculated Ratio Volume/Area m 0.98 Calculated Depth to Base of Foundation m 1.68 Measured Assumed Perimeter Crack Width cm 0.1 Assumed; draft USEPA VI Guidance default Perimeter Foundation Crack Length m 25.6 Calculated Building Crack Area m² 0.40 Assumed perimeter crack width (1 mm) times perimeter foundation crack Building Crack Ratio dimensionless 0.0050 Calculated Crack Dust Water-Filled Porosity cm³/cm³ Dry Assumed; draft USEPA VI Guidance default Building Foundation Slab Thickness m 0.1 Measured Method 1 (Estimate Q _{soll} based on Q _{soll} /Q _{build} ratio) L/min 2.0 Adjust such that Qsoil/Qbuild = 0.0033 (EPA value) Q _{soll} cm³/sec 33 Adjust such that Qsoil/Qbuild = 0.0033 (EPA value) Quild Q _{soll} /Q _{build} dimensionless 0.0033 Calculated Q _{soll} /Q _{build} dimensionless 0.0033 Calculated Q _{soll} Crack Length dimensionless 0.0033 Calculated <td< td=""><td>Subsurface Foundation Area</td><td>m²</td><td>79.6</td><td>Measured</td></td<>	Subsurface Foundation Area	m²	79.6	Measured		
Ratio Volume/Area m 0.98 Calculated Depth to Base of Foundation m 1.68 Measured Assumed Perimeter Crack Width cm 0.1 Assumed; draft USEPA VI Guidance default Perimeter Foundation Crack Length m 25.6 Calculated Building Crack Area m ² 0.40 Assumed perimeter crack width (1 mm) times perimeter foundation crack length plus open dirt area (0.6 by 0.6 m) Building Crack Ratio dimensionless 0.0050 Calculated Crack Dust Water-Filled Porosity cm ³ /cm ³ Dry Assumed; draft USEPA VI Guidance default Building Foundation Slab Thickness m 0.1 Measured Method 1 (Estimate Q _{soil} based on Q _{soil} /Q _{build} ratio) L/min 2.0 Adjust such that Qsoil/Qbuild = 0.0033 (EPA value) Q _{soil} L/min 613 Calculated Q _{soil} /Q _{build} dimensionless 0.0033 Calculated Method 2 (Calculate Q _{soil} using Perimeter Crack m 1.00E-07 Estimated, input directly into spreadsheet Building Depressurization Pa 0.6 Measured Calculated Soil air permeability Cm 1.54 <	Volume Basement	m³	77.9	Calculated		
Deptine to Base of Foundation m 1.68 Measured Assumed Perimeter Crack Width cm 0.1 Assumed; draft USEPA VI Guidance default Perimeter Foundation Crack Length m 25.6 Calculated Building Crack Area m ² 0.40 Assumed perimeter crack width (1 mm) times perimeter foundation crack Building Crack Area m ² 0.40 Assumed perimeter crack width (1 mm) times perimeter foundation crack Building Crack Ratio dimensionless 0.0050 Calculated Crack Dust Water-Filled Porosity cm ³ /cm ³ Dry Assumed; draft USEPA VI Guidance default Building Foundation Slab Thickness m 0.1 Measured Method 1 (Estimate Q _{soli} based on Q _{soli} /Q _{build} ratio) L/min 2.0 Adjust such that Qsoil/Qbuild = 0.0033 (EPA value) Q _{soil} L/min 613 Calculated Q _{soil} /Q _{build} dimensionless 0.0033 Calculated Model) cm ² 1.00E-07 Estimated, input directly into spreadsheet Building Depressurization Pa 0.6 Measured October 23, 2002 Equivalent Perimeter Crack Width Cm 1.54 Calculated	Ratio Volume/Area	m	0.98	Calculated		
Assumed Perimeter Crack Woldning Citic 0.1 Assumed Perimeter Crack Woldning Perimeter Foundation Crack Length m 25.6 Calculated Building Crack Area m² 0.40 Assumed perimeter crack width (1 mm) times perimeter foundation crack length plus open dirt area (0.6 by 0.6 m) Building Crack Ratio dimensionless 0.0050 Calculated Crack Dust Water-Filled Porosity cm³/cm³ Dry Assumed; draft USEPA VI Guidance default Building Foundation Slab Thickness m 0.1 Measured Method 1 (Estimate Q _{soll} based on Q _{soll} /Q _{build} ratio) Qsoll 2.0 Adjust such that Qsoil/Qbuild = 0.0033 (EPA value) Qsoll Crack Dust Water-Filled Porosity cm³/cm³ Dry Assumed; draft USEPA VI Guidance default Qsoll Calculated m 0.1 Measured Qsoll Cm³/cm³ Dry Assumed; draft USEPA VI Guidance default Qsoll L/min 2.0 Adjust such that Qsoil/Qbuild = 0.0033 (EPA value) Qsoll Cm³/sec 33 Adjust such that Qsoil/Qbuild = 0.0033 (EPA value) Qsoll L/min 613 Calculated Soil air permeability <t< td=""><td>Depth to Base of Foundation</td><td>m</td><td>1.68</td><td>Measured</td></t<>	Depth to Base of Foundation	m	1.68	Measured		
Building Crack Area m² 0.40 Assumed perimeter crack width (1 mm) times perimeter foundation crack length plus open dirt area (0.6 by 0.6 m) Building Crack Ratio dimensionless 0.0050 Calculated Crack Dust Water-Filled Porosity cm³/cm³ Dry Assumed; draft USEPA VI Guidance default Building Foundation Slab Thickness m 0.1 Measured Method 1 (Estimate Q _{soil} based on Q _{soil} /Q _{build} ratio) L/min 2.0 Adjust such that Qsoil/Qbuild = 0.0033 (EPA value) Q _{soil} L/min 613 Calculated Q _{soil} /Q _{build} dimensionless 0.0033 Calculated Method 2 (Calculate Q _{soil} using Perimeter Crack Method 2 (Calculate Q _{soil} using Perimeter Crack Measured October 23, 2002 Soil air permeability cm² 1.00E-07 Estimated, input directly into spreadsheet Building Depressurization Pa 0.6 Measured October 23, 2002 Equivalent Perimeter Crack Width L/min 0.61 Calculated Q _{soil} L/min 0.61 Calculated	Perimeter Foundation Crack Length	m	25.6	Assumed, drait OSEFA VI Guidance derauit Calculated		
Building Crack Ratio dimensionless 0.0050 Length plus open dirt area (0.6 by 0.6 m) Crack Dust Water-Filled Porosity cm³/cm³ Dry Assumed; draft USEPA VI Guidance default Building Foundation Slab Thickness m 0.1 Measured Method 1 (Estimate Q _{soil} based on Q _{soil} /Q _{build} ratio) Measured L/min 2.0 Adjust such that Qsoil/Qbuild = 0.0033 (EPA value) Q _{soil} Q _{soil} L/min 613 Calculated Q _{soil} /Q _{build} dimensionless 0.0033 Calculated Method 2 (Calculate Q _{soil} using Perimeter Crack Model) cm² 1.00E-07 Estimated, input directly into spreadsheet Building Depressurization Pa 0.6 Measured October 23, 2002 2002 Equivalent Perimeter Crack Width Cm 1.54 Calculated, includes open crack area Q _{soil} L/min 0.61 Calculated	Building Crack Area	m ²	0.40	Assumed perimeter crack width (1 mm) times perimeter foundation crack		
Building Crack Ratio dimensionless 0.0050 Calculated Crack Dust Water-Filled Porosity cm³/cm³ Dry Assumed; draft USEPA VI Guidance default Building Foundation Slab Thickness m 0.1 Measured Method 1 (Estimate Q _{soil} based on Q _{soil} /Q _{build} ratio) L/min 2.0 Adjust such that Qsoil/Qbuild = 0.0033 (EPA value) Q _{soil} L/min 613 Calculated Q _{soil} /Q _{build} dimensionless 0.0033 Calculated Method 2 (Calculate Q _{soil} using Perimeter Crack m 0.10033 Calculated Model) cm² 1.00E-07 Estimated, input directly into spreadsheet Building Depressurization Pa 0.6 Measured October 23, 2002 Equivalent Perimeter Crack Width cm 1.54 Calculated, includes open crack area Q _{soil} L/min 0.61 Calculated Calculated				length plus open dirt area (0.6 by 0.6 m)		
Crack Dust Water-Filled Porosity cm³/cm³ Dry Assumed; draft USEPA VI Guidance default Building Foundation Slab Thickness m 0.1 Measured Method 1 (Estimate Q _{soil} based on Q _{soil} /Q _{build} ratio) L/min 2.0 Adjust such that Qsoil/Qbuild = 0.0033 (EPA value) Q _{soil} L/min 2.0 Adjust such that Qsoil/Qbuild = 0.0033 (EPA value) Q _{soil} cm³/sec 33 Adjust such that Qsoil/Qbuild = 0.0033 (EPA value) Q _{soil} /Q _{build} L/min 613 Calculated Method 2 (Calculate Q _{soil} using Perimeter Crack Method 2 (Calculate Q _{soil} using Perimeter Crack V Model) Cm² 1.00E-07 Estimated, input directly into spreadsheet Building Depressurization Pa 0.6 Measured October 23, 2002 Equivalent Perimeter Crack Width Cm 1.54 Calculated, includes open crack area Q _{soil} L/min 0.61 Calculated Calculated	Building Crack Ratio	dimensionless	0.0050	Calculated		
Crack Dust Water-Filled Porosity cm ³ /cm ³ Dry Assumed; draft USEPA VI Guidance default Building Foundation Slab Thickness m 0.1 Measured Method 1 (Estimate Q _{soil} based on Q _{soil} /Q _{build} ratio) L/min 2.0 Adjust such that Qsoil/Qbuild = 0.0033 (EPA value) Q _{soil} L/min 2.0 Adjust such that Qsoil/Qbuild = 0.0033 (EPA value) Q _{soil} cm ³ /sec 33 Adjust such that Qsoil/Qbuild = 0.0033 (EPA value) Q _{soil} /Q _{build} L/min 613 Calculated Method 2 (Calculate Q _{soil} using Perimeter Crack dimensionless 0.0033 Calculated Model) Soil air permeability cm ² 1.00E-07 Estimated, input directly into spreadsheet Building Depressurization Pa 0.6 Measured October 23, 2002 2002 Equivalent Perimeter Crack Width Cm 1.54 Calculated, includes open crack area Q _{soil} L/min 0.61 Calculated						
Building Foundation Slab Thickness m 0.1 Measured Method 1 (Estimate Q _{soil} based on Q _{soil} /Q _{build} ratio) L/min 2.0 Adjust such that Qsoil/Qbuild = 0.0033 (EPA value) Q _{soil} L/min 2.0 Adjust such that Qsoil/Qbuild = 0.0033 (EPA value) Q _{soil} Cm ³ /sec 33 Adjust such that Qsoil/Qbuild = 0.0033 (EPA value) Q _{soil} L/min 613 Calculated Q _{soil} /Q _{build} dimensionless 0.0033 Calculated Method 2 (Calculate Q _{soil} using Perimeter Crack Model) cm ² 1.00E-07 Estimated, input directly into spreadsheet Building Depressurization Pa 0.6 Measured October 23, 2002 2002 Equivalent Perimeter Crack Width L/min 0.61 Calculated, includes open crack area Q _{soil} L/min 0.61 Calculated, includes open crack area	Crack Dust Water-Filled Porosity	cm³/cm³	Dry	Assumed; draft USEPA VI Guidance default		
Method 1 (Estimate Q _{soil} based on Q _{soil} /Q _{build} ratio) L/min 2.0 Adjust such that Qsoil/Qbuild = 0.0033 (EPA value) Q _{soil} cm ³ /sec 33 Adjust such that Qsoil/Qbuild = 0.0033 (EPA value) Q _{soil} L/min 613 Calculated Q _{soil} /Q _{build} dimensionless 0.0033 Calculated Method 2 (Calculate Q _{soil} using Perimeter Crack dimensionless 0.0033 Calculated Model) cm ² 1.00E-07 Estimated, input directly into spreadsheet Building Depressurization Pa 0.6 Measured October 23, 2002 Equivalent Perimeter Crack Width Crm 1.54 Calculated, includes open crack area Q _{soil} L/min 0.61 Calculated, includes open crack area	Building Foundation Slab Thickness	m	0.1	Measured		
Q _{soil} L/min 2.0 Adjust such that Qsoil/Qbuild = 0.0033 (EPA value) Q _{soil} cm ³ /sec 33 Adjust such that Qsoil/Qbuild = 0.0033 (EPA value) Q _{build} L/min 613 Calculated Q _{soil} /Q _{build} dimensionless 0.0033 Calculated Method 2 (Calculate Q _{soil} using Perimeter Crack Method 2 (Calculate Q _{soil} using Perimeter Crack Cm ² Soil air permeability cm ² 1.00E-07 Estimated, input directly into spreadsheet Building Depressurization Pa 0.6 Measured October 23, 2002 Equivalent Perimeter Crack Width cm 1.54 Calculated, includes open crack area Q _{soil} L/min 0.61 Calculated, includes open crack area	Method 1 (Estimate Q _{soil} based on Q _{soil} /Q _{build} ratio)					
Q _{soil} cm ³ /sec 33 Adjust such that Qsoil/Qbuild = 0.0033 (EPA value) Q _{build} L/min 613 Calculated Q _{soil} /Q _{build} dimensionless 0.0033 Calculated Method 2 (Calculate Q _{soil} using Perimeter Crack Model) cm ² 1.00E-07 Estimated, input directly into spreadsheet Soil air permeability cm ² 0.6 Measured October 23, 2002 Equivalent Perimeter Crack Width cm 1.54 Calculated, includes open crack area Q _{soil} L/min 0.61 Calculated, includes open crack area	Q _{soil}	L/min	2.0	Adjust such that Qsoil/Qbuild = 0.0033 (EPA value)		
Qbuild L/min 613 Calculated Qsol/Qbuild dimensionless 0.0033 Calculated Method 2 (Calculate Qsoll using Perimeter Crack Model) Cm² 1.00E-07 Estimated, input directly into spreadsheet Soil air permeability cm² 1.00E-07 Estimated, input directly into spreadsheet Building Depressurization Pa 0.6 Measured October 23, 2002 Equivalent Perimeter Crack Width cm 1.54 Calculated, includes open crack area Qsoil L/min 0.61 Calculated	Q _{soil}	cm ³ /sec	33	Adjust such that Qsoil/Qbuild = 0.0033 (EPA value)		
Qual Calculate Qsoil/Qbuild dimensionless 0.0033 Calculated Method 2 (Calculate Qsoil using Perimeter Crack dimensionless 0.0033 Calculated Model) Soil air permeability cm² 1.00E-07 Estimated, input directly into spreadsheet Building Depressurization Pa 0.6 Measured October 23, 2002 Equivalent Perimeter Crack Width cm 1.54 Calculated, includes open crack area Qsoil L/min 0.61 Calculated	Qhuild	L/min	613	Calculated		
Method 2 (Calculate Q _{soil} using Perimeter Crack Immensionless 0.0000 Calculated Model) Cm ² 1.00E-07 Estimated, input directly into spreadsheet Building Depressurization Pa 0.6 Measured October 23, 2002 Equivalent Perimeter Crack Width Cm 1.54 Calculated, includes open crack area Q _{soil} L/min 0.61 Calculated		dimensionless	0.0033	Calculated		
Method 2 (Calculate Q _{soil} using Perimeter Crack Image: Model Model) Cm ² 1.00E-07 Estimated, input directly into spreadsheet Soil air permeability Cm ² 1.00E-07 Estimated, input directly into spreadsheet Building Depressurization Pa 0.6 Measured October 23, 2002 Equivalent Perimeter Crack Width Cm 1.54 Calculated, includes open crack area Q _{soil} L/min 0.61 Calculated	C soil C build	annensioniess	0.0000	Calculated		
Model) cm ² 1.00E-07 Estimated, input directly into spreadsheet Building Depressurization Pa 0.6 Measured October 23, 2002 Equivalent Perimeter Crack Width cm 1.54 Calculated, includes open crack area Q _{soil} L/min 0.61 Calculated	Method 2 (Calculate Q _{soil} using Perimeter Crack					
Son an permeability cm² 1.00±-07 Estimated, input directly into spreadsheet Building Depressurization Pa 0.6 Measured October 23, 2002 Equivalent Perimeter Crack Width cm 1.54 Calculated, includes open crack area Q _{soil} L/min 0.61 Calculated	Model)	2		Entire stand install dispetitivity and a state of		
Building Depressurization Pa 0.6 Measured October 23, 2002 Equivalent Perimeter Crack Width cm 1.54 Calculated, includes open crack area Q _{soil} L/min 0.61 Calculated	Soli air permeability	cm ²	1.00E-07	Estimated, input directly into spreadsheet		
Conversion Cin 1.04 Conversion Q _{soil} L/min 0.61 Calculated	Building Depressurization	Pa	U.6 1.54	Measured October 23, 2002		
		l /min	0.61	Calculated		
N I Colouistad		3/	10	Calculated		
		cm ⁻ /sec	10			
usoil/ubuild dimensionless 0.0010 Calculated	Q _{soi} l/Q _{build}	aimensioniess	0.0010	Calculated		

1. Total Petroluem Hydrocarbon Criteria Working Group, Selection of Representative TPH Fractions Based on Fate and Transport Considerations

Date Printed:2/9/2005

		N	leasured Alpha (Base	ement)	Site Specific J&E Alpha (basement)		US EPA VI Q5
Chemical	Pathway	October 2002 Data	January 2004 Data	January 2004 Data	Method 1	Method 2	Alpha (Basement)
		(1 side house, max)	(1 side house, max)	(both sides house, avg)	(Q _{soil} /Q _{build} ratio)	(PCM)	
MTBE ¹	Groundwater to Indoor Air	1.10E-05	N/A	N/A	1.2E-03	7.4E-04	1.2E-03
Cyclohexane 224 Trimethylpentane	Soil Vapour to Indoor Air Soil Vapour to Indoor Air	1.20E-04 3.60E-04	8.00E-05 3.40E-04	1.60E-04 6.70E-04	2.3E-03 2.1E-03	1.1E-03 9.5E-04	2.2E-03 2.2E-03

Page 1 of 1

023-6124C

Bay Avenue - Manahawkin, Stafford Twp.

New Jersey Department of **Environmental Protection**

> Site Remediation Program

Environmental **Measurements** Section

Golder - NJDEP Vapor Intrusion Research Study

Sample Locations

FIGURE 2-1

Bay Avenue - Manahawkin, Stafford Twp.

0.06

New Jersey Department of Environmental .-Protection

Site Remediation Program

Environmental Measurements Section

> **Golder - NJDEP Vapor Intrusion Research Study**

Sample Locations

September 9 - 12, 2002

0.12 Miles

Golder Associates

FIGURE 3-1

Figure 3-2. Stafford Site Soil Headspace Vapor Test Results October 2002

STAFFORD TOWNSHIP SHALLOW GROUNDWATER QUALITY (BTEX) - SEPTEMBER 2002

Golder Associates

STAFFORD TOWNSHIP SHALLOW GROUNDWATER QUALITY (MTBE) - SEPTEMBER 2002

Golder Associates

STAFFORD TOWNSHIP SHALLOW GROUNDWATER QUALITY (BTEX) - OCTOBER 2002

Golder Associates

FIGURE 3-5

STAFFORD TOWNSHIP SHALLOW GROUNDWATER QUALITY (MTBE) - OCTOBER 2002

Golder Associates

FIG 3-7. BASEMENT TO OUTDOOR DIFFERENTIAL PRESSURE 73 BAY AVENUE

FIG 3-9. BASEMENT TO OUTDOOR DIFFERENTIAL PRESSURE AT 14 PARK

Golder Associates

FIGURE 3-11

Figure 4-2. Differential Pressure 73 Bay Avenue

Figure 4-3. Differential Pressure 73 Bay Avenue

APPENDIX I

STAFFORD PRE-SAMPLING SURVEY RESULTS

G

New Jersey Department of Environmental Protection

INDOOR AIR BUILDING SURVEY & SAMPLING FORM

Survey Completed by: M Lewis Date: 10/18/07
Site Name: <u>Antique Store</u> Case #:
Part I - Occupants
Building Address: 73 Day Ave
Property Contact: Ray Detty Ewner Renter / other:
Contact's Phone: home () work () cell ()
Building occupants: Children under age 13 NO Viveruildren age 13-18 Adults
Part II -Building Characteristics
Building type: single-family residential / multi-family residential / office / strip mall (commercial) industrial
Describe building: Antique strange 1st Floer Storage 2nd Floor
Number of floors - below grade: (full basement / crawl space / slab) Partial w at or above grade: SPA(PS
Basement size: ft ² Basement floor: oncrete dirt loating / other (specify):
Foundation type: poured concrete / einer plock (stone) other (specify) not Sure
Type of ground cover around outside of building grass concrete (asphalt?) other (specify)
Basement sump present? Yes / No Sump pump? Yes / No Not Sure it so not uselele
Type of heating system (circle all that apply): hot air circulation hot air radiation wood steam radiation hot water radiation hot water radiation heat pump other (specify):
Type of ventilation system (circle all that apply): central air conditioning individual air conditioning units 3 10 Kitchen range hood open windows other (specify):
Type of fuel utilized (circle all that apply): Natural gas / electric / (uel oit) wood / coal / solar / kerosene / outside (fresh) air intake
Existing subsurface depressurization (radon) system in place? Yes / No and running? Yes / No
Part III - Outside Contaminant Sources
NJDEP Comprehensive Site List (1000-ft. radius):
Other stationary sources nearby (gas stations, emission stacks, etc.):
Heavy vehicular traffic nearby (or other mobile sources):

FEB-19-2003 WED 11:53 AM GOLDER ASSOCIATES

FAX NO. 12

 \overline{n}

Building address:

Part IV - Indoor Contaminant Sources

4

Identify all potential indoor sources found in the building (including attached garages), the location of the source (floor & room), and whether the item was removed from the building 48 hours prior to indoor air sampling event.

Potential Sources	Location(s)	Removed Prior to Sampling? (Yes / No / NA)
Gasoline storage cans	NO	
Gas-powered equipment	60	
Kerosene storage cans		
Paints / thinners / strippers	Apt concently - Basement	
Cleaning solvents	IST FLOOV	
Oven cleaners	ho	
Carpet / upholstery cleaners	No	
Other house cleaning products	1 St Floor	
Moth balls	Lino	
Polishes / waxes	IST FLOOV	
Insecticides	NO - grass Killer never opened 15#	Flex -
Furniture / floor polish	12 F100 C	
Nail polish / polish remover	no	
Hairspray	no	·
Cologne / perfume	12 Floor	
Air fresheners	19T Floor	
Fuel tank (inside building)	Basement	NA
Wood stove or fireplace	MO	NA
New furniture / upholstery	NO ·	NA
New carpeting / flooring	NO	NA
Recent painting in building?	14r ago 4 st Floor-Shelves	NA
Hobbies - glues, paints, etc.	1 3t 4-100r	

Part V - Miscellaneous Items

Do any occupants of the building smoke?	Yes / No	How often?
Has anyone smoked within the building within	the last 48 hours?	Yes / No
Does the building have an attached garage?	Yes / No	
If so, is a car usually parked in the garage?	Yes / No	-
Do the occupants of the building have their cle	othes dry-cleaned?	Yes / No
When were dry-cleaned clothes last brought in	to the building?	
Have the occupants ever noticed any usual odd	ors in the building?	Yes (No
Describe (with location):	······································	
Any known spills of a chemical immediately o	utside or inside the build	ding? Yes (No
Describe (with location):	······	
Have any pesticides/herbicides been applied an	ound the building found	lation or in the yard/gardens? — Yes / No
If so, when and which chemicals? T	200/inside	-for termites
1	Mrs. 6	e treated marine L.E.

New Jersey Department of Environmental Protection

INDOOR AIR BUILDING SURVEY & SAMPLING FORM

Survey Completed by: MLews	Date: 1011802
Site Name: 22 Park Ave	Case #:
Part I - Occupants	
Building Address: Ravk Ave	
Property Contact; Owner / Rente	er / other:
Contact's Phone: home () work ()	cell ()
Building occupants: Children under age 13 Children age 13	3-18 Adults 3 (14 ravels
Part II - Building Characteristics	Frequeitly
Building type: single-family residential / multi-family residential / offi	ice / strip mall / commercial / industrial
Describe building:	
Number of floors - below grade: (full basement / grawl space)/	slab) at or above grade:
Basement size: ft ² Basement floor: concrete / dirt / flo	oating / other (specify):
Foundation type: poured concrete / cinder blocks / stone / other (spec	ify)
Type of ground cover around outside of building (grass) concrete / asp	phalt / other (specify) <u>aravel dri</u>
Basement sump present? Yes / No Sump pump? Yes / No	
Type of heating system (circle all that apply): hot air circulation hot air radiation wood kerosene heater electric baseboard heat pump	steam radiation hot water radiation other (specify):
Type of ventilation system (circle all that apply): central air conditioning mechanical fans individual air conditioning units \ w kitchen range hood open windows other (specify):	bathroom ventilation fans 151 ± 1000 1
Type of fuel utilized (circle all that apply): Natural gas / electric (fuel oil) wood / coal / solar / kerose	ene / outside (fresh) air intake
Existing subsurface depressurization (radon) system in place? Yes /(No) and running? Yes / No
Part III - Outside Contaminant Sources	
NJDEP Comprehensive Site List (1000-ft. radius):	·
Other stationary sources nearby (gas stations, emission stacks, etc.):	
Heavy vehicular traffic nearby (or other mobile sources):	·

FEB-19-2003 WED 11:54 AM GOLDER ASSOCIATES

FAX NO. 12

Building address:

Part IV - Indoor Contaminant Sources

Identify all potential indoor sources found in the building (including attached garages), the location of the source (floor & room), and whether the item was removed from the building 48 hours prior to indoor air sampling event.

Potential Sources	Location(s)	Removed Prior to Sampling? (Yes / No / NA)
Gasoline storage cans	no	
Gas-powered equipment		
Kerosene storage cans		
Paints / thinners / strippers	IST FLOOR	
Cleaning solvents	1 ST FLOOR, POSS, 2 ha Floor	
Oven cleaners	no	
Carpet / upholstery cleaners	1ST Floor	
Other house cleaning products	11St Floor, poss and	
Moth balls	F and Floor	
Polishes / waxes	NO	
Insecticides	1st Floor	
Furniture / floor polish	120 FLOORS	
Nail polish / polish remover	112 Floors	
Hairspray	Land Floor (m	
Cologne / perfume	142 Floors	
Air fresheners	120 Floors	
Fuel tank (inside building)	no	NA
Wood stove or fireplace	L NO	NA
New furniture / upholstery	no	NA
New carpeting / flooring	THE FLOOD 15 FLOOR	NA
Recent painting in building?	no	NA
Hobbies - glues, paints, etc.	and floor	

Part V – Miscellaneous Items

Do any occupants of the building smoke? Yesy No	How often? Truelling Occupant	
Has anyone smoked within the building within the last 48 hours?	Yes / No currently awarg	
Does the building have an attached garage? Yes (No)		
If so, is a car usually parked in the garage? Yes / No		
Do the occupants of the building have their clothes dry-cleaned?	Yes 100 - 10 se dryell deause	
When were dry-cleaned clothes last brought into the building?	v	
Have the occupants ever noticed any usual odors in the building?	Yes / No	
Describe (with location):		
Any known spills of a chemical immediately outside or inside the building? (Yes / No Describe (with location): Dropped Wetex point 2nd Floor last wink		
Have any pesticides/herbicides been applied around the building foundation	tion or in the yard/gardens? Yes (No)	
If so, when and which chemicals? Yand gave	not no weeks ago	

5

New Jersey Department of Environmental Protection
INDOOD AID BUILDING SUDVEY
& SAMPI INC FORM
Survey Completed by: MLewis Date: 10/18/02
Site Name: 18 Park Ave Case #:
Part I - Occupants
Building Address: abore
Property Contact: Dan Swith Owner/Renter/other: Owner
Contact's Phone: home $f_{0}9 - 978 - 0/0$ fork () cell ()
Building occupants: Children under age 13 Children age 13-18 Adults Adults 3
Part II – Building Characteristics
Building type: single-family residential) multi-family residential / office / strip mall / commercial / industrial
Describe building:
Number of floors - below grade: (full basement) crawl space / slab) at or above grade:
Basement size: ft ² Basement floor. concrete) dirt / floating / other (specify):
Foundation type: poured concrete / einder blocks)/ stone / other (specify)
Type of ground cover around outside of building: grass / concrete / asphalt / other (specify) <u>Glavel Drive</u>
Basement sump present? Yes / No Sump pump? Yes / No
Type of heating system (circle all that apply): wood steam radiation hot air circulation hot air radiation hot air circulation hot air radiation wood steam radiation hot water radiation kerosene heater electric baseboard heat pump other (specify):
Type of ventilation system (circle all that apply): central air conditioning mechanical fans individual air conditioning units kitchen range hood open windows other (specify):
Type of fuel utilized (circle all that apply): Natural gas / electric / fuel oil / wood / coal / solar / kerosene / outside (fresh) air intake
Existing subsurface depressurization (radon) system in place? Yes / No) and running? Yes / No
Part III - Outside Contaminant Sources
NJDEP Comprehensive Site List (1000-ft. radius):
Other stationary sources nearby (gas stations, emission stacks, etc.):
Heavy vehicular traffic nearby (or other mobile sources):

e.

FEB-19-2003 WED 11:54 AM GOLDER ASSOCIATES

FAX NO. 12

Building address: _

Part IV - Indoor Contaminant Sources

Identify all potential indoor sources found in the building (including attached garages), the location of the source (floor & room), and whether the item was removed from the building 48 hours prior to indoor air sampling event.

Potential Sources	Location(s)	Removed Prior to Sampling? (Yes / No / NA)
Gasoline storage cans	Guraque	
Gas-powered equipment	NO	
Kerosene storage cans	empta	
Paints / thinners / strippers	were Bainting wheek was	
Cleaning solvents	I can string in garage	
Oven cleaners	Oven-OFF - Kitchen	
Carpet / upholstery cleaners	Not Sure	
Other house cleaning products	1 5 F 100 V	
Moth balls	New 1st Floor	
Polishes / waxes	yes 1st Floor	
Insecticides	wes 1st Floor	····
Furniture / floor polish	Ves 12 Floor	
Nail polish / polish remover	Ves IST Floor	
Hairspray	Ves 15+ Ficor	
Cologne / perfume		
Air fresheners	N //	
Fuel tank (inside building)	L No	NA
Wood stove or fireplace	No	NA
New furniture / upholstery	No	NA
New carpeting / flooring		NA
Recent painting in building?	Ves 1st floor	NA
Hobbies - glues, paints, etc.	L 'nO	

Part V – Miscellaneous Items	
Do any occupants of the building smoke? (Yes) No	How often? 0-15
Has anyone smoked within the building within the last 48 hours?	(Yes) No
Does the building have an attached garage? Yes No	
If so, is a car usually parked in the garage? Yes (No)	
Do the occupants of the building have their clothes dry-cleaned?	Yes (No)
When were dry-cleaned clothes last brought into the building?	
Have the occupants ever noticed any usual odors in the building?	Yes (No)
Describe (with location):	
Any known spills of a chemical immediately outside or inside the bui	Iding? Yes / No
Describe (with location):	
Have any pesticides/herbicides been applied around the building foun	dation or in the yard/gardens? Yes / No
If so, when and which chemicals?	
· ·	· · · · · · · · · · · · · · · · · · ·

ļ

New Jersey Department of Environmental Protection
INDOOR AIR BUILDING SURVEY & SAMPLING FORM
Survey Completed by: MLewis Date: 10/18/02 Site Name: 19 Park Ave Case #: Part I - Occupants
Building Address: <u>14 Park Are</u> Property Contact: <u>Jack Thode Owner</u> Renter / other:
Building occupants: Children under age 13 Children age 13-18 Adults 4
Building type: single-family residential / multi-family residential / office / strip mall / commercial / industrial Describe building:
Number of floors - below grade:
Foundation type: poured concrete (cinder blocks) stone / other (specify)
Type of heating system (circle all that apply): hot air circulation hot air radiation kerosene heater electric baseboard heat pump other (specify):
Type of ventilation system (circle all that apply): mechanical fans bathroom ventilation fans individual air conditioning units tot mechanical fans bathroom ventilation fans open windows not other (specify):
Type of fuel utilized (circle all that apply) Natural gas / electric / fuel oil / wood / coal / solar / kerosene / outside (fresh) air intake
Existing subsurface depressurization (radon) system in place? Yes / No and running? Yes / No
MIDER Commentaria Site List (1000 for a dire)
Other stationary sources nearby (gas stations, emission space, at)
Heavy vehicular traffic nearby (or other mobile sources):

Building Abbross .

Part IV - Indoor Contaminant Sources

Identify all potential indoor sources found in the building (including attached garages), the location of the source (floor & room), and whether the item was removed from the building 48 hours prior to indoor air sampling event.

Potential Sources	Location(s)	Removed Prior to Sampling? (Yes / No / NA)
Gasoline storage cans	NO	
Gas-powered equipment	INO	
Kerosene storage cans	NO a	
Paints / thinners / strippers	Basement	
Cleaning solvents	Basement	
Oven cleaners	Kitchen - 1st Floor	
Carpet / upholstery cleaners	Rosenent	
Other house cleaning products	155 2 Second Floor	
Moth balls	Not presently	
Polishes / waxes	15t and Basement.	
Insecticides	Basement, 155-Floor	
Furniture / floor polish	1St FIDON	
Nail polish / polish remover	15t Floor and Floor	
Hairspray	125 Floor, and Floor	
Cologne / perfume	1 = 9 2 not Floors	····
Air fresheners	151 FLOOR	
Fuel tank (inside building)	no	NA
Wood stove or fireplace	not used (1st Floor)	NA
New furniture / upholstery	Lho.	NA
New carpeting / flooring	In Fourt of door 1st Floor	NA
Recent painting in building?	1St FLOOV	NA
Hobbies - glues, paints, etc.	no	

Part V - Miscellaneous Items

rait v – wiscellaneous items	
Do any occupants of the building smoke? Yes / No	How often?
Has anyone smoked within the building within the last 48 hours?	Yes / No
Does the building have an attached garage? Yes No	
If so, is a car usually parked in the garage? Yes / No	
Do the occupants of the building have their clothes dry-cleaned?	Yes (No)
When were dry-cleaned clothes last brought into the building?	
Have the occupants ever noticed any usual odors in the building?	Yes / No - Deisel Floor edor
Describe (with location):	tero times year
Any known spills of a chemical immediately outside or inside the building	ng? Yes Nov
Describe (with location):	
Have any pesticides/herbicides been applied around the building founda	tion or in the yard/gardens? (Yes) No
If so, when and which chemicals?	lemo ago pesticide

New Jersey Department of Environmental Protection
INDOOR AIR BUILDING SURVEY & SAMPLING FORM
Survey Completed by: MCL Date: 11/4/02 Site Name: Briggs Bicycle Shop Case #: Part I - Occupants Building Address: 63 E Bay Ave Property Contact: Pcter Briggs Owner / Renter / other: Owner Contact's Phone: home 603 597-595 Bork () Same cell () WO / Use Children under one 12 18 E 1 Adults D
Part II - Building Characteristics
Building type: single-family residential / multi-family residential / office / strip mail / commercial) industrial
Describe building:
Number of floors - below grade: (full basement / crawl space / slab) at or above grade:
Basement size: $\sqrt{A^2}$ ft ² Basement floor: concrete / dirt / floating / other (specify):
Type of ground cover around outside of building: mass / concrete / senhelt / other (specify)
Basement sump present? Yes / No Sump pump? Yes / No $\mathcal{N}^{\mathcal{A}}$
Type of heating system (circle all that apply): hot air circulation hot air radiation wood steam radiation hot water radiation kerosene heater electric baseboard heat pump other (specify):
Type of ventilation system (circle all that apply):
Type of for officed (circle all that apply): Natural gas // electric / fuel oil / wood / coal / solar / kerosene /-outside (fresh) air intake
Existing subsurface depressurization (radon) system in place? Yes / No and running? Yes / No
Part III - Outside Contaminant Sources
NJDEP Comprehensive Site List (1000-ft. radius):
Other stationary sources nearby (gas stations, emission stacks, etc.):
Heavy vehicular traffic nearby (or other mobile sources):

Building address: NUMBER OF TAXABLE PROPERTY AND

Part IV - Indoor Contaminant Sources

Identify all potential-indoor sources found in the building (including attached garages), the location of the source (floor & room), and whether the item was removed from the building 48 hours prior to indoor air sampling event.

Potential Sources	Location(s)	Removed Prior to Sampling? (Yes / No / NA)
Gasoline storage cans	nO	
Gas-powered equipment	NO.	
Kerosene storage cans	First Floor Bathroo	<u>^</u>
Paints / thinners / strippers	No	
Cleaning solvents	Kerosen will not	setted 24hs
Oven cleaners	<u>No</u>	
Carpet / upholstery cleaners		
Other house cleaning products	Fantastik Winder	· · · · · · · · · · · · · · · · · · ·
Moth balls		
Polisnes / waxes	ANT CUTTENT Ly USING	
Insecticides		
Purtinure / noor poilsn		
Haireneau	Hes Not USING	
Cologne (perfume		
Air fresheners		
Fuel tank (inside building)	$+\kappa$ ið	NA
Wood stove or fireplace	1 No	NA
New furniture / upholstery	No ·	NA
New carpeting / flooring	NO	NA
Recent painting in building?	NO	NA
Hobbies - glues, paints, etc.	No-	. [
Part V – Miscellaneous Items Do any occupants of the building smo Has anyone smoked within the buildi	oke? Yes / No How often?	· · • • • • • • • • • • • • • • • • • •
Does the building have an attached ga	urage? Ye / No	
f so, is a car usually parked in the ga	rage? Yes /No	
Do the occupants of the building have	their clothes dry-cleaned? Yes / No	
When were dry-cleaned clothes last b	rought into the building?	
Have the occupants ever noticed any	usual odors in the building? Yes / No	
Describe (with location):		
Any known spills of a chemical imme	diately outside or inside the building? Yes / 1	No II
Describe (with location):	occasionally shall here	seene spills 34 mo

Have any pesticides/herbicides been applied around the building foundation or in the yard/gardens? Yes / No ~ lomo.

wee d

Lil!

01

 \leq

If so, when and which chemicals?

APPENDIX II

STAFFORD SITE PHOTOGRAPHS

73 Bay Avenue.

PHOTOGRAPH 2

63 Bay Avenue.

14 Park Avenue.

PHOTOGRAPH 4

18 Park Avenue.

22 Park Avenue.

PHOTOGRAPH 6

Gas Station across street from 63 and 73 Bay Avenue.

22 Park Avenue.

PHOTOGRAPH 8

Inside 18 Park Avenue.

Geoprobe soil gas implant.

PHOTOGRAPH 10

Gas station acroos street from 63 and 73 Bay Avenue.

Groundwater screen from well near 63 Bay Avenue.

APPENDIX III

STAFFORD RESULTS OF ORGANIC MATTER AND WATER RETENTION TESTING

275 - 11780 River Rd, Richmond BC, V6X 1Z7 TEL: 604-278-5535 FAX: 604-278-0517

ANALYTICAL RESULTS

Date:	January 7, 2003
Attention:	lan Hers
Email:	lHers@golder.com
Phone:	604-298-6623
From:	Natasha Smyth
Report to:	Golder Associates 500 – 4260 Still Creek Drive Burnaby BC V5C 6C6
Report on:	Fraction of Organic Carbon, 6 pt Water Retention
Project #	023-6124C
Soilcon Job #:	02-514
Samples received:	October 18, 2002

SAMPLES WILL BE DISPOSED OF IN 60 DAYS UNLESS NOTIFICATION IS RECEIVED

275 - 11780 RIVER ROAD, RICHMOND, B.C. V6X 1Z7 • TEL: (604) 278-5535 • FAX: (604) 278-0517 E-MAIL: soilcon@soilconlabs.com • WEB SITE: www.soilconlabs.com

Water Retention -	6 point curve									
				Water Ret	ention Re	sults				
	and a second			Percent R	etained B	y Volume				
										Bulk
	na na sense a sum a sub su a constituenza con a constante a constante a constante a sub successione a su a constante a	# & Depth		5	10	33	100	300	1500	Density
		(cm)	Lab#	J/kg	J/kg	J/kg	J/kg	J/kg	J/kg	kg/m³
Company:	Golder Associates Inc.	BH2 2-3'	02-514-2	10.2	7.0	4.7	3.6	2.7	17	1576
Contact:	lan Hers	BH2 6-7'	02-514-4	7.7	6.1	4.3	1.2	0.8	0.5	1721
Project ID:	023-6124C									
Soilcon Job#	02-514								:	
Analysis:	Water Retention - 6 Point Curve								:	
Date Completed:	7-Jan-03									

1/7/2003 WR-6pt&4pt&3pt02 WR-6pt Liability is limited to testing fee paid.

Initials:

SOILON LABORATORIES LIT

 TEL: (604) 278-5535
FAX: (604) 278-0517 275 - 11780 RIVER ROAD, RICHMOND, B.C. V6X 1Z7

H₂0 Storage Available Capacity AWSC 3.0 3.8 % Estimated % by vol Aeration 10 J/kg Porosity 33.5 29.0 ਰ Estimated Aeration 5 J/kg % by vol Porosity 30.3 27.4 at Assumed Estimated Estimated Estimated Calculated Air Entry Tension J/kg 0.04 0.41 Campbell а. Э. Э 8 م Porosity Total % vol 40.5 35.1 Density Particle 2650 2650 kg/m³ 02-514-2 02-514-4 Lab# (cm) # & Depth BH2 2-3' BH2 6-7' Water Retention - 6 Point Curve Golder Associates Inc. Water Retention - 6 point curve 023-6124C 7-Jan-03 lan Hers 02-514 Date Completed: Soilcon Job# Project ID: Company: Analysis: Contact:

1/7/2003 WR-6pt&4pt&3pt02 WR-6pt Liability is limited to testing fee paid.

Initials:

275 - 11780 RIVER ROAD, RICHMOND, B.C. V6X 1Z7 • TEL: (604) 278-5535 • FAX: (604) 278-0517 E-MAIL: soilcon@soilconlabs.com • WEB SITE: www.soilconlabs.com

Water Retention -	6 point curve			
	,	and some the free second procession of many states and the second second		
	AND COMPANY OF CONTRACT, AND CONTRACTOR OF CON			алар айынын талай алаанын алаа жаламын алар талаа алаан алаан алаан алаан алаан алаан алаан алаан алаан алаал т Соороосоороосоороосоороосоороосоороосоороосоороосоороосоороосоороосоороосоороосоороосоороосоороосоороосоороосоор
the second se		-		
		# & Depth		
		(cm)	Lab#	Comments
Company:	Golder Associates Inc.	BH2 2-3'	02514-2	samples arrived loose,
Contact:	lan Hers	BH2 6-7'	02-514-4	in bags. Compacted as per
Project ID:	023-6124C			ASTM 2325 #6
Soilcon Job#	02-514		:	for disturbed samples.
Analysis:	Water Retention - 6 Point Curve	:	-	
Date Completed:	7-Jan-03			

1/7/2003 WR-6pt&4pt&3pt02 WR-6pt Liability is limited to testing fee paid.

Initials:

SOID LABORATORIES LTD

275 - 11780 RIVER ROAD, RICHMOND, B.C. V6X 1Z7 • TEL: (604) 278-5535 • FAX: (604) 278-0517 E-MAIL: soilcon@soilconlabs.com • WEB SITE: www.soilconlabs.com

Total Organic	Carbon (TOC)				-	Fraction	
				Total	Total Organic	Organic	· · ·
				Carbon	Carbon (TOC)	Carbon	
		Sample ID	Lab#	%	%	%	Comments
Company:	Golder Associates Inc.	BH2 (0-1')	02-514-1	0.55	0.68	124	TOC is estimated to be half
Contact:	lan Hers	BH2 (2-3')	02-514-2	0.07	0.15	212	of organic matter lost on
Project ID:	023-6124C	BH2 (4-5')	02-514-3	0.15	0.12	82	ignition
Soilcon Job#	02-514	BH2 (6-7')	02-514-4	0.03	0.04	129	Total carbon is by Leco
Analysis:	TOC						
Date Completed:	18-Nov-02			-			

1/7/2003 02LOI&TOC TOC Liability is limited to testing fee paid. NC = Not Calculated

Initials: $\overline{\mathcal{MN}}$

LOSS ON IGNITIC	N			Organic Matter	Estimate of	
				by Loss	Total Org. C	
1999 (1999) (· · · · · · · · · · · · · · · · · · ·			on Ignition	*assume 50%	
	· · ·	Sample ID	Lab #	(%)	C in org. matter	% Ash
Company:	Golder Associates	BH2 (0-1')	02-514-1	.1.36	0.7	98.6
Contact:	lan Hers	BH2 (2-3')	02-514-2	0.30	0.1	99.7
Project ID:	023-6124C	BH2 (4-5')	02-514-3	0.25	0.1	99.8
Soilcon Job#	02-514	BH2 (6-7')	02-514-4	0.08	0.0	99.9
Analysis:	LOI					
Date Completed:	5-Nov-02					

1/7/2003 02LOI&TOC LOI Liability is limited to testing fee paid.

Initials

275 - 11780 RIVER ROAD, RICHMOND, B.C. V6X 1Z7 • TEL: (604) 278-5535 • FAX: (604) 278-0517 E-MAIL: soilcon@soilconlabs.com • WEB SITE: www.soilconlabs.com

APPENDIX IV

ADDITIONAL VAPOR ATTENUATION FACTOR CALCULATIONS FOR STAFFORD SITE

DATA ENTRY SHEET

SITE SPECIFIC MODELING NJDEP STAFFORD SITE GROUNDWATER TO INDOOR AIR

1 of 1

SITE SPECIFIC MODELING NJDEP STAFFORD SITE SOIL GAS TO INDOOR AIR

										ENTER Sectors O	soil water-filled	peresity,	۵, (cm ³ /cm ³		0,3										
										ENTER	soil totat	porosity,	n (unitiess)	for an and the second se	0.43										
											soli div	bulk density,	هر (a/em)		1.5				<u>to</u>						
				ENTER	User-defined	soli vapor	penneaouny, k, femð	/ that	1.00E-07	ENTER	SCS	soil type	Lookup Sel			ENTER	Average vapor flow rate into bidg.	Ю	eave blank to calcula Q _{ua}	(L/m)	2				
						Ę	5			ENTER	Stratum B soit water-filled	porosity,	в" ⁶ (ст ³ /ст3		0.045				Ľ						
				ENTER Sol	stratum A	soil type	used to estimate soil vapor	/Allimparsiad		ENTER	Stratum B soll total	porosity,	n ^b (unithere)		0.378	ENTER	Indoor	air exchange	rate, ER	(1/1)	0.47				
	Charmical	Cvelohevane		ENTER (oell F24)	Thickness	or soll stratum C,	(Emervalue or u) ho	(mg)	0		Stratum B soit div	bulk density,	وم رمادیم	1	1.6	ENTER	Floor-wall	seam crack	width, w	(cm)	1.54				
				ENJER Farid on to value of La	Thickness	ot soll stratum 8,	LERRET VALUE OF U) h ₅ family	(cm)	84	ENTER	Skatum B SCS	soil type	Leokup Sol Peremetera		:	ENTER	Enclosed	space	helghl, He	(cm)	213.4				
Data	ENTER Solf Generation Conc.	3 005.01	1011001	ENTER Totals rate		of soil	stratum A. ha	(cm)	251	ENTER	Sitatum A soil water-fillerí	porosity,	0, ^A (cm ⁸ /cm ³)	f mor mat	0.028	ENTER	Enclosed sbace	floor	width, We	(cm)	855.2	ENTER		irequency,	EF (days/yr).
Gas Concentration	5			ENTER		Average soil	temperature, T _S	3	15	ENTER	Stratum A coll totat	porosity,	n ^A (màlace)	(espinitin)	0,378	ENTER	Enclosed space	lloor	length, Lo	(cm)	426.7	ENTER		t:>posure duration,	EO (yrs)
Soil	ENTER Solf gas cone., ດູ			ENTER	Soll gas	sampling depth	below grade,	(cm)	335	ENTER	Straturn A soll dov	bulk density,	ρ ₆ ^A talem ³		1.6	ENTER	Soil-bida.	pressure	differentlal, AP	(g/cm-s ²)	9	ENTER	Averaging	ume tor noncarcinogens,	AT _{NC} (yrs)
	ENTER Chemical CAS No. (humbers only,		Inning	ENTER	befow grade	to bottom of enclosed	space floor, L _F	(cm)	168	ENTER	Stralum A SCS	sol type	Lookup Sol Parametere			ENTER	Enclosed apace	floor	thickness, Factor	(cm)	10	ENTER	Averaging	ume ror carcinogens,	AT _G (yrs)
SG-ADV Version 2.0; 02/03	Reset to Defaults	_			J →						MORE						MORF	•							

END

350

8

8

22

1 of 1

STAFFORD SITE HOUSE VAPOR INTRUSION TRACER STUDY (63 Bay)

						Adi House			Alpha	Alpha	
	Oct-02 Ground-	Henry's Lew	Oct-02 Predicted	Conver-	Oct-02 Predicted	Measured Soil Vanor	Measured Sub-slab	Measured First	Predicted	Measured Deep	Local
								i			
	water VP-13	Constant	Deep Vapour	ug/m ^o to ppbV	Deep Vapour	VP-13 10-5 - 11'	Vapor Conc. 0.3-0,5'	Floor Conc.	vapor/ First Floor	vapor/ First Floor	ground
	(ng/L)	÷	(ug/m ³)		(Vdqq)	(Vdqq)	(Vdqq)	(Vdqq)			(Vdqq)
ATBE	190000	0.0204	3876000	3.706	1045872	120,000	0.71	0.77	N/A	N/A	0.62 to 2.6
-Hexane	ΝT	75.4	N/A	3.622	N/A	990,000	<10 <10	0.51	N/A	N/A	<0.5 to 2.1
-Heptane	ΝT	86.0	N/A	4.253	N/A	330,000	<10	<0.5	N/A	N/A	<0.5 to 1.1
yclohexane	<5000	8.00	20000000 1	3.54	5649718	200,000	<10	<0.5	N/A	N/A	<0.5
.,2,4-TriMethylPentane	NT	126.4	N/A	4.8	N/A	500,000	√10	<0.5	N/A	N/A	<0.5 to 2.3
Jenzehe	7500	0.228	1710000	3.281	521183	120,000	<10	<0.5	N/A	N/A	<0.5-1.2
oluene	14000	0.272	3808000	3.873	983217	140,000	<10	0.85	N/A	N/A	3.6 to 8.7
ithylbenzene	4200	0.323	1356600	4.462	304034	<15,000	<10	<0.5	N/A	N/A	<0.5 to 1.3
A&P-Xylene	NT	0.307	N/A	4.462	N/A	22,000	12	0.65	N/A	N/A	1.8 to 4.4
)-Xvlene	μ	0.213	N/A	4.462	N/A	<15,000	<10	<0.5	N/A	N/A	0.63 to 1.3
otal Xylenes	20000	0.26	5200000	4.462	1165397	NT	NT	NT	NT	NT	ΝT
/xygen 6 LEL						0.2 to 0.5 % 12 to 100					
latae*						2					

lotes: . Estimated using 1/2 detection limit for cyclohexane ? = Retention Time, NQ = Not quantified, N/A = Not applicable, NT = Not tested !ackground based on indoor air concentrations measured at two nearby off-plume houses

											14.4.41			Į			Alaha	Alpha	Alpha		
			Predk	ched Deep Va.	Por				Adjac	ent to House (s	Tet-US	-					Developed	Maaured	Measured	Retio	
	Son-02	Oct-02	Henry's	Sep-02	Oct-02	Conver-	Sep-02	0cf-02	Measured	Measured	Measured	Measured	Measured	Measured			Daer	Deen	Substate	Base	Local
_	Grotind.	Ground.	, Mal	Predicted	Predicted	slon	Predicted	Predicted	Deep Vapor	Mkd Vepor	Shallow Yopor	Sub-slab	Dagement.				,	Tranet	A PARTY	i luom	Rack.
			Constant	Deen ¢ol	Usen	100hm3	Deen soll	Deep soll	09-9V	Ne-9V	VP-95	Yapor Cone.	Cane	Conc.	linear	LICOL				The first	
				Venour	Vancin	to notiv	Venour	Vepour	10-5-11	6.6 - 7'	2.5-3'	5.5-6'		Duplicate	Avg Conc.	Colle-	Basement	nasement	Deserver		
	2-H9		5		includes (Whan	(Vhon)	foobV	(bobV)	(Vdqq)	(Vodq)	(Vdqo)	(Vdqa)	(Vďqq)	(Vdqq)				Ì	(Vdqq)
	(1j6n)	(ngr)	Ð	(Uliver)			Arrest A	1					1	:		;	90 U V	9.95.05	7 (5-02	96	0.62 to 2.6
	CTONDO	200003	n 0304	10609754	12466000	3.706	2862858.7	3247706	1,500,000	450,000	\$99 ?	5,000	8	9E)	, ,	₫		777			105100
		2000		1111	NIA	002.0	M/A	NIA	1.700.000	860.000	5.000	80	\$5	25	2 .5	9 12	NN	2		C .	
n-Hexane	Į	ш	15.4	AN .						160.000	550	<300	25	<2.5	<2.5	6.0 ⁵	N N	AN	NA N	MA	<0.5 to 1.1
n-Heptane	Ę	Ż	86.0	AN	AN N	4202	42					A BOD	35	36	36	7.4	1,3E-06	1.2E-04	8.4E-03	4.9	9°9
Cyclohexane	NT	12500	9.00	NA	10000000	3.54	NA	590249099			00E17		5	5	145	34	NA	3.6E-04	7.3E-03	4.3	<0.5 to 2.3
2.2.4-TriMatimiPentane	хI	Ν	126.4	N/A	NA	4.8	۲N	NN	400,000	210,000	200		2 3	2	2	5	MAN	5.3E-05	5.8E-03	3.6	2 Z
Heteren Allese D = 6.05	Ę	Ż	N/N	NVA	NA	N/A	NA	NN	1,200,000	660,000	ON NO	000'E	3	8	3 3	3 3			2 05-03	90	CN N
	5	1	VIN	NUA.	NIA	M/M	MM	N/A	450.000	250,000	13,000	88	130	120	2	3					
Unknown Alkane H ~ b.0.	2	Ξ.				ATA A	NIN	N/A	800,000	370,000	12.000	17,000	120	<u>1</u>	52	g	NA	9.95-05	4.05-03	AND I	2:
Unknown Alkane R ~ 6.6.	N	Z	AN I	E Z				VII.	1 000 000	Ş	0000	15,000	120	120	8	8	NN N	4,36-05	5.55-03	C.N	Dz
Unknown Akane R - 6.7;	ž	ž	NA N	AN N	AN	42		2	~~~~~~~									1.35-04	6.1E-03	90	
Ачагаде											901	006-	26	705	50.0	-92 92	< 1.5E-06 -	≤ 6.3€-06 ≤	NA	N/A	<0.5-1.2
Benzene	12286	12000	0.228	2801208	2736000	3.281	653766.63	833892	200,000	000/22		000	3		1	19.0	4 (F-07	4.35-06	NA	NN	3.6 to 8.7
Toluand	31981	43000	0.272	6698832	11696000	3.673	2246019.1	3019881	290,000	150000 J	7 A 2	200		y y	9 4 9		4 95-06	NA	NA	NV	<0.5 to 1.3
Ethylhenzene	2869	3500	0.323	926687	1130500	4,462	207684.22	263362	< \$3000	< 15000	0067	362	n d V				NIA	NVA	NVA	NVA	1.8 to 4.4
LTE P-Videno	14629	ž	0.307	4491103	NA	4.462	1006522.4	NA	< 33000	14,400	852		2.5		2			MIA.	NIA	MUN	0.63 to 1.3
O Vitran	6118	ž	0.213	1303134	NA	4.462	292051.55	NA	00066 ×	15000	<500	SUU	Ş	č.2	5			MAN	NILA	NIA	ž
	20747	24000	0.26	5394220	6240000	4.462	1208924.2	1398476	< 33000	< 15000	\$50	200			4.20	CC.0	NN	121			:
									<1.0%	0.9 to 1.6 %	8.3-10.2 %	M									
Dxygen									NA	25-100 %	35 to 37 %	Ī									
Notes:	:																				
1. Estimated using 1/2 dated	ion limit for ch	ishezare 2. M/A – M/d	Torostorbia M	TT = Not toolog																	
H = HOKURION LIPHA, INCH		stinne mead	med at two me	artsv off-blume	houses																

STAFFORD SITE HOUSE VAPOR INTRUSION TRACER STUDY (73 Bay Avenue)

	Local Beck- Brownd (90b/M) (905 lo 26 (055 lo 21 (055 lo 21 (055 lo 23 (055 lo 23)(055 lo 23 (055 lo 23)(055 l	
	Rado Base- Base- Min Min Nin Nin Nin Nin Nin Nin Nin Nin Nin N	
	Alpha Messured Messured Vapori US NIA NIA NIA NIA NIA NIA NIA NIA NIA NIA	
	Alpha Measured Measured Measured Mapon N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	
	Apha Predicted 1 Predicted 1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	
	Heastred First Fiser Fiser Fiser Fiser Conc. (25 Conc. (25 Conc. (25 Conc.) Conc. (25 Conc.) Conc. (25 Conc.) Conc. (25 Conc.) Conc. (25 Conc.) Conc. (25 Conc.) Conc. (25 Conc.) Conc. (25 Conc.) Conc. (25 Conc.) Conc. (25 Conc.) Conc. (25 Conc.) Conc. (25 Conc.) Conc.) Conc.) Conc. (25 Conc.) Conc.) Conc.) Conc.) Conc.) Conc. (25 Conc.) Conc.) Conc.) Conc.) Conc. (25 Conc.) Conco	
	Measured Baser ment ment ment ment ment ment ment ment	
	Basement Conte. Duplicate (2015) 0.55 0.55 0.57 0.55 0.55 0.55 0.55 0.55	
2	Basement Cons, (prbV) (
	MAassured Massured 55.6 55.6 55.6 7 1 12 12 12 12 12 12 12 12 12 12 12 12 12	
	44340164 44340164 361 VP-165 V 2.5-3	
	(0 House (0 Ressured 1 5.6.7.1% (5.6.7.1%) (5.6.7.1%) (5.6.7.1%) (5.6.7.1%) (5.6.7.1%) (5.6.7	
SOL INT L	Adjacent Researed 1 Sal Vapor 5 Sal Vapor 5 Sal Vapor 5 Sal Vapor 5 Sal 2 Sal	
	0001-02 1 Teddared E Teddared E Teddared E EATA NIA NIA NIA NIA NIA NIA NIA NI	
	Sep -0: Freedott Preedott Vapon u: NA NA NA NA NA NA NA NA NA NA NA NA NA	
DHAFT	Conver- sion sion sion sion 3.54 4.85 3.54 4.462 3.54 4.462 4.462 4.462 4.462 4.462	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Cet-02 Predicted Predicted NUA NUA NUA SISSE400	
	5ep-02 5ep-02 Vepticited Vepticited Vepticited ViA N/A N/A N/A N/A N/A N/A N/A N/A N/A N/	
	Hannys Law Constant 75,4 75,4 75,4 75,4 75,4 75,4 75,4 75,4	losted pluma house
	Average Average Ground- Ground- Ground- Liesso MT MT MT MT MT 82025 MT MT MT 82025 MT MT 82025 MT MT 82025 MT MT 82025 MT MT 82025 MT 82025 MT 82025 MT 82025 MT 82025 MT 82025 MT 82025 MT 8205 MT 8005 MT 800 MT	e, NT = Nat
	665-02 600-004-02 400-02 4	ol applicable which at h
	Col:02 Stround- Water Water NT NT NT NT NT NT NT NT NT NT NT NT NT	yclobexene d, N/A ⊭ N ations mea
	Sep-02 Ground- water water water water water water NT NT NT NT NT NT NT NT NT NT NT NT NT	ion limit for c tot quantifio air concents
	(TBE Herzne Herzne Herzne Stocharzne (2.4. fMethy?Pertane (2.4. fMethy?Pertane course course (4.5. Vyfene course (4.5. Vyfene	\$ LEI. hotas: Estimated using 1/2 detect t = Retention Timo, MG = 1 background based on indoor

ST AFFORD SITE HOUSE VAPOR INTRUSION TRACER STUDY (14 Park)

<0.5 to 1.3 0.62 to 2.6 <0.5 to 2.3 1.8 to 4.4 0.63 to 1.3 <0.5 to 1.1 <0.5-1.2 3.6 to 8.7 <0.5 to 2.1 ground (Vdqq) Back-<0,5 Local ř First floor ment/ Ratio Base-ANNAN Basement Measured Subslab Vapor/ Alpha ZZZZZZZ ZZZZZZZ A A A A A A Measured Basement Vapor/ Alpha Deep A A A A A A Basement Predicted Vapor/ Alpha Deep ***** Measured 0.9 6.5 0.91 3.1 NT NT Floor (Vddd) 1.4 2.1 40.5 Cone. 0.94 First Measured (Vdqq) Conc. Basement <0,5 2.6 0.68 0.57 2.3 1.2 8.7 1.3 1.3 NT Vapor Cone. Measured Sub-slab (Vdqq) 5,5-6' <0.5 0.63 1.4 0.5 1.6 ÷ 9.9 4.0 16 5.0 MT Soil Vapor Measured 10-5 - 11 Adj House (Vdqq) VP-11 20.3 ^2.8 Å,8 ≤2:8 <2.8 3.0 2.8 6.5 2,8 3,3 Ę 5,2 Predicted Oct-02 Vapour (Vdqq Deep 7156 NA NA NA 56497 6949 1448 NA 1457 1756 MAN to ppbV ng/m³ Conver-3,873 4.462 4.462 4.462 sion 3.706 3.622 4.253 4.462 3,54 3,281 4,8 -Predicted Deep soll Vapour 200000 26520 22800 6800 6460 Oct-02 ΝN N/A N/A 6500 ΜN ¥٨ Constant Henry's 0.272 0.323 0.307 0.213 0.0204 126.4 76.4 86,0 8,00 0.228 0.26 Law C Ground-Oct-02 VP-11 (ng/L) water 1300 8 k k 8 ₽₽° <u>5</u> 8 Ę 2,2,4-TriMethylPentane Total Xylenes Ethylbenzene Cyclohexane M&P-Xylene n-Heptane 0-Xylene n-Hexane Benzene [oluene Oxygen % LEL NTBE

STAFFORD SITE HOUSE VAPOR INTRUSION TRACER STUDY (18 Park)

Notes:

Estimated using 1/2 detection limit for groundwater concentration R = Retention Time, NQ = Not quantified, N/A = Not applicable, NT = Not tested Background based on indoor air concentrations measured at two nearby off-plume houses

APPENDIX V

STAFFORD GRAIN SIZE AND MOISTURE CONTENT TESTING

APPENDIX VI

EGG HARBOR NJDEP SITE INVESTIGATION DATA

GZA GeoEnvironmental, Inc.

Engineers and Scientists

December 7, 2001 -

Mr. Paul Smith New Jersey Department of Environmental Protection Bureau of State Case Management 401 East State Street - CN 028 Trenton, NJ 08625-0028

RE: Domestic Well Sampling South Jersey Gas Company Egg Harbor City Former MGP Site

Dear Mr. Smith:

Please find enclosed one copy of the laboratory data package and two copies of the analytical Form Ones for water samples collected from the following properties in Egg Harbor City.

DEL 10 2001

	Property Owner: Property Address:	Chas Mueller 436 Liverpool Avenue	
	Block/Lot:	Egg Harbor City, NJ 08215 209/4C	
•	Property Owner:	William Westervelt	
	Property Address:	324 Cincinnati Avenue Egg Harbor City, NJ 08215	
	Block/Lot:	323/5	
	Property Owner:	Ed Willey	
	Property Address:	259 Buffalo Avenue Egg Harbor City, NI 08215	
	Block/Lot:	322/7A	
	Property Owner:	Francis Mohr	
	Property Address:	703 Beethoven Avenue Egg Harbor City, NI 08215	
	Block/Lot:	323/1	
	Property Owner:	Janet Jiampetti	
	Property Address:	440 Liverpool Avenue	
	Block/Lot:	209/5	
	Property Owner:	John Baxter	
	Property Address:	428 Liverpool Avenue	
		Egg Harbor City, NJ 08215	
	Block/Lot:	209/4B	

856 So. White Horse Pike Suite 1 Hammonton New Jersey 08037 609-567-9330 FAX 609-567-9335 http://www.gza.net

A Subsidiary of GZA GeoEnvironmental Technologies, Inc.

An Equal Opportunity Employer M/F/V/H

Paul Smith, NJDEP

South Jersey Gas Company Residential Well Sampling

Property Owner: Property Address:

Block/Lot:

Donald LaMonaca 418 Liverpool Avenue Egg Harbor City, NJ 08215 209/2C

Please feel free to call me at (609) 567-9330 if you have any questions regarding the enclosed documents.

Sincerely, Tara Wickes

Engineer 1

cc: Bruce Scamoffa, SJG Mike Halter, SJG

EGG HARBOR CITY UNCONFIRMED SOURCE CHLORINATED ORGANIC PLUME DATA SUMMARY

		-				
	WELL	LOCATION				
/			•			
/	CAMILLO,	259 Buffalo Ave.;	PCE	TCE	Cis-1,2-DCE	1,2-DÇA
	1998 **	Beethoven); Lot 7A/Block 322	6100	45	0.6	1
	-					
	JIAMPETTI, Sampled July	440 Liverpool Ave;	PCE	TCE	Cis-1,2-DCE	1,2-DCA
	1998 ***	Campe); Lot 5/Block 209	0.7	0.4	0.6	1 ,
	CAMILLO,	259 Buffalo Ave.; Lot 7A/Block 322	PCE	TCE		
	1997 ****		5900	73	······	
					· · · · · · · · · · · · · · · · · · ·	
7	FLATH, sampled May	(between Arago &	PCE		•	
	1997	Beethoven); Lot 2.B / Block 322	2			
,		•				
	GUERRIERI,	504 Campe St.;	PCE			
NOIT	1997	& Philadelphia); Lot 6 / Block 209	3		,	
	PONZETTI, sampled May	205 Buffalo Ave; (2 nd house from corner of	PCE	TCE		
	1997	Buffalo & Arago);	1800	73		
		LUL 12.A. PDIUCK 522				· ·
	•	l				· · · · · ·
	-SB-75-82	Southeast corner of	PCE			
	Sample depth	Terrace	22.1			
	21'-32'	· · · · · · · · · · · · · · · · · · ·		· · ·		<u> </u>
		· · · · · · · · · · · · · · · · · · ·				

North

		<u> </u>				• •
WELL	LOCATION					· .
	•	T.			 	
SB-75-82	Southeast corner of	PCE	TCE			
Sample depth	Claudius & 6 th					
37'-42'	Тегтасе	462	8.3			
SB-75-82	Southeast corner of	PCE	TCE			
Sample depth	Claudius & 6 th					ĺ
47'-52'	Теггасе	168	1.7		ľ	
· · · · · · · · · · · · · · · · · · ·						
SB-75-82	Southeast corner of	PCE			– –	
Sample depth	Claudius & 6 th					
57'-62'	Terrace	492				
	· _ · ·					
SB-75-82	Southeast corner of	PCE	TCE	-	<u> </u>	
Sample depth	Claudius & 6 th					
67'-72'	Terrace	360	4.2			
	· · · · · · · · · · · · · · · · · · ·					
SB-75-82	Southeast corner of	PCE				
Sample depth	Claudius & 6 th					4
77'-82'	Terrace	28				

- * all concentrations in parts per billion (ppb)
- ** Camillo well sampled July 1998 also detected benzene (75 ppb), chloroform (2 ppb), 1,2-Dibromoethane (1 ppb), o-xylene (3 ppb), isopropylbenzene (0.6 ppb), and naphthalene (5 ppb)
- *** Jiampetti well sampled July 1998 also detected benzene (76 ppb), chloroform (2 ppb), 1,2-Dibromoethane (1 ppb), o-xylene (4 ppb), isopropylbenzene (0.5 ppb), and naphthalene (5 ppb)
- **** Camillo well sampled July 1997 also detected benzene (27 ppb), 1,2,4trichlorobenzene (21 ppb), and naphthalene (90 ppb)
- ***** SB-75-82 was a temporary well point, sampled at multiple depths, from the South Jersey Gas Company Egg Harbor Former Manufactured Gas Plant remedial investigation.

Potential sources:

Dry Cleaner (located in shopping center approximately at corner of Buffalo Ave. & Route 30 / White Horse Ave.)

Napa Auto Parts (located on Cincinnati Ave., between Arago & Beethoven) Cornell's Carstar Autobody (located on Buffalo Ave., between Arago & Beethoven)

Roring Number	Sample Interval (feet bgs):	Sample Date	Boring Depth (leet)	Location Street Name	Oross Sineer Name
SB70	17 to 22	Nov-96	72	Beethoven	6th Terrace
SB71	18 to 23	Nov-96	54	Beethoven	5th Terrace
	38 to 43				
	48 to 53				
SB72	31 to 36	Nov-96	86	Buerger	Philadelphia
SB75	27 to 32	Jan-97	82	Claudius	6th Terrace
	37 to 42				
1	47 to 52				
	57 to 62				
	67 to 72				· · · · ·
and the second	77 to 82			an a	

· · ·		SIG Borin	g/Groundwa	ter Location	s—1996.to260	2
	Boring	Sample	Sample	Boring	Location	CLOSS-Sfreet
	Number	Interval	Date	Depth	Street Name	Name
	a nagini si a a Si si si	(feet bgs)		(feet)		
	SB76	53 to 58	Jan-97	88	Campe	Philadelphia
	1997 - A.	73 to 78				
1.1	SB108	28 to 33	May-99	113	5th Terrace	Campe
	SB118	91 to 96	Oct-01	106	Philadelphia	Buerger
	SB120	35 to 40	Oct-01	70	Campe	Liverpool
	SB121	32 to 37	Nov-01	107	Philadelphia	Campe
		42 to 47				
• 		52 to 57				
14	SB122	32 to 37	Nov-01	117	Philadelphia	Camne
		42 to 47				0
		52 to 57				
		62 to 67			· · · · ·	
		72 to 77		. *		
		91 to 96				
	SB126	35 to 40	Jan-02	120	Claudius	5th Terrace
		115 to 120			Cincorad	Julionado
	SB128	25 to 30	Jan-02	120	Claudius	5th Terrace
•	1.1.1	35 to 40		120		
		45 to 50				
	:	55 to 60				
•	SB129	35 to 40	Feb-02	120	Claudius	Litternool
· . ·		45 to 50	100 02	100 (100 1220	Claudius	LAVEIDOOL
		55 to 50				
		65 to 70	•			
		105 to 110	-	· ·	· ·	
		115 to 120				
	SB130	25 to 30	1 Mar-02	120	Timmool	Clanding
· · ·		95 to 100	14121-02	120	LIVEIDOOL	Claudius
•		105 to 110				
		115 to 120	-			
	SB131	65 to 70	Apr. 02	1 100	T internet	This stars a
		75 to 80		100	Liverpool	Diesterweg
· · · ·		85 to 90	-			
1		95 to 100	- 1			a sector a s
	SB132	95 to 100	1 Nfor: 02	120	1 T	
		105+-110	- ^{1v1ay-02}	120	Liverpool	Claudius
		115 to 110	• · · · ·			
	50122	113 10 120	3.6 00	00	1	
	35133	20 to 25	4. May-02	CS	Liverpool	Claudius
•	L			1		
	1 D	이 같은 사람이 있는 것은 가슴을 가슴다. 이 전 사람이 있는 것은 것은 것이 있는 것이 있 같은 것이 같은 것이 있는 것이 없는 것이 있는 것이 없는 것이 있는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이				and the second
			e de la companya de l Companya de la companya de la company	an Anna an Anna		

Boring	Sample	Sample	Borme	Location	Cross Street
Number	Interval	Date	Denth	Sheet Name	Name
	(feet bgs)		(feet)		
SB135	1 to 11	Jun-02	74	Duerer	Liverpool
	19 to 24				en de la companya de
	59 to 64				
	69 to 74				
SB139	25 to 30	Jun-02	80	Liverpool	Duerer
SB140	0 to 10	Jun-02	84	Duerer	Liverpool
	19 to 24	1			18 - 19 - 19

.

	SIG Boring	Groundw	ater Ana	lytical.	Data - 199	16 to 200	2	
Sample Number	Sample Interval	Carbon Disulfide	11- DCA	12- DCA	i (dor	PCE	ŤŒ	1.1.I TCA
	(feet bgs)							
GWQS	(ppb)	800	50	2	2			30
SB70	17 to 22					3.2		
SB71	18 to 23					2.2		
	38 to 43		1.3					
	48 to 53	· · · ·	2					
SB72	31 to 36	<u> </u>				3.2		
\$B75	27 to 32	36.8		· · ·		22.1		
* :	37 to 42					462	8.3	
	47 to 52					168	1.7	
	57 to 62				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	492		
in in	67 to 72		• • •			360	4.2	
	77 to 82	1.7				28		
SB76	53 to 58					1.6		
	73 to 78	•					1.8	
SB108	28 to 33				- -	0.5		
	91 to 96	· .	1.4					}
SB120	35 to 40			0.5				
SB121	32 to 37					0.6		
	42 to 47					0.7		
	52 tó 57			· ·	-	0.8		
SB122	32 to 37					3.9		
	42 to 47	1.				6.2	·.	
- -	52 to 57	· ·				20		
	62 tò 67	· · * ·			<u> </u>	14		
1 · ·	72 to 77	· · · · ·	· · · ·	• .		6.5		
	91 to 96	•		1.		0.4		
SB126	35 to 40			<u> </u>		0.5		
L	115 to 120	a ter vita	0.8	<u> </u>			1.	

· ·

n in training	Concerne and the second	STOLLOW.		i yu can		20110 201 		
Sample	Sample	Warbon		1 <i>52-</i>	ad-DOF	FCE	JCE	L,L,1
Freedore C.	JHLUI VAI	reistance	DUA -	-DCA				TCA
CINICAL	Licet ogs)					<u>.</u>		
CD120	S-(ppp)	~ 890	50	<u>- 74 - 3</u>	2	<u>t 1</u>		30
00120	25 10 50	· · · · · · · · · · · · · · · · · · ·	· · ·	· · ·		0.5	 	
	<u> </u>		1			13	· ·	
	45 10 50		 			20		
SP120	25 to 10	· <u>·····</u>				22	r	l
621610	<u>35 10 40</u>				<u> </u>	0.4		1
	45 to 50					2.1		
	55 to 00					13		
			1 - 1 x	! 		3.7		
	115 to 120		1.4					<u> · ·</u>
CD120			1.0			0.3		
	<u> </u>			1				
	95 10 100				0.4	0.4	<u> </u>	0.3
	105 to 110		<u> </u>	<u> </u>	0.3	0.3		1
00121	65 to 70	i i i i i i i i i i i i i i i i i i i						<u> </u>
	75 to 90				<u> </u>	· · · ·		1
· · ·	75 to 00		1.4		.]			· · · ·
	95 to 100		1.3	<u> </u>	0 0 0	0.3		
SD133	93 10 100		1./		0.7	0.5	1 0.2	0.3
22120	<u>95 10 100</u>		0.4		1.4	0.2		1
	115 to 120		4./		0.1	0.4	0.3	
SB122	20 to 25		4.5	<u> </u>	0.8	0.5		0.8
	20 to 25			· · ·		12	<u> </u>	
SB135	1 *0 11	 		<u>i</u> I	·	4.4	0.2	
0.01.00	10 to 21					CL C	0.5	. i
	59 to 64	·	- <u> </u>		-	<u> 40`</u> 1 1		1
	69 to 74		•			1.1		-
SB120	25 to 20		<u> </u>	1	<u> </u>	1 2 2		1
SB140	0 to 10	<u> </u> ,	· · · ·			3,4		
	19 to 24			-		120	0.5	
Notes:	<u> </u>	<u> </u>	<u></u>			1 140	L	
Concentratio	ons are in parts	per billion	(ppb)					
Blank space	s indicate conta	minant no	t detected	1				
Bold values	exceed NJDEF	'Groundw	ater Qual	ity Stan	dard (GW	QS)		
1,1-DCA =	1,1-Dichloroeth	nane						
1,2-DCA =	1,2-Dichloroeth	iane		· .				
1,1-DCE =	1,1-Dichloroeth	nene						
PCE = Tetra	chloroethene	est total en	: . · · ·					
1CB = 1nc	nioroethene							

<u>93461995</u> dis/hansi 1					4		5.6						
DAUDATAS 19 DAUDATAS 19 LAUDATAS 19 LAUDATAS 19					33								
waten Analy Deficient	3.15	9.2	4		14		6.7	4.8	15.8	6.4	7.8		•
de Datains Contrate Sample Date	May-93	Dec-94	May-93	Dec-94	May-95	May-93	Dec-94	May-95	May-93	Dec-94	Dec-94	Dec-94	
Cumberian Number CWOS	[W]	<u>1W1</u>	4W2	AW2	4W2	AW3	<u>4</u> W3	<u> (</u> W3	۸W4	dW4	MW5	MW6	

,

00005		
	(GWQS)	
	y Standard (:
	oillion) ot detected ater Qualit	
nims/6100 mnis/6100 mnis/6100 Apr-95 Apr-95 Apr-95	Apr-95 (parts per l taminant nc P Groundw ans-1,2-die	
000 1000 1000 1000 1000 1000 1000 1000	s are in ppb ndicate con ceed NJDE loroethene othene CB = cis/tr	•
B1 B3 B3	B4 ss: noentration nk spaces i d values ex E = Tetract = Trichlor frans-1,2-L	· ·
	Note Do PCO Cis/ CE	

TAGALLYCORT	sue Seoprobe Ground	water leocations - March 2003
Sample Number	Sample Interval	Eocation Relative to Site
BF1-12	9 to 12	Buffalo Ave. Right of Way (ROW)
BF1-24	21 to 24	across from residential property at
BF1-36	33 to 36	111 Buffalo Ave. ~395 feet from the
BF1-48	45 to 48	Pembroke Clothing facility
BF2-12	9 to 12	Buffalo Ave. ROW, in front of
BF2-18	15 to 18	residential property at 153 Buffalo
DUP0310	15 to 18	Ave., ~830 feet from the Pembroke
BF2-24	21 to 24	Clothing facility, DUP0310 is a
BF2-36	33 to 36	duplicate of BF2-18
BF2-48	45 to 48	
BF2-60	57 to 60	
BF2-65	62 to 65	
BF3-12	9 to 12	Buffalo Ave. ROW in front of
BF3-18	15 to 18	residential properties at 201/205
BF3-24	21 to 24	Buffalo Ave. with contaminated
BF3-36	33 to 36	irrigation well, ~1023 feet from the
BF3-48 -	45 to 48	Pembroke Clothing facility
BF3-60	57 to 60	
BF3-65	62 to 65	
<u>BF</u> 4-12	9 to 12	Buffalo Ave, ROW, in front of
BF4-24	21 to 24	residential property at 253 Buffalo
BF4-32	29 to 32	Ave., adjacent properties 249 and 259
BF4-36	33 to 36	Buffalo Ave. with contaminated
BF4-48	45 to 48	irrigation wells, ~1493 feet from the
BF4-60	57 to 60	Pembroke Clothing facility,
DUP0304	57 to 60	DUP0304 is a duplicate of BF4-60
BF4-68	65 to 68	
<u>CH1-12</u>	9 to 12	Chicago Ave, ROW, in front of
CH1-18	15 to 18	residential property at 111 Chicago
CH1-24	21 to 24	Ave., ~434 feet from the Pembroke
DUP0312	21 to 24	Clothing facility, sidegradient of
CH1-36	33 to 36	suspected source area, DUP0312 is a
CH1-48	45 to 48	duplicate of CH1-24
CH1-60	57 to 60	

			Y.	ŝ.		17			• • • •	-	-	1	, T	- -		<u> </u>
10.12.14		Chiona		¢.		<u>34 15 П</u>	04	170	*	8 33	8.6	16.12				
APP A DOM	16,001	DOM										2.26.1				
ata Mish		TCA			<u>1.8. 612 (19.5. 20.</u>	5.8	0.41	0.44		5.53	5.4	146				
alloneathn	TOR			Ţ		170.49 D	7.84	7.65		124.83 D	123.13 D	187.88 D	7.88		8.17	4.71
muyare Ar	PCB					2,011.42 D	125.95 D	250.74 D		1,932.18 D	1,944.86 D	4,013.18 D	4,028.91 D	1,731.11 D	2,529.55 D	716.82 D
probe Grou	. ci8-1,2-	DCD		10°		128.83 D	5.9	4.88		86.67	85.6	133,19	7	4		
Site Co		DCR		84		2.55 J		0.21 J				3.41 J				
NO ADDA	Sample	Interval	(feet bgs)	((ppb)).	9 to 12	21 to 24	33 to 36	45 to 48	9 to 12	15 to 18	15 to 18	21 to 24	33 to 36	45 to 48	57 to 60	62 to 65
	Sample	Number		GWQS	BF1-12	BF1-24	BF1-36	BF1-48	BF2-12	BF2-18	DUP0310	BF2-24	BF2-36	BF2-48	BF2-60	BF2-65

	NJĐEP OH	Site Geo	probe Gro	undwater Ai	เลโซกิะอื่าม	ato Nifo	AL 2002	·
Sample	Sample	1.1-	cis-1.2-	PCF	TA	31.3 - 011.41 31.3 - 011.41	eu 2005. 11 1 2 1	
Number	Interval	DCE	DCE			RC A	TCA	NALLYI CHITANNU
	(feet bgs)							Cinterne
GWQS	(ppb)	2	70	1. T				
BF3-12	9 to 12				<u></u>	<u>tetti shi ka </u>	<u>a z odekterioji.</u>	
BF3-18	15 to 18		7.72	159.43 D	14	0.73		
BF3-24	21 to 24	3.15 J	100.05 D	3.255.42 D	178.2 D	14.82	2 78 T	7.67
BF3-36	33 to 36		10.9	3.170.75 D	41.92	7.21	2.700	
BF3-48	45 to 48			5.631.66 D	22.24 J			
BF3-60	57 to 60			18.710.44 D	218.87			
BF3-65	62 to 65			11.555.24 D	147.02	• 		· · · · · · · · · · · · · · · · · · ·
BF4-12	9 to 12	ig tak						
BF4-24 ·	21 to 24			and the state				
BF4-32	29 to 32		12.81	1,692.96 D	37.37	3 35 1	· · · · ·	
BF4-36	33 to 36		5.21	1,470.82 D	21.4.ID		<u> </u>	
BF4-48	45 to 48		an a	922.26 D				····
BF4-60	57 to 60			910.67 D				
DUP0304	57 to 60			809.48 D				· · · · · · · · · · · · · · · · · · ·
BF4-68	65 to 68			88.47 D	0.82			<u> </u>
CH1-12	9 to 12			0.61	····	<u></u>		· · · · · ·
CH1-18	15 to 18		· · · ·	0.61				
CH1-24	21 to 24			0.8	0.3 J			
DUP0312	21 to 24			0.8	0.3 J	·····	,	[
CH1-36	33 to 36					-		<u> </u>
CH1-48	45 to 48			•				
CH1-60	57 to 60	· · ·		0.25 J				
Notes:	a <u>stan</u>			······································	· · · · ·		1 <u></u>	·
Concentrat	ions are in p	oarts per l	villion (ppb)		•			
Blank spac	es indicate o	ontamin	ant not dete	cted				
Bold value	s exceed NJ	DEP Gro	undwater Q	uality Standa	rd (GWQS))		
D = Dilute	d sample	10.5						

J = Estimated value

1, 1-DCE = 1, 1-Dichloroethene

cis-1,2-DCE = cis-1,2-Dichloroethene

PCE = Tetrachloroethene

TCE = Trichloroethene

1,1,2-TCA = 1,1,2-Trichloroethane

1,1,2,2-TCA = 1,1,2,2-Tetrachloroethane

urdiwater-kocarions- Warteli-2003	Location Relative to Sife	and a start of the s Start of the start of	Atlantic Ave. ROW, between Buffalo	and Chicago Aves., near Pembroke	Clothing irrigation well, adjacent to	railroad tracks and parking area				Pembroke Clothing parking lot,	northeastern edge of property, adjacent	to Steuben Alley, behind shopping	center and Won Cleaners, near former	storage area	· · ·		
Site Geoprobe (3)01	sample futerval	(teet.deg)	4 to 7 (no water)	9 to 12 (no water)	15 to 18	21 to 24	33 to 36	45 to 48	49 to 52	4 to 7	9 to 12	15 to 18	21 to 24 (no water)	33 to 36	45 to 48	57 to 60	65 to 68
NUDEP On-	Sample Number		AT1-7	AT1-12	AT1-18	AT1-24	AT1-36	AT1-48	AT1-52	AT2-7	AT2-12	AT2-18	AT2-24	AT2-36	AT2-48	AT2-60	AT2-68

-

.

.

·

	Attaction Relative to Site Association Relative to Site Pembroke Clothing parking lot, theastern edge of property, adjacent o Steuben Alley, behind shopping anter near former chemical storage area
	Site Geoproperion Sample Interval Sample Interval 4 to 7 9 to 12 (no water) nor 15 to 18 21 to 24 23 to 36 45 to 48 45 to 48
·	NJDEP On Sample Number AT3-12 AT3-18 AT3-24 AT3-24 AT3-48 AT3-48

,

					And the second se					j.		
			N	JDEP On-F	<u>lite Geoprobi</u>	a Groundwate	r Analylical Dat	<u>4 Matteh 2003:</u>			1661	UN A
lo Sam	ple	1-DCA	.L.Z.	Id-DCB	ok-1,2DC	E hans-1,2-			1, 1, 2-10 CA	TCA TCA	TCA	
or Inter Grant	Yal Yoo)									Second and a second		
WOS (nub)		50	6		70:	001				30		
8 15 to	18						0.21 J					
4 21 to	24											
6 33 to	36											
18 45 to	48										• •	
52 49 to	52	1947 - 1944 1947 - 1944										0.81
1 4 to	7				4.03	0.36 J		-17:0-				10.17 D
12 9 to	12				92.54 D	2.49 JD	527D	U 02.FI	AL RO UL	0.1	4 58	1.60.02 D
18 15 to	18		3,6 J	23.6 JD	1,426.22 I	14.21	U11.01/201	n re/1/sr	/r+0:n/	176		
36 33 to	36				5,45		1,419.09.D					
48 45 to	48		•	-			101.04 D	1.43				
60 57 to	.09			0.2	2.48	- -	337,24 D	7.52	1.1		7	
68 65 to	8				7.5		707.68 D	20.63 JD	3:74 J			5 0.0
7 4 to	4				7.51	0.41	0.84	2.01				06.0
18 15-to	18	2.17 J			163.89	3.13.J	1,453,66 D	184.94	16.2			41,02
24 21 to	24	0.74		0.55	0.33.J		81.1 D	0.46				
36 33 to	36						4,599,05 D			- - -		
18 45 to	48	0.92			0.7		14.63					
ntrations are	in parts	per billio	n (ppb)									• -
spaces indicu	NTDFI	uminant n Groundy	iot detecti vater Oui	ed ality Standar	rd (GWQS)			• • •		•		
inted Samule				·				•	•	. :		
imated value								•••	·			
1.2-DCA = 1	.1- or 1	2-Dichlo	rocthane							:		÷.
CE = 1, 1-Diel	hloroett	iene										
trans 1,2-DCl	$\mathbf{H} = \mathbf{Cis}$	or trans 1,	2-dichlo	roethene								 1.
Tetrachlorot	sthene			-1							-	. ŀ
Trichloroeth	neno 1113	1 1 1 - 0	متدانا متر معرفة المتحد	aethana								
и 1,1,1-1 СА ЧТСА = 1,1,5	2.0-Teh	- or 1,1,1 achloroef	- LIIGUUU hane	OCILIANS								
Vinyl Chloric	le .											

			IN	DEP On-!	Site Geour	obe Grou	ndwater	Analytic	al-Data	Marolf-20	03				-
Samhie	Sample	Benzene	n-BB	808	Chloro-	[1,2-DB]	1,4-bB	BBB	4-IPT	MUTRIC	MC	NUR -	1.12.14	Ťöl-,	o-Xyl-
Vumben.	Tutor Val				form									nène	ouo
GWG	NS (null)		NA	NA	0	600	75	NA	NA	70		300	100	1000	1000
VTI-18	15 to 18														
VT1-24	21 to 24									•					
VT1-36	33 to 36														
T1-48	45 to 48				0.75	.:					• •				
TI-52	49 to 52														
VT2-7	4 to 7						• :	1. 							
T2-12	9 to 12														
T2-18	15 to 18				2.79.1						2.07 J	14.24		2.01 J	
T2-36	33 to 36											2.03 J			
T2-48	45 to 48						-								
T2-60	57 to 60	0.34									 -	0.36		0.49	
T2-68	65 to 68				•										
73-7	4 to 7														
T3-18	15 to 18	1,230.33 D	2.05 J	2.96.1				3.94.J	3.01 J			14.97	2.52 J	2,07.J	52.48
T3-24	< 21 to 24	2.19													
F3-36	33 to 36												•		
[[3-48	45.to 48	0.41			0.21 J	2.36	0.59			1.12 J		• •	· · :		1
tes:	 .					•			:						·
oncentral	tions are in pa	rts per billion (pp	(q)		. '					:					
lańk spac	es indicate co	vitaminant not de	tëoled Vinitim cu	U Propert	(DO)			• .						. ;	
$\Lambda = N_{h}$	a exceed 1417	DC available	Autury o	niphriph						1					
= Dilute	d sämnle	ALL HILLING											· .		
Estimate	ed value	•													
or s-BB	= n-butylbeitz	tene or sec-butyll	jenzene												
2- or 1,4-	DB = 1,2-dial	hlorobenzene or	1,4-dichlor	obenzene			•								
B = isopi	ropylbenzene	•								•					
PT = 4-1	sopropyltolue	nc											·		
TBB = N	fethyl 'l'ertiary	v Buiyl Ether													
C = Met	hylene chlorid	ູຍ													
V.H. = Naj 2 4T'MR	phtbalene = 1-2 d.hrime	thyllienzene											-		
6,77 A 17 A 17 A 17		- III yauvuuvuv													

	djacen	
	2003 of Pen a side g lot, a sast side	
	no 00 7, cast famin ocks, c ocks, c	
	Market Control of the second s	
	g, load ain load	
·	to m of s	
	89 Water 0 Water 1 0 0 0 0 0 0 0 0 0 0 0 0 0	
	$\frac{111}{15} \frac{111}{10} \frac{111}{15} \frac{111}{10} \frac{111}{15} \frac{111}{10} \frac{111}{15} \frac{111}{10} \frac{111}{10$	
	21 to 10	
	3W1 3W1 3W2 3W2 3W2	
NJDEP On-S	ite Geografie Ground	water Legalicus Junes fully 2003
---------------	------------------------	---
Sample Number	Sample Interval	Location Relative for Site
AT6-GW1	4 to 7	Pembroke Clothing former 1
AT6-GW2	9 to 12 (no water)	large hay doors, southeast side of
AT6-GW3	15 to 18 (no water)	building intersection of Chicago and
AT6-GW4	21 to 24	Atlantic Aves DIPLGW is a duplicate
AT6-GW5	28 to 31	of AT6-GW5
DUP1-GW	28 to 31	
AT7-GW1	4 to 7	Atlantia Arra ROW internet
AT7-GW2	9 to 12 (no water)	Chicago Ave. adiocont to milita data d
AT7-GW3	15 to 18	and parking area ungradient of
AT7-GW4	21 to 24	Pembroke Clothing
AT7-GW6	· 33 to 36	
AT7-GW7	45 to 48	
AT7-GW8	57 to 60	-
AT8-GW1	4 to 7 (no water)	Permbroke Clothing formed and will i
AT8-GW2	9 to 12 (no water)	I -shaped wing of building adjacent to
AT8-GW3	15 to 18	inner loading dock area
AT8-GW4	21 to 24	
AT8-GW6	33 to 36	
AT8-GW7	45 to 48	- · · .
AT8-GW8	57 to 60	
AT9-GW1	4 to 7	Pembroka Clothing nothing lat
AT9-GW2	9 to 12 (no water)	fence gate south of water and source
AT9-GW3	15 to 18	lines near former chemical storage area
DUP4-GW	15 to 18	DUP4-GW is a duplicate of A T9-GW3
AT9-GW4	21 to 24	
AT9-GW10	24 to 27	4
AT10-GW1	4 to 7	Pembroke Clothing facility
AT10-GW2	9 to 12 (no water)	fenced area northwest of water and
AT10-GW3	15 to 18	sewer lines near former storage area
AT10-GW4	21 to 24	
AT10-GW6	33 to 36	
AT10-GW10	41 to 44	
AT11-GW1	4 to 7	Pembroke Clothing facility along from
AT11-GW2	9 to 12 (no water)	line, north of new loading doals
AT11-GW3	15 to 18	approximate location of former storage
DUP3-GW	15 to 18	area, DUP3-GW is a duplicate of AT11-
AT11-GW4	21 to 24	GW3
AT11-GW6	33 to 36	1
AT11-GW7	45 to 48	
AT11-GW8	57 to 60	1

		jt.	12 5 9 5 1)en				
		cing l	erty,	Steut	cted			
<u> </u>	10 Sil	y parl	f prop	e. and	suspe	ime		
		facilit	ner o	o Av	int of	nt plū		
	in Rol	hing	st cor	3uffa	gradic	unina		•
U OUS		c Cloi	inmo	n of]	side	conta		
1500		ibroki	iorthe	sectio	Alley			
va toli		Pen		inter	·. ·	:		
Indix	M.	• :	- 22			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		·
SQ10		7	12	18	24	36	42	
<u>nio Di</u>	DIGU RECOL	4 to	9 to	15 to	21 to	33 to	39 to	
<u>Š</u> ĚŮ	Sam ()						•	
ESN								
P	nulua Alian	Ŵ١	N 2	£Λ	<u>W</u> 4	<u>М6</u>	710	
	5 NII)	2-G	2-G	2-01	2-G	2-G1	2-GV	
	lquin V	AT1	ATI	ATI	ATI	ATI	AT1.	
	0							• •

.

	Q X	40																						01		:			=	1.	14 14
	15.12.2- 11(CA											•		· · ·				••• •							<u>ل</u> ال 			-	4	69	18
	yon.	<u>105 105 105 105 105 105 105 105 105 105 </u>			· [,	2.1	2.1		30	
2003	D.C.V T. T.	9								•.					·										46.3					170	130
June/July	1000				1J	19	12		· ·	~									57			2 J		2.9	290 J	290 J	37	29	2.1	850 J	200 J
lytical Data	III					130	42	1 J								· · · ·			1,600 D	52	27	80	11		8,500 D	10,000 D	I4,000 D	13,000 D		84,000 D	7,300 D
Water And	trans- 1,2-DCE										-														1				11	10	j T
d Grothid	us-u2- non	<u>70 - 1</u>			5 J	24	6 J		· · ·								-		61			2.1		80	22	64			16	880 J	320 J
Centrol	DCE	<u> </u>																-	11					ì	7 J	7 J				76	L Q
P On-Site	1.2- DCA	•	6 6 									• :									-										5.7
NITUR	ncy D	ro Ko								· ·	•	•							24						10 J	12					
	Sample Interval	(feet Dgs)	4 to 7	15 to 18	21 to 24	4 to 7	15 to 18	27 to 30	4 to 7	21 to 24	28 to 31	28 to 31	4 to 7	15 to 18	21 to 24	33 to 36	45 to 48	57 to 60	15 to 18	21 to 24	33 to 36	45 to 48 ·	57 to 60	4 to 7	15 to 18	15 to 18	21 to 24	24 to 27	4 to 7	15 to 18	21 to 24
	Sumple	STATISTICS STATES	TUN CUNT	A'r4-GW3	AT4-GW4	AT5-GW1	ATS-GW3	AT5-GW5	AT6-GW1	AT6-GW4	AT6-GW5	DUP1-GW	AT7-GW1	AT7-GW3	AT7-GW4	AT7-GW6	AT7-GW7.	AT7-GW8	AT8-GW3	AT8-GW4	AT8-GW6	AT8-GW7	AT8-GW8	AT9-GWI	AT9-GW3	DUP4-GW	AT9-GW4	AT9-GW10	AT10-GW1	AT10-GW3	AT10-GW4

		NIDAR	On-Site	Geonrol	ie Gröund	INster An	alveical Data	- Jühofful	2003			
Sam	Wal	DCA.	DCA.	H B	ets-1,2- DCE	1,2-DOU	101	NCB	1,1,2- 1,00A	141.1- Tex	1,1,2,2, TCA	<u>ن</u> ج
	56S)	100 March 100			, UT	NATE -	W. Street Western			10.5		U.
33 45	3 <u>7</u>	16	8	*	3]	<u></u>	1.300 D	<u>61</u>				- 11-11-1
11 to	NV VV			2.6	41		6,200 D	55	15		2.J	
41.00	F			2								11
15 to	18	-	33	20 J	250 J	4 J	17,000 D	1,000 D	69 J	9 J	કુર્યુ	17.J
15 to	18			13-J	170 J	3.1	10,000 D	C 070 J	46 J	6.1	3 J	12 J
21 to	24			4.1	61 J		11,000 D	160 J	27 J	3 J	2 J	2J
33 to	36						40					
45 to	48			11	14		2,300 D	40	93	- - -		
57 to	60						120	3 J 🐁				:.
4 to	1								-			•
9 to	12											
15 to	18											
21 to	24											•
33 to	36							-		÷ : .		
39 to	42								•			
						· · .	•					1.
tre in pa licate co	nts per]	billion (I ant not d	opb) letected						· ·			
eed NJD	DEP Gro	undwate	sr Quality	Standard	I (GWQS)		:					
nple	. *					·						, . .
lue											2	
-1'I-	or 1,2-L	lichloroe	sthane								•	
Utenloro	equene	- - -										
DCH = c	as or tra	ns 1,2-d	Ichlorocu	lene								
oroethen	U,											ŗ
$\mathbf{D} \mathbf{A} = 1$	1 1. ör	1.1 2.Tr	ichloroeth	lanc		•						
1.2.2-1	etrachle	roethan	.e									
oride												

•

	Xyleni (fotal)	1000					•			·					1								- 5	73	[4]	14					
	Toll	1000			, 1		•									•				2				,			, ,		è	8 J	-
	Sty- itune	100																												۲7	
	MCH	N.																				· · ·			2.1	2.1					
2003		ž			· :												-	 							3]	3 J					
ne/July		700		· ·								-					ن د م د							50		• .			1		
Oata - Ju	1,4.0B	9					-										2.1														
unlytical)	[1,2.DB	000														~	15										Í				
dwater Au	1,2, DBB	NA						-				-												• •						11	
e Grôth	СN	<u>.</u> 30																4]													-
eobiob	5	ن :																								11				11	
-Site G	9	9 0											-		•							:				•				2]	
DEP OI	Benz-						2.J	:																130	18 J	22				2.1	P T
<u>LIN</u>	1V	100						73																							
	Sample Interval	(Cethes)	4 to 7	15 to 18	21 to 24	4 to 7	15 to 18	27 to 30	4 to 7	21 to 24	28 to 31	28 to 31	4 to 7	15 to 18	21 to 24	33 to 36	45 to 48	57 to 60	15 to 18	21 to 24	33 to 36	45 to 48	57 to 60	4 to 7	15 to 18	15 to 18	21 to 24	24 to 27	4 to 7	15 to 18	47 01 17
	Sample	EWOS MIN	AT4-GW1	AT4-GW3	AT4-GW4	ATS-GW1	AT5-GW3	AT5-GW5.	AT6-GW1	AT6-GW4	AT6-GW5	DUP1-GW	AT7-GW1	AT7-GW3	AT7-GW4	AT7-GW6	AT7-GW7	AT7-GW8	AT8-GW3	AT8-GW4	AT8-GW6	AT8-GW7	AT8-GW8	AT9-GW1	AT9-GW3	DUP4-GW	AT9-GW4	AT9-GW10	AT10-GW1	AT10-GW3	ATTO-GW4

		<u>NWN</u>	64 A.	611A 120	offortion	Classical and	dwaffer Ai	1. alvitán)	Data - Ju	he/July	2003				
Comin lo	Samile	UN I	Bonz-	CIP	CIL	<u>ew</u>	1,2-0.8E	1,2,0B	14.08	l JOB	9.00	MCH	SW-	Tol	Xyllon
Nimbol			e llo										Ten.	non	(1010)
All North Contraction	<u> </u>	<u>.vur</u>		<u>S</u> n	10	30	ŇÅ	600	1	700	NA	ŇŇ	100	1000	1000
<u>GWU2 (IIII)</u>		XXV		1	- 									2.1	
NTMO-0LTV	41 10 44														
AT11-GW1	4 to 7			·	,		F							<u>و</u> [
AT11-GW3	15 to 18				. - -		r 7						.	ΔT	
DUP3-GW	15 to 18				2]										
AT11-GW4	21 to 24					•			•					2	
AT11-GW6	33 to 36									-				•	
AT11-GW7	45 to 48										-				
AT11_GW8	57 to 60										:				
AT12.GW1	4 to 7		23												
AT10 CWD	0 to 12							/ - 4							
ATT2 CW2	15 tn 18														
AT19_GWA	01 to 24											:.: :			
ATTO GUTA	33 to 36						•								-
VT12 CW10	20-10-40	•													
ites:				1 	•						1				
oncentrations	are in parts per	noillid	(ppo)	-										. *	
lank spaces in old values evo	dicate contamin red NIDEP Gro	ant no sundw	r gereored iter Oual	tv Stan	dard (G	(SQW)		.							· .
IA = No applic	able GWQS av	illable	į	•									• .		
= Estimated vi	alue										. 1				
T = acctonc	·. ·.		-											•	
B = chloroben	zene							Ŧ							
M = chloroforn	ñ													•	
CM = chloromo	thane														
1,2-DBB = 1,2-1	dibromoethane		1 A 240	والمسرابا	duoan			:							•
(,2 or 1,4-DB = 0)	I,Z-dichlorobei	UZCIDC	01.1 ,4 -uit	VINTOILI											
$D = cury localized and \frac{1}{2}$															
1'B = 1300TODY	Denzenc														

APPENDIX VII

EGG HARBOR GOLDER BOREHOLE LOGS AND GROUNDWATER SAMPLING FORMS

g:\PROJECTS\023-6124 NJDEP\Egg Harbor\Phase I 1-2004\Site 1.BOR

08-19-2004

08-19-2004 g:\PROJECTS\023-5124 NJDEP\Egg Harbor\Phase 11-2004\Site 2.BOR

APPENDIX VIII

EGG HARBOR PHOTOGRAPHS

PHOTOGRAPH 1

General area near Site 1.