Phase II Assessment of Total Mercury Concentrations in Fishes from Rivers, Lakes and Reservoirs of New Jersey

Report No. 99-7R

Prepared for the New Jersey Department of Environmental Protection and Energy Office of Science and Research

Richard J. Horwitz, David Velinsky, Paul Overbeck and Paul Kiry

Patrick Center for Environmental Research
Academy of Natural Sciences of Philadelphia
1900 Benjamin Franklin Parkway
Philadelphia, PA 19103-1195

June 17, 1999

EXECUTIVE SUMMARY

In 1996-1997, the Academy of Natural Sciences of Philadelphia (ANSP) conducted a study of mercury concentrations in tissues of freshwater fish in New Jersey. This study is a follow-up of a preliminary screening study conducted in 1992-1993. The objectives of the study were to:

- Provide more extensive spatial data on mercury concentrations by sampling fish from additional sites. Sampling focused on largemouth bass and chain pickerel, species with high potential for bioaccumulation, which makes them useful for comparing bioaccumulation across lakes.
- Provide a basis of predicting mercury concentrations in fish from information on waterbody chemistry, geology, location, etc. This would be useful in defining consumption advisories and for designing future monitoring studies.
- Provide information on concentrations of mercury in species of fish commonly consumed, since higher overall risk may be associated with consumption of these species than of species which have higher concentrations but are less often consumed.
- Provide information on roles of different trophic pathways within sites on mercury bioaccumulation by sampling a variety of organisms within sites.
- Compare concentrations of mercury in fillets and the whole body of selected specimens in order to link data gathered for human risk assessment (based on fillet analyses) with data gathered for analysis of trophic uptake or risk to wildlife (based on whole body analyses).

For the 1996-1997 study, a total of 258 samples (not including QA/QC samples) of fish from 30 sites were analyzed. This included 58 largemouth bass, 58 chain pickerel, 109 large specimens of other commonly consumed species (brown and brook trout, channel and white catfishes, brown and yellow bullheads, smallmouth bass, Northern pike, sunfishes, black crappie, white perch and yellow perch), 32 samples of "forage fish" (including golden shiner, gizzard shad, alewife, chubsucker, and small specimens of sunfish, crappies, and white perch) and one sample of an aquatic insect (a backswimmer) for investigation of trophic differences in mercury bioaccumulation. Single fillets of larger fish were analyzed, while samples of forage fish included composites or individual fish, depending on the size.

Sites were sampled which had not been sampled previously. Site selection was based on a stratified random sampling design. The a priori stratification was based on geographical location, geological setting of the waterbody, and water chemistry (pH). The stratification was designed to represent the gradient in water chemistry from highly acidic, low alkalinity sites in the Pine Barrens through alkaline sites in carbonate regions in northern New Jersey. Separate strata were set up for large, unique lakes, and for sites in industrial regions which have known or likely histories of point
source mercury contamination. The stratification was a modification of that used for the earlier (1992) study, allowing use of data from that study.

Sites were selected from strata which had shown high mercury concentrations or variability in mercury concentrations in previous studies, or for which little information was available. Priority was given to Pine Barrens sites (which had high concentrations in previous studies), sites in industrial areas (which had high potential for contamination), coldwater streams (which had not been studied before), Northern lakes (one of the most numerous types, with the potential for high variability), sites in the northwestern part of the state with geology potentially leading to high bioaccumulation, and sites marginal to the Pine Barrens (which had shown high among-site variability in mercury concentrations in the 1992 study).

The results of the follow-up study were consistent with those of the previous study. The highest mercury concentrations were in fish from Pine Barrens lakes and rivers. Sites from the northern Pine Barrens were sampled in the 1996-1997 study, while the 1992 study included mainly southern sites. The similarity of results indicates that the high concentrations occur over the entire region. As in the 1992 study, sites at the edge of the Pine Barrens were variable in mercury concentration in fish, with some sites showing levels similar to that of Pine Barrens sites.

Sites in industrial areas were variable in the extent of mercury contamination. Some, such as the upper Raritan River, showed low mercury concentrations, while relatively high concentrations were found in some sites in the northeastern part of the state.

Fish from other sites generally had low or moderate concentrations of mercury. One exception was Crater Lake (in Sussex County), sampled as a representative of lakes on sandstone ridges in the northwestern part of the state. Concentrations in fish from Crater Lake were high compared to similar-size specimens of the same species from other sites.

Concentrations were generally highest in piscivorous fish such as chain pickerel and largemouth bass. Lower concentrations were seen in other species, including many that are commonly consumed, such as white perch, yellow perch, sunfish, crappies, catfish and bullhead. Assessment of potential human health hazards from eating these species would require a risk assessment, which was beyond the scope of this study. However, concentrations in some specimens were greater than threshold defined in 1994 by the Toxics in Biota Committee which trigger advisories to restrict consumption.

Comparisons of mercury concentrations among fish from different trophic levels showed the general increase in concentrations with trophic levels, although among-species variation within trophic groups was seen. No clear difference in mercury concentrations was seen between invertebrate-eating species (e.g., sunfishes) and mainly zooplanktivorous species (golden shiner had lower concentrations while alewife had similar concentrations). White perch had lower concentrations than other invertebrate eaters. Pine Barrens sites contain several species of sunfishes which are much smaller than widespread species such as bluegill and pumpkinseed. Specimens of the small species show higher concentrations than similarly-sized specimens of other sunfish species.

This is likely related to age differences: adults (probably 1-3 years old) of the small species are similar in size to young-of-year of the other species. Since these small, but relatively old, fish are consumed by predatory fish, this difference could contribute to high bioaccumulation in predatory fish in the Pine Barrens.

Comparisons of fillet and whole body concentrations were made for 8 chain pickerel, 10 largemouth bass, and 13 specimens of 6 other species. Mercury concentration in fillets were higher than whole body concentrations in all of these samples. Ratios were variable for largemouth bass, with a median of 1.65 (i.e., fillet concentrations were about 1.65 times the whole body concentrations). Ratios were fairly consistent within the other species. Fillet concentrations were about 1.3 times greater than whole body concentrations for chain pickerel. Median ratios of fillet to whole body concentrations were 1.3-1.9 for other species.

As in previous studies, mercury concentrations within species tended to increase with the size and age of the fish. These relationships need to be considered in making detailed comparisons among sites. Three types of analyses were done to adjust for length/age relationships and compare sites:

1) Length and age adjustments were made using analysis of covariance (ANCOVA), where length or age is treated as a covariate and other factors (e.g., sampling strata) were treated as discrete treatment effects. This is similar to regressing mercury concentrations against age or length, with different intercepts for different strata. The simplest model used only stratum as a grouping factor, while more complex models used waterbody within strata.
2) Multiple linear regression was done, using length or age, and water chemistry factors for each lake. The length/age adjustment is analogous to that done for the first model, but site variation is modeled based on water chemistry variables rather than on discrete groupings of sites.
3) A combined analysis using both discrete groupings of sites and water chemistry variables was done with ANCOVA. This analysis indicates whether water chemistry explains variation in mercury concentrations within the site groupings.

These analyses were done on largemouth bass, chain pickerel and brown bullhead. For these analyses, data from the 1996-1997 study were combined with data from three other studies: the 1992-1993 study and two other studies done in 1993-1994. Together, these studies include 252 specimens of largemouth bass, 126 specimens of chain pickerel and 44 specimens of brown bullhead.

The analyses showed that much of the variation in mercury concentrations could be explained by fish size or age and by descriptors of site characteristics (stratum or water chemistry parameters). Models in which specific waterbody effects were included had very high explanatory power ($90-95 \%$ of total variation). This shows that while there are consistent patterns in mercury bioaccumulation among types of lakes, that there is substantial lake-to-lake variation within a given lake type.

Concentrations of mercury in chain pickerel were the most predictable, with age providing better resolution of among-fish differences than length. For chain pickerel, either strata or water chemistry provided good models. All water chemistry parameters (pH , conductivity DOC, alkalinity, sulfate and chloride) were significant in some model. pH and conductivity (both easily measured parameters) provided good predictions, although other groups of parameters provided better predictions. The high predictability of pickerel bioaccumulation reflects the importance of the gradient from low alkalinity, high DOC, low pH sites (e.g., the Pine Barrens), to higher alkalinity, low DOC, high pH sites (e.g., some northern lakes) for this species.

Concentrations in largemouth bass were not as well explained by the models using strata and/or water chemistry. This reflects the variety of mid- to high-pH waterbodies in which largemouth bass were found, and its absence from many Pine Barrens sites. As a result, the $\mathrm{pH} /$ alkalinity/DOC gradient is not as well-defined, and other types of among-site differences are more important. For largemouth bass, total length provided better predictions of mercury than age. This could be due to the importance of size-related shifts in feeding habits, habitat, etc. for this species. As with chain pickerel, pH and conductivity alone provided good predictions of mercury, but the best predictions were provided by regressions including DOC, conductivity and chloride.

For brown bullhead, pH alone provided good predictions, although the best models included DOC and alkalinity.

Much of the among-site variability in bioaccumulation (especially in largemouth bass) comes from a few sites with relatively high values, which are not explained by the water chemistry parameters which are measured. Relatively high mercury concentrations were seen in fish from some lakes in industrial areas, and from relatively young reservoirs.

In 1994, NJDEP sampled fish for mercury analysis in sites which had yielded fish with relatively high mercury concentrations (above $1.0 \mathrm{mg} / \mathrm{g}$) in the 1992-1993 study. The results of these analyses were consistent with those of the 1992-1993 study. The concentrations in largemouth bass and chain pickerel from the 1994 NJDEP study were compared with predictions from the multiple regression models derived from the combined ANSP studies. These predictions were based on the size of fish analyzed in the NJDEP study and the water quality parameters measured by ANSP in those lakes. There was good overall agreement between the NJDEP measurements and predicted values. Consistent deviations were seen for some sites. These are attributed to the inherent betweenlake variation in mercury bioaccumulation and to factors promoting mercury availability not accounted for by the water quality parameters, such as historic point source contamination and high bioaccumulation in new reservoirs.

Bioaccumulation of mercury has been related to differences in water chemistry, which affect rates of methylation of mercury into methylmercury, which is more readily accumulated. The relationships of mercury bioaccumulation to parameters such as pH , alkalinity, conductivity and DOC are consistent with other studies. These parameters are intercorrelated, and the causal basis of their relationship to bioaccumulation cannot be determined from this type of comparative study. The intercorrelation makes it difficult to separate observed relationships, and differences in explanatory
power can arise from differences in the temporal, spatial and measurement variability in parameters, nonlinearities in the parameter-bioaccumulation relationship, etc. DOC has been considered as a primary factor promoting bioaccumulation, based on modeling, laboratory and experimental studies. In the present study, DOC was the only parameter significantly related to bioaccumulation in all three studies when all other parameters were included in the model.

The major conclusions of these mercury studies are:

- Concentrations of mercury occur in fillets of some species of fish from a number of New Jersey freshwaters at levels which may trigger consumption advisories, based on existing risk assessments.
- Among different types of waterbodies, relatively high concentrations were seen in fish from the Pine Barrens, including rivers and ponds and sites from throughout the Pine Barrens.
- Relatively high concentrations were seen in some sites at the edge of the Pine Barrens, at some relatively new reservoirs, and at some sites in the northeastern part of the state, which may have had historical point-source contamination.
- Concentrations were lowest in coldwater streams, in some ponds and rivers in the southwestern part of the state (i.e., on the Coastal Plain outside the Pine Barrens), in the Delaware River, and in some high pH lakes in the northern part of the state.
- Among different fishes, concentrations were highest in large, piscivorous fish such as chain pickerel and largemouth bass. Relatively high concentrations of mercury may occur in individuals of these species from a variety of sites.
- Concentrations in lower trophic levels were lower than those in piscivorous fish, but clear patterns of differences among planktivores, generalized invertebrate-feeders and bottomfeeders were not found.
- Several species of sunfish which remain small throughout their lives are common in the Pine Barrens; these species can live several years and are small enough to be important forage fish throughout their lives. As a result, these may contribute to bioaccumulation in piscivores.
- Much of the variation in mercury concentrations in a species can be explained by fish size or age and by measures of lake chemistry (either categories of lake type or by measurements of water chemistry parameters). However, there is substantial variation among lakes which is not explained by the measurements made. This variation comes from some sites with high bioaccumulation due to other factors, such as in new reservoirs or in sites with historical contamination.
- For chain pickerel, mercury concentrations followed a relatively simple pattern along the $\mathrm{pH} /$ alkalinity/conductivity/DOC gradient. Since these factors covary, a variety of models (i.e., using different groups of parameters) can be used to explain variation in mercury bioaccumulation.
- For largemouth bass, there was also a relationship between bioaccumulation and the $\mathrm{pH} /$ alkalinity/conductivity/DOC gradient, but other factors were also important. This may reflect the widespread occurrence of the species in moderate and high $\mathrm{pH} /$ alkalinity/conductivity sites.
- Fillet concentrations of mercury were higher than estimated whole body concentrations. Relationships between fillet and whole body concentrations were generally consistent among species, with fillet concentrations 1.3-1.9 times higher than whole body concentrations.

Recommendations for future studies are made, based on the findings of this report. Areas for future work include providing more precise information on regions or taxa which are variable or currently poorly known, sampling over time to determine temporal trends, and investigation of mechanisms of bioaccumulation. Trend sampling may be particularly opportune, in order to provide information on possible decreases in mercury concentrations in fish subsequent to decreases in anthropogenic atmospheric emissions. Recommended studies include:

1) Sampling additional waterbodies and taxa for which there is no information. The most important analyses would be from lakes in the northeastern part of the state, parts of the northwestern part of the state, and in sites marginal to the Pine Barrens. Ongoing studies of mercury concentrations in eels and snapping turtles may indicate the need for more analysis of these species.
2) Periodic monitoring of mercury concentrations in a limited number of sites to determine the occurrence and time scale of expected decreases in mercury concentrations following decreases in atmospheric emissions of mercury.
3) Periodic monitoring of mercury concentrations in some sites, such as newly-impounded reservoirs and sites with former point source inputs, since these sites may follow different temporal patterns than other sites.
4) Periodic monitoring of atmospheric deposition rates would be important to determine temporal trends of deposition, which is a major factor controlling mercury concentrations in aquatic organisms.
5) More intensive sampling of chemical parameters in water to provide better estimates of seasonal and spatial variation of these parameters within lakes. This variation may affect
the reliability of prediction of mercury concentrations from spot sampling of water chemistry.
6) Analysis of additional waterbody characteristics which may improve the ability to model mercury concentrations from waterbody characteristics. Watershed information derived from GIS, such as land use, amount of wetlands in the watershed and watershed geology, may be useful for this purpose.

TABLE OF CONTENTS

Page
EXECUTIVE SUMMARY i
INTRODUCTION 1
Study Objectives 1
Factors Affecting Bioaccumulation of Mercury 3
Regulatory Thresholds 5
Selection of Sampling Sites 7
Sampling Methods 14
Analytical Methods 14
RESULTS 22
Results of 1996-1997 Study 22
Joint Analysis of 1992-1997 Data 45
Comparison With Previous Studies of Mercury in New Jersey Fish 67
Comparison With NJDEP 1994 Study of Mercury in New Jersey Fish 68
DISCUSSION AND CONCLUSIONS 72
RECOMMENDATIONS FOR FURTHER STUDY 79
Increasing Precision and Spatial Coverage 79
Information on Temporal Trends in Mercury Concentrations 80
Information on Mechanisms Controlling Bioaccumulation 81
LITERATURE CITED 82
APPENDIX A: Summary data from previous ANSP studies 89
APPENDIX B: Data on individual specimens analyzed by ANSP 102
APPENDIX C: Summary of mercury concentrations in fishes from other studies 137
APPENDIX D: Results of followup study by NJDEP and NJDH on selected sites 153

INTRODUCTION

In 1992-1993, The Academy of Natural Sciences of Philadelphia (ANSP) conducted a preliminary assessment of mercury in freshwater fishes of New Jersey (ANSP 1994a). This study found concentrations of concern in fish from a number of lakes. These data were used to develop consumption advisories for recreationally caught freshwater fishes in New Jersey. Subsequently, ANSP conducted two other studies, one in 1992-1993 at several sites in Camden County (ANSP 1994b) and one in 1994 in Lakes Oradell and Tappan for the Hackensack Water Company (ANSP 1994c). These data supplement those from the preliminary assessment. In 1995, the New Jersey Department of Environmental Protection and the New Jersey Department of Health analyzed mercury in additional specimens of fish from some of the lakes which had been sampled in the 19921993 study. In 1995, ANSP initiated studies to address some of the issues unresolved by the preliminary assessment or other studies. Sampling for this follow-up study was done in 1996 and 1997.

Study Objectives

The main goal of this study is more thorough analysis of variation in mercury concentrations in fish among sites and within sites (Figure 1). Specific objectives are:

1) Improvement in the ability to predict mercury concentrations by refinements in the definition of sampling strata; collection of more information on potentially important physico-chemical parameters which may be correlated with mercury bioaccumulation, including pH , alkalinity, dissolved organic carbon, chloride and sulfate concentrations; analysis of ages of fish, since age can provide a more accurate covariate of bioaccumulation.
2) Sampling of fish from additional waterbodies. Fish from 28 additional sites were analyzed for the 1996-1997 study.
3) Assessment of mercury concentrations in species of fish commonly eaten by anglers (e.g., perch, catfishes and bullheads, sunfishes and crappies). Such information will be essential for subsequent risk assessment for fish consumption from different sources. Although these species may have lower concentrations than the larger piscivores (e.g., largemouth bass and chain pickerel), they may contribute more to health risks because they are more frequently caught and eaten.
4) Assessment of differences in mercury concentrations in fishes from different portions of the food web. In particular, differences in mercury concentration among different groups of forage fish (e.g., benthic feeders, zooplankton feeders) may indicate important ecological controls in mercury bioaccumulation in piscivores.

Figure 1. Location of sites (see Table 2 for key) sampled as part of ANSP surveys of mercury concentrations in fish tissues, including this (1996-1997) study (open squares), 1992-1993 screening study (closed circles), 1994 Camden County study (closed triangles in vicinity of Camden), and 1994 Hackensack Water Company study (closed triangles).
5) Combined analysis of the data from the preliminary assessment, the Camden County study, the Hackensack study, and data newly generated for this study.
6) Comparison of ANSP results with those of the 1995 NJDEP-NJDOH study. An interlaboratory comparison was done on data from one lake in 1995. The results, previously reported to the NJDEP (ANSP 1996), are reprinted as Appendix E in this report.

Factors Affecting Bioaccumulation of Mercury

The study sites, species analyzed and physico-chemical parameters measured were selected using existing information on mercury bioaccumulation. Reviews of aspects of mercury cycling can be found in Jasinski (1995), Zillioux et al. (1993), EPMAP (1994), Rudd (1995) and USEPA (1998). A short review of factors especially relevant to bioaccumulation in New Jersey freshwater fishes was presented in ANSP (1994a). As a simplification, variation in mercury concentrations in fish tissue can be related to a series of factors:

1) Rates of input and export of mercury. Atmospheric deposition is a major source of mercury into aquatic watersheds (EPMAP 1994, Rudd 1995). While some spatial variation in deposition occurs (Keeler et al. 1995, St. Louis et al. 1995, Pirrone et al. 1995), the longrange transport of mercury from anthropogenic and natural sources (Pacyna and Keeler 1995) reduces among-site variability. Greater variability is expected from terrestrial or direct aquatic applications. Terrestrial applications have occurred from a variety of industrial and agricultural sources, such as fungicides and paints (NOAA 1988). Most of these applications have been reduced or eliminated, but watershed inputs may still occur from historical uses. Similarly, direct aquatic inputs from industrial sources have been greatly reduced or eliminated. However, mercury can persist in sediments long after cessation of input (Rada et al. 1986). Current inputs may occur from waste treatment plants (although treatment may remove most mercury from the effluent stream, Balogh and Liang 1995), or from losses from sites contaminated by spills from mercury equipment, chloralkali units, etc. (Harju et al. 1995, Klein and Jacobs 1995). Chloride concentrations are typically higher in urban areas, although chloride varies with proximity to the ocean and other factors, as well. Correlations between mercury bioaccumlation and chloride concentrations, e.g., as in this study, may be due to the joint correlation with urbanization, sewage plant effluents, and other point and non-point source inputs of mercury.

Watershed hydrology and geochemistry can affect transport of mercury into rivers and lakes. Mercury may be retained in watersheds by adsorption on clays or binding with organic complexes (Rudd 1995, Bishop et al. 1995). Transport of mercury into rivers and lakes can be facilitated by transport of particulates (Hurley et al. 1995) or DOC (Zillioux et al. 1993, Lee et al. 1995a,b, Driscoll et al. 1995, Hintelmann et al. 1995, Watras et al. 1995a). Methylmercury may be largely retained in upland soils with high infiltration of rainfall (Bishop et al. 1995). In particular, movement of DOC in groundwater is a significant pathway of methylmercury movement from wetlands into drainage lakes (Porvari and Verta

1995, Rudd 1995, Pettersson et al. 1995, Branfireun et al. 1996, St. Louis et al. 1996). Complexation of mercury with humic acids was the primary mechanism of transport of mercury out of floodplain soils of the Elbe River (Wallschlager et al. 1996). Bishop et al. (1995) found high concentrations of methylmercury in riparian sphagnum mosses, which served as a source to the downstream stream.

Inorganic mercury can be lost from waterbodies by volatilization. Increased methylation (see below) and/or binding of methylmercury by DOC may decrease the amount of inorganic mercury, resulting in lower volatilization and greater retention of mercury (Watras et al. 1995b).
2) Rates of methylation of mercury. Methylmercury is bioaccumulated to a greater extent than inorganic mercury. Therefore, factors increasing rates of methylation can greatly affect rates of bioaccumulation. Sulfur-reducing bacteria are a dominant methylator of mercury (Gilmour and Henry 1991, Watras et al. 1995c, Matilainen 1995). Bacterial methylation typically occurs in anoxic zones, such as near the anoxic-oxic boundary of sediments (Leermakers et al. 1995, Watras et al. 1995c) or lake waters (Slotton et al. 1995), anoxic hypolimnetic waters of stratified lakes (Verta and Matilainen 1995), wetland soils (Porvari and Verta 1995), or the interior of algal mats (Gilmour et al. 1997, Checker et al. 1998).

On a watershed or site level, rates of methylation may depend on the extent of such sites, and the rate of methylation within the sites (Rudd 1995). For example, Watras et al. (1995b) found that mercury concentrations in water in drainage lakes were correlated with the amount of wetland in the watershed of a lake, and Hurley et al. (1995) found that methylmercury loads in Wisconsin rivers were correlated with wetland surface area. The net rate of methylation within sites may increase with temperature (Schindler et al. 1995), with sulfate (Gilmour and Henry 1991, Gilmour and Capone 1987) and DOC (Leermakers et al. 1995, Driscoll et al. 1994), which increase activity of methylating bacteria. Temporal changes in the location of the anoxic-oxic boundary (e.g., changes of groundwater levels in wetlands, seasonal shifts in the location of the hypolimnion in stratified lakes) can increase methylation by preventing depletion of bacterial substrate in static zones.

The rate of methylation may be higher at lower pH (Xun et al. 1987), but this effect may be weak compared to other factors cited above (Watras et al. 1995d). The presence of organic acids (e.g., humic acids) may affect methylation more through the DOC effect than through direct pH effects.
3) Factors affecting bioavailability of mercury. Physical (e.g., adsorption) or chemical (e.g., bonding) reactions may increase or decrease bioavailability of mercury. For example, formation of mercury sulfide in high sulfide sediments may remove mercury from food chains. Partitioning of mercury or methylmercury (e.g., to DOC, clay particles, particulate organic matter) may decrease bioavailability by reducing direct uptake from water. However, these processes may increase trophic uptake by filter or deposit-feeders (Gagnon and Fisher 1997).
4) Factors affecting bioaccumulation of mercury. Within a site, mercury concentrations are expected to be highest in top-level predators, and this has been found in many studies (this study, Stafford and Haines 1997, Becker and Bigham 1995, Kidd et al. 1995). Mercury concentrations are also expected to be higher in long-lived fish, since depuration rates of methylmercury are relatively low. Older fish are also more likely to be more predatory. Increase in mercury concentrations with age has been observed in many studies (Morrison and Therien 1995, Allen-Gil et al. 1995). Because of the increase with age, large individuals of lower trophic levels may have higher mercury concentrations than many piscivorous species from the same site (Ward et al. 1997).

Bioaccumulation may differ among different food webs within a site or across sites, as well. Many aquatic systems have food webs based on planktonic algal production (e.g., phytoplankton to zooplankton to zooplanktivorous fish and invertebrates to piscivorous fish) and on detritus (e.g., through detritus-feeding macroinvertebrates and protozoans). France (1995) found strong differences in the source of carbon of benthic portions of lakes (near-shore zones and bottom communities) which were based on detritus, and openwater communities, which were based on plankton.

Many of the causal factors have multiple effects which may enhance or counteract each other. For example, DOC may enhance bioaccumulation both by stimulating of methylation or mercury and by increasing transport of methylmercury to rivers and lakes. Within rivers and lakes, binding of DOC and mercury may increase or decrease bioavailability of mercury to different consumers. Furthermore, many of the causal factors are correlated in occurrence. For example, Pine Barrens sites are characterized by high DOC (i.e., humic acids) and high amounts of wetland. Because of these effects, complex relationships between potential causal factors and mercury concentrations, as observed in this study, are to be expected.

Regulatory Thresholds

Mercury concentrations of concern may be defined by several criteria, including human health risk from consumption of fish, risk to wildlife from consumption of fish, concentrations leading to direct toxic effects in fish, and concentrations above some background level (e.g., as indicative of point source contamination). Concentrations based on human health risk have been of primary concern, e.g., as the basis for defining consumption restrictions (for commercial fisheries) or consumption advisories (for noncommercial fisheries). Criteria for protection of human health vary, due to a number of factors, including: a) assumptions about dose-human response relationships; b) assumptions about the total amount of fish consumption and the proportion of contaminated fish in the diet; c) definitions of "acceptable" risk; and d) different strategies for defining consumption advisories (e.g., setting a single threshold versus different levels for different groups of people). Human-health based thresholds have been based on fillet or muscle concentrations. Thresholds which have been used for establishing advisories include:
I. A single threshold concentration of $1.0 \mathrm{mg} / \mathrm{kg}$ (wet weight); this is used by FDA as the threshold for closing commercial fisheries and has been used for other advisories, as well; the threshold is based on assumptions of a mix of contaminated and noncontaminated fish in the diet.
II. A single threshold concentration of $0.5 \mathrm{mg} / \mathrm{kg}$ (wet weight); this is used by several jurisdictions (e.g., Wisconsin, Florida, Ontario, Sweden), as a concentration above which restricted consumption (e.g., on total number of meals per month) is advised; different rates of consumption may be advised for different groups of people (e.g., lower rates for pregnant women and children).
III. A single threshold concentration of $0.41 \mathrm{mg} / \mathrm{kg}$ (wet weight); this has been developed as a riskbased level by USEPA (1993b). This value is derived from a maximum recommended dose (0.3 $\mu \mathrm{g} / \mathrm{kg} \mathrm{d}^{-1}$) and a daily ingestion rate ($54 \mathrm{~g} \mathrm{~d}^{-1}$), corrected for the fraction of days in a year of residential exposure (365/350). This value has no official status for regulation or guidance, but is suggested as a flag for further study.
IV. Multiple thresholds, to recognize higher vulnerability of children and pregnant women and lower vulnerability of other groups. In 1994, the Toxics and Biota Committee of the New Jersey DEP, DOH and DOA (Toxics and Biota Committee 1994) defined four classes of mercury concentration for each of two risk groups:

Women of reproductive age and children:

1) above $0.54 \mathrm{mg} / \mathrm{kg}$; no consumption advised;
2) between 0.19 and $0.54 \mathrm{mg} / \mathrm{kg}$; limited consumption (less than one meal per month) advised;
3) between 0.08 and $0.18 \mathrm{mg} / \mathrm{kg}$; limited consumption (less than one meal per week) advised;
4) below $0.08 \mathrm{mg} / \mathrm{kg}$; no advisories.

Others:
a. above $2.81 \mathrm{mg} / \mathrm{kg}$; no consumption advised;
b. between 0.94 and $2.81 \mathrm{mg} / \mathrm{kg}$; limited consumption (less than one meal per month) advised;
c. between 0.35 and $0.93 \mathrm{mg} / \mathrm{kg}$; limited consumption (less than one meal per week) advised;
d. below $0.35 \mathrm{mg} / \mathrm{kg}$; no advisories.
V. Wildlife-based concentrations. Toxicological models may be used to estimate fish concentrations expected to lead to toxic effects in fish-eating wildlife.

Selection of Sampling Sites

Most sites were selected using a stratified random sampling design. This design categorizes each potential waterbody into a group of strata, defines a number of sites to be selected from each stratum, and randomly selects sites for sampling from each stratum.

Stratification

The stratification was similar to that used in the 1992-1993 screening study (Table 1), with modifications based on the results of the 1992-1993 sampling. Modifications were done to: a) provide a better separation of sites with different expected levels of mercury bioaccumulation; b) retain the original design as much as possible, so that the random selection of sites for sampling in the 1992-1993 screening study would still be appropriate. By doing this, sites sampled in the 1992-1993 study, as well as those sampled in this followup study, can be analyzed together as part of a single design.

The original stratification, which was used in the 1992-1993 study, divided sites principally on geographic location, physiographic location (e.g., Coastal Plain versus upland sites) and type of waterbody (lake or river). Some strata were defined as unique, i.e., with only one member. These included the Delaware River, and eight lakes which were considered unique on the basis of size (they are the eight largest lakes in the state, seven of which were sampled in 1992), depth (e.g., maximum depths greater than 13 m in all but Union Lake), and age (Merrill Creek Reservoir was filled in 1988; Manasquan Reservoir was stocked in 1990).

The 1992-1993 study found that differences in mercury concentration could be attributed to waterbody chemistry and type of waterbody. The geographic and physiographic location were important mainly as location was correlated with water chemistry (e.g., low pH in Pine Barrens sites). The 1992-1993 strata were modified to better reflect expected differences in water chemistry. In the 1992-1993 screening study, Coastal Plain lakes were separated on the basis of location; in the modified version, rivers and lakes were separated on the basis of expected $\mathrm{pH}(5-6,6-7,7-8$ and $>8)$. In the 1992-1993 study, a single stratum was used for Northern lakes. For the 1995 study, Northern lakes were separated on the basis of surface geology of the immediate drainage. Lakes were separated into three classes, those with carbonate rocks in the immediate drainage, those in the Shawangunk Formation (a sandstone formation of the Northwestern part of the state; these rocks are expected to have low buffering capacity and might lead to higher bioaccumulation), and other lakes. For the 1996-1997 study, sites in industrial areas were separated into two strata, one for southern industrial lakes and rivers (e.g., in the immediate vicinity of Camden), and another for northern industrial lakes and rivers (sites in the northeastern part of the state). Sites with known point sources or identified as having likely point-source impacts in prior studies were included in these strata. These include Atlantic City Reservoir, which was identified in the 1992-1993 study; Raritan River at Neshanic Station, which was sampled by Jacangelo (1977), and sites in the Pompton-Pequannock system.

Table 1. Comparison of stratifications used in the current study and the 1992-1993 study.* indicates that the stratum was defined, but that no sites were sampled from the stratum.

1992 Strata Pine Barrens Rivers	Number of Strata 1	1998 Strata Pine Barrens Rivers	Number of Strata 1
Eastern Coastal Plain rivers*	1		
Western Coastal Plain rivers	1	Coastal Plain rivers	1
		Southern industrial rivers	1
Coldwater streams	1	Coldwater streams	1
Northern warmwater rivers	1	Northern warmwater rivers	1
		Northern industrial rivers	1
Brackish Coastal Plain rivers	1	Brackish Coastal Plain rivers	1
Pine Barrens lakes	1	Pine Barrens lakes	1
Western Coastal Plain lakes	1	Coastal Plain lakes (pH 5-6)	1
Northeastern Coastal Plain lakes	1	Coastal Plain lakes (pH 6-7)	1
Southeastern Coastal Plain lakes	1	Coastal Plain lakes (pH 7-8)	1
Mixed Coastal Plain lakes	1	Coastal Plain lakes ($\mathrm{pH}>8$)	1
		Southern industrial lakes	1
Northern lakes	1	Northern midland lakes	1
		Northern carbonaceous lakes	1
		Northern industrial lakes	1
		Northern lakes, Shawangunk Formation	1
Unique Lakes	7	Unique lakes, noncarbonaceous	4
		Unique lakes, carbonaceous	4
Delaware River strata	5	Delaware River strata	5

For the 1996-1997 study, a stratum was designated as "Mixed Coastal Plain river", for drainages with a mix of relatively undisturbed Pine Barrens areas, agricultural or residential areas within the Pine Barrens, and areas outside the Pine Barrens. These sites were potentially intermediate in water chemistry between Pine Barrens and other Coastal Plains sites. The site selected for sampling, Ridgeway Branch, had water chemistry similar to Pine Barrens sites, and the site was classed with other Pine Barrens rivers for analysis.

Base List of Lakes

For the 1992-1993 study, a base list of waterbodies of interest was developed using NJDEPE (1992), USGS topographic maps, and county stream drainage maps. Criteria for inclusion were: a) lakes/ponds/reservoirs greater than 15 acres (6.1 ha) in area, or streams/rivers greater than 12 miles (19.3 km) in length; b) public ownership or access; c) probable presence of appropriate fish (primarily sport fish) for sampling. The base list contained 172 lakes, ponds and reservoirs, and 80 river/stream reaches (after removal of brackish ponds). This list was used as the basis for this study, as well. Boonton Reservoir was added to the list for this study, since public fishing access has been developed for this private lake.

Allocation of Sampling Sites

The effectiveness of a stratified random sampling design is affected mainly by the variability within sampling strata, which is determined by the inherent variability among sampling units, and the definition of strata, and by the precision of estimates within strata. The precision is determined by the precision of the estimates for each sampling unit (e.g., the number of fish sampled per site) and the number of units sampled within each stratum (e.g., the number of sites sampled). Note that the total number of units within a stratum affects precision only through the variability among units: a stratum containing a large number of similar sites can be assessed by sampling relatively few units (i.e., sampling a low proportion of all sites, while a stratum containing a small number of dissimilar sites may require sampling of a high proportion of sites.

For the 1992-1993 study, the numbers of sites to be sampled within each stratum (see Table 1) were selected on the basis of the likely potential for bioaccumulation, the variability within sites within the stratum, and the total number of sites within the stratum. The 1992-1993 data were used to determine numbers of additional sites in the various strata to be sampled for this study. For this study, emphasis was placed on those strata for which little data were available in 1992-1993, for which mercury bioaccumulation was potentially relatively high, and/or for which the 1992-1993 data showed high variability among sites.

Based on these criteria, the 1996-1997 sampling focused on:

1) Sites in and marginal to the Pine Barrens, since these showed the highest variability in mercury concentrations, and included some lakes with high concentrations.
2) Northern lakes, especially those in non-carbonate areas. There are a large number of these lakes and these showed variability among sites in the 1992-1993 sampling. These sites had relatively low sampling intensity (relative to the number of such sites) in the preliminary study and are likely to show higher concentrations, and many such sites have important fisheries.
3) Industrial areas in the Hudson, Passaic and Raritan drainages. While these types of sites did not show the highest concentrations in the preliminary assessment, concentrations were apparently higher than expected from water chemistry alone. Historical data indicated high mercury concentrations in the past. In addition, there may be greater frequency of consumption of fish from these areas.
4) Strata with low sample intensity in the preliminary assessment. A coldwater stream was selected for sampling, since little data was available from the 1992-1993 screening study.

Selection of Sampling Sites

Each waterbody on this list was assigned a selection number randomly. Within each stratum, sites with the lowest selection number were chosen for sampling, up to the determined number of sites. In some cases, sites originally selected for sampling were found to be unsuitable (e.g., lack of access, tidal exchange in coastal sites). In these cases, replacement sites with the next lowest selection number were chosen. In some cases (e.g. for Coastal Plain lakes, where stratification is based on pH), analysis of water chemistry indicated misclassification of lakes in the original stratification. In these cases, the lakes were reclassified, and new lakes were selected for sampling, based on selection number.

The random selection procedure was not used for the selection of some sites. Such sites include those sampled as part of other sampling programs with site-specific selection criteria, and sites selected for specific potential sources of contamination. These sites include:

1) Sites sampled as part of a 1992-1993 survey of sites in Camden County (ANSP 1994a). For this study, sites were chosen along a gradient from south Camden to the edge of the county. These sites are listed in Table 2. Some of the sites sampled for this study are not on the base list for the statewide survey, because of small size or private ownership.
2) Lake Oradell and Tappan Reservoir were sampled in 1994 as part of a study for the Hackensack Water Company (ANSP 1994b).
3) Industrial sites were picked on the basis of information on potential point sources (possibly including mercury) or to compare with earlier surveys. These sites include Lake Dundee, Cooper River Park Lake, Newton Lake, Big Timber Creek and Rancocas Creek, which were sampled in the 1992-1993 study, and all the industrial sites sampled in 1996-1997 (Table 2).
4) Some sites were selected to sample sites in parts of the state or in drainages not selected in the random site selection (Wilson Lake, Atlantic City Reservoir, Alcyon Lake), to coordinate with

Table 2. Lakes sampled in ANSP mercury sampling programs in New Jersey and code used in Figure 1.

Water body	Year Sampled	Strata	Code
New Jersey 1992-1993 Survey			
Alcyon Lake	1992	Coastal Plain Lake - pH 6 (CPL6)	ALC
Assunpink Creek - Lower	1992	Coastal Plain River (CPR)	ASC
Assunpink Lake	1992	Coastal Plain Lake - pH 7 (CPL7)	ASL
Atlantic City Reservoir	1993	Southern Industrial Lake (SINDL)	ACR
Atsion Lake	1992	Pine Barrens Lake (PBL)	ATS
Batsto Lake	1992	Pine Barrens Lake (PBL)	BAT
Big Timber Creek	1992	Southern Industrial River (SINDR)	BTC
Budd Lake	1993	Northern Midland Lake (NML)	BUD
Canistear Reservoir	1993	Northern Midland Lake (NML)	CAN
Carnegie Lake	1993	Northern Carbonate Lake (NCARB)	CAR
Clinton Reservoir	1992	Northern Midland Lake (NML)	CLI
Cooper River Park Lake*	1993	Southern Industrial River (SINDR)	CRP
Corbin City Impoundment \#3	1993	Brackish Coastal Plain Lake (BCPL)	COR
Cranberry Lake	1992	Northern Carbonate Lake (NCARB)	CBL
Crosswick Creek	1993	Southern Industrial River (SINDR)	CWC
Crystal Lake	1993	Coastal Plain Lake - pH 7 (CPL7)	CRY
Delaware Raritan Canal	1993	Northern Industrial River (NINDR)	DRC
Delaware River - Above Camden (At and above Rancocas Creek)	1992	Delaware River - from Camden to Trenton (DRTS)	DRTC DRAC
Delaware River - above Easton (At Sandt's Eddy)	1992	Delaware River - from Easton to the Water Gap (DRWE)	$\begin{array}{\|l} \hline \text { DRWE } \\ \mathrm{SE} \\ \hline \end{array}$
Delaware River - above Water Gap (At Smithfield Beach)	1992	Delaware River - above the Water Gap (DRAG)	$\begin{aligned} & \hline \text { DRAG } \\ & \text { SMB } \end{aligned}$
Delaware River - Below Camden (At Salem)	1992	Delaware River - below Camden (DRBC)	DRBC DELSAL
Delaware River - Trenton to Easton (At Byrum)	1992	Delaware River - from Trenton to Easton (DRET)	$\begin{array}{\|l\|} \hline \text { DRET } \\ \text { BYR } \\ \hline \end{array}$
Dundee Lake	1992	Northern Industrial River (NINDR)	LDD
East Creek Lake	1992	Pine Barrens Lake (PBL)	ECL
Harrisville Lake	1992, 1993	Pine Barrens Lake (PBL)	HAR
Lake Carasaljo	1992	Coastal Plain Lake - pH 6 (CPL6)	CJO
Lake Hopatcong	1992	Unique Lake (UL)	HOP
Lake Nummy	1992	Pine Barrens Lake (PBL)	NUM
Lenape Lake	1992	Pine Barrens Lake (PBL)	LEN
Manasquan Reservoir	1993	Unique Lake (UL)	MR
Maskells Mills Lake	1993	Coastal Plain Lake - pH 5 (CPL5)	MAS
Merrill Creek	1992	Cold-water Stream (CWS)	MC
Merrill Creek Reservoir	1992	Northern Carbonate Lake - Unique Lake (NCARB-UL)	MCR
Mirror Lake	1992	Coastal Plain Lake - pH 5 (CPL5)	MIR
Monksville Reservoir	1992	Northern Midland Lake (NML)	MKR
Mountain Lake	1992	Northern Carbonate Lake (NCARB)	MTL

* Also sampled in Camden County study (see below).

Table 2 (continued). Lakes sampled in ANSP mercury sampling programs in New Jersey and code used in Figure 1.

Water body	Year Sampled	Strata	Code
New Jersey 1992-1993 Survey			
Mullica River	1993	Pine Barrens River (PBR)	MUL
New Brooklyn Lake*	1993	Coastal Plain Lake - pH 5 (CPL5)	NBL
Passaic River at Great Piece	1992	Northern Industrial River (NINDR)	GPC
Pompton Lake	1993	Northern Industrial Lake (NINDL)	POM
Rancocas Creek	1992	Coastal Plain River (CPR)	RAN
Rockaway River	1992	Northern Warm-water River (NWWR)	ROC
Round Valley Reservoir	1992, 1993	Northern Carbonate Lake - Unique Lake (NCARB-UL)	RVR
Saw Mill Lake	1992	Northern Midland Lake - Shawangunk Formation (NMLSSG)	SML
Shadow Lake	1992	Coastal Plain Lake - pH 8 (CPL8)	SHA
Spring Lake	1992	Coastal Plain Lake - pH 8 (CPL8)	SPG
Spruce Run Reservoir	1992, 1993	Northern Carbonate Lake - Unique Lake (NCARB-UL)	SRR
Stafford Forge Main Line	1992, 1993	Pine Barrens Lake (PBL)	STF
Swartswood Lake	1992	Northern Carbonate Lake (NCARB)	SWL
Union Lake	1993	Unique Lake (UL)	UL
Wading River	1992	Pine Barrens River (PBR)	WAD
Wanaque Reservoir	1992	Northern Carbonate Lake - Unique Lake (NCARB-UL)	WAN
Wilson Lake	1992	Coastal Plain Lake - pH 5 (CPL5)	WIL
Woodstown Memorial Lake	1992	Coastal Plain Lake - pH 7 (CPL7)	WDT
Camden Survey			
Clementon Lake	1993	Coastal Plain Lake - pH 6 (CPL6)	CLE
Cooper River Park Lake	1992	Southern Industrial River (SINDR)	CRP
Evans Pond	1992	Coastal Plain Lake - pH 6 (CPL6)	EVA
Haddon Lake (South Branch Newton C)	1992	Southern Industrial Lake (SINDL)	SBN
Little Timber Creek	1992	Coastal Plain River (CPR)	LTC
Marlton Lake	1992	Coastal Plain Lake - pH 6 (CPL6)	MAR
New Brooklyn Lake	1993	Coastal Plain Lake - pH 5 (CPL5)	NBL
Newton Creek (North Branch)	1993	Southern Industrial River (SINDR)	NBN
Newton Lake	1992	Southern Industrial Lake (SINDL)	NEW
Strawbridge Ponds	1992	Coastal Plain Lake - pH 6 (CPL6)	STR
Hackensack Water Company Survey			
Oradell Reservoir	1994	Northern Midland Lake (NML)	ORA
Tappan Lake	1994	Northern Midland Lake (NML)	TAP
New Jersey 1996-1997 Survey			
Boonton Reservoir	1996	Northern Midland Lake (NML)	BOO
Butterfly Bogs	1996	Pine Barrens Lake (PBL)	BUT
Cedar Lake	1996	Coastal Plain Lake - pH 6 (CPL6)	CED

Table 2 (continued). Lakes sampled in ANSP mercury sampling programs in New Jersey and code used in Figure 1.

Water body	Year Sampled	Strata	Code
New Jersey 1996-1997 Survey			
Crater Lake	1996	Northern Midland Lake - Shawangunk Formation (NMLSSG)	CRA
De Voe Lake	1996	Coastal Plain Lake - pH 6 (CPL6)	DEV
Delaware River - Above Camden (At Tacony-Palmyra Bridge)	1996	Delaware River - from Camden to Trenton (DRTS)	$\begin{array}{\|l} \hline \text { DRAC } \\ \text { TPB } \\ \hline \end{array}$
Delaware River - Below Camden (At Deepwater)	1996	Delaware River - below Camden (DRBC)	DRBC DWT
Double Trouble Lake	1996	Pine Barrens Lake (PBL)	DTR
Echo Lake	1996	Northern Carbonate Lake (NCARB)	ECH
Green Turtle Lake	1996	Northern Midland Lake (NML)	GTL
Greenwood Lake	1996, 1997	Unique Lake (UL)	GWL
Grovers Mill Pond	1997	Northern Midland Lake (NML)	GMP
Hainesville Pond	1996	Northern Midland Lake (NML)	HAI
Malaga Lake	1996	Coastal Plain Lake - pH 5 (CPL5)	MAL
Oak Ridge Reservoir	1997	Northern Midland Lake (NML)	ORR
Passaic River at Hatfield Swamp	1996	Northern Industrial River (NINDR)	PHS
Pompton River at Lincoln Park	1996	Northern Industrial River (NINDR)	PLN
Pompton River at Pequannock River	1997	Northern Industrial River (NINDR)	PPQ
Raritan River at Millstone Creek	1996	Northern Industrial River (NINDR)	RML
Raritan River at Neshanic Station	1996	Northern Industrial River (NINDR)	RNS
Raritan River, South branch, Clairemont stretch	1996	Cold-water Stream (CWS)	RSB
Ridgeway Branch of Tom's River	1996	Pine Barrens River (PBR)	RID
Rockaway/ Whippany Rivers	1996	Northern Industrial River (NINDR)	RWH
Speedwell Lake	1996	Northern Midland Lake (NML)	SPE
Steenykill Lake	1996	Northern Midland Lake - Shawangunk Formation (NMLSSG)	STE
Success Lake	1996	Pine Barrens Lake (PBL)	SUC
Sunset Lake	1996	Coastal Plain Lake - pH 8 (CPL8)	SUN
Wawayanda Lake	1996	Northern Midland Lake (NML)	WWL
Whitesbog Pond	1997	Pine Barrens Lake (PBL)	WHI
Willow Grove Lake	1997	Coastal Plain Lake - pH 6 (CPL6)	WGL

other sampling programs (Mountain Lake), to sample sites with new or special fishery programs (Monksville Reservoir, Boonton Reservoir), or to use specimens of interest collected for other purposes (Mirror Lake, Mullica River, Delaware and Raritan Canal, Echo Lake, Steenykill Lake).
5) The coldwater stream was selected nonrandomly, to provide the greatest likelihood of obtaining larger trout. Since most listed coldwater streams are stocked with little holdover, random selection would probably have yielded few or no trout with more than a short residence time in the stream.

Sampling Methods

Virtually all larger fish were collected by electrofishing, angling or gill netting. Most smaller fish (collected as part of the 1996-1997 study) were collected by electroshocking, seining and trapping. Most fish were collected by personnel of the Academy of Natural Sciences of Philadelphia (ANSP), and/or the New Jersey Department of Environmental Protection (NJDEPE; Division of Scientific Research, and Division of Fish, Game and Wildlife). For the 1996-1997 study, some specimens were collected by the Delaware River Basin Commission and private anglers. For the 1992-1993 screening study, additional specimens were made available by RMC, Inc. (Merrill Creek Reservoir), Tom Lloyd and Assoc. (Delaware River, below Camden) and by private anglers.

After capture, fish were placed in clean plastic bags or muffled aluminum foil, the package was sealed or taped shut, and identification information was written on an external label fixed to each package. Specimens were held on ice until transfer into a freezer. Transfers of specimen from the field to laboratory or other transfers between personnel were documented by ANSP standard chain-of-custody procedures. Samples were maintained frozen until sample preparation.

Analytical Methods

Sample Preparation

Four different tissue types were used for this study, fillets, whole body, carcass without fillets and carcass with a single fillet.

Fillets were used for all specimens for the 1992-1993 screening study, 1992-1993 Camden study and 1994 Hackensack study. Fillets were analyzed for larger specimens (i.e., those of size likely to be consumed by people) for the 1996-1997 study. Fillets were prepared with the entire fillet on one side, including the belly flap, excluding skin. This preparation (skin off, entire fillet) was chosen to provide consistent methodology for all species, to sample similar tissues from fish of different sizes, and since mercury bioaccumulated primarily in muscle tissue rather than skin or fat, exclusion of the skin does not exclude major portions of the mercury in the fish. Removal of skin is typical in analyses of mercury (in which lipophilic substances such as organochlorides are not analyzed from the same sample), e.g., Gloss et al. (1990).

Whole body samples were used for smaller specimens analyzed for the trophic comparison studies. For some small fish, composites of whole fish were used, where necessary to obtain sufficient sample material.

Carcass concentrations were analyzed to enable estimation of whole body concentrations for larger fish for the trophic comparison study. For selected specimens, the carcass was minced after removal of both fillets (for chemical analysis) and otoliths (for ageing).

Carcass with a single fillet was used to estimate whole body concentrations for specimens on which only a single fillet was removed for tissue analysis.

Specimens were partially or totally thawed, weighed, measured and filleted (for fillet preparations). Each sample was minced and mixed, and a fraction of the sample was used for digestion and analysis. All surfaces in contact with the fillet (glassware, scalpels, knives, and foil for wrapping the sample) were cleaned prior to preparation of each sample. Cleaning was done by: a) muffling at $450^{\circ} \mathrm{C}$ (glassware, foil), or b) rinsing in nitric acid, then double-distilled water, and solvent-cleaned in acetone (applicable to all types of equipment); or c) rinsing in hexane (new, clean disposable scalpel blades). This procedure is nearly identical to that used for the 1992-1993 screening study (ANSP 1994a), except that a dichloromethane rinse was used in the 1992 study instead of hexane or acetone. Notes were taken on the condition of each specimen, stomach contents, etc. For the 1996-1997 study, otoliths were either dissected from the specimen at the time of sample preparation, or heads were removed for subsequent dissection of otoliths. For some specimens from the 1992-1993 screening study and the 1992-1993 Camden study, heads were archived and otoliths were dissected and archived. A portion of the chain pickerel otoliths from the 1992-1993 screening study were aged, and these data were reported in ANSP (1994a). Remaining otoliths from the 19921994 studies were aged as part of this study.

Ageing was done by embedding whole otoliths in epoxy resin and sectioning otoliths on a mineral saw. Ages were estimated from presumed annular bands on the otolith sections.

Sample Digestion

A fraction of each minced fillet was tissumized. Sample material thawed either overnight in a refrigerator or thawed during the day at room temperature was tissumized. From this, an optimal sample size of 1.0 g (wet weight) of tissumized fish tissue was digested in 10 ml of concentrated trace metal grade nitric acid using microwave heating (CEM 1991). Digestion was carried out in closed Teflon-lined vessels employing a CEM microwave model MDS-2100 (950 watts ± 50).

The fish tissue was weighed directly into Teflon liners which were then placed into the vessels; 10 ml of nitric acid was added and the vessels were capped. The vessels were placed into a 12-position tray which was then placed on the rotating carousel of the microwave. A pressure sensing tube was connected to the control vessel, and a fiberoptic temperature probe was placed in the thermal well of the control vessel. Usually, 12 samples were digested at a time using a 5 -stage heating program in which temperature was used to control the digestion as follows.

STAGE	1	2	3	4	5
POWER	25%	80%	80%	90%	90%
PRESSURE (PSI)	20	40	85	135	190
RUN TIME (MIN)	$10: 00$	$20: 00$	$20: 00$	$20: 00$	$20: 00$
TIME @ PSI (MIN)	$5: 00$	$5: 00$	$5: 00$	$10: 00$	$10: 00$
TEMPERATURE $\left({ }^{\circ} \mathrm{C}\right)$	100	140	170	180	190

After the heating program was completed, the vessels were allowed to cool to less than $40^{\circ} \mathrm{C}$ at which time the pressure within the vessels was about 40 psi . While still in the microwave cavity, pressure in the control vessel was released by slowly unscrewing the vent stem until the pressure reached zero. The fiberoptic temperature probe and pressure sensing tube were disconnected and the carousel removed to a fume hood where the pressure in the other vessels was allowed to bleed off by slowly unscrewing the vent stems.

After release of the pressure, the vessels were uncapped and the tops and sides of the liners were rinsed into the liner with double-deionized water (DDW). The digestate was then brought to 100 ml volume in a $100-\mathrm{ml}$ graduated cylinder with DDW and transferred to a $125-\mathrm{ml}$ Pyrex Wheaton bottle. A volume of 7 ml potassium permanganate (5%) was added to each bottle, and each was capped and allowed to stand overnight.

Sample Analysis and Quantitation

Mercury in the diluted digestate was determined by Manual Cold Vapor Atomic Absorption (USEPA 1979). Excess potassium permanganate was reduced by the addition of 3 ml of 12% sodium chloride-hydroxylamine hydrochloride solution to the Pyrex bottle. After the potassium permanganate became colorless, the samples were analyzed using a Perkin Elmer FIMS-400 Mercury Analyzer. A computer and hard copy data log was kept of all runs as a permanent record. For each sample run, standards were run at the beginning or each run, and a single standard was run after each 20 samples. Each set of standards consisted of a blank and seven concentrations (typically $0.2,0.5$, $2.0,5.0,10.0,15.0$, and $20.0 \mu \mathrm{~g} / \mathrm{L}$). Standard curves were computed by linear regression of the means of the peak heights of three runs for each of the different standards. Goodness-of-fit (e.g., linearity) was assessed by calculation of the r-value for the regression. All r-values were greater than 0.995 , the New Jersey threshold (values were typically greater than 0.999). The peak heights of the samples were then compared to the standard curve to calculate total mercury, by using the parameters of the linear regression for the standard curve. In some cases, the calculated amount of mercury was greater than the highest standard used in that run. In those cases, the sample was analyzed in another run, using smaller amounts of tissue to maintain the peak height within the calibrated range. In these cases, only the data from runs within the calibrated range were used for analysis. These were transformed to $\mathrm{mg} / \mathrm{kg}$ wet weight, taking into account the weight of fish tissue digested.

Physico-Chemical Data

A set of measurements was taken at each of the 1996-1997 sampling sites, the two 1994 Hackensack sites, most of the 1992-1993 screening study sites, and most of the 1992-1993 Camden County sampling sites. pH , conductivity, and water temperature were measured in the field. Dissolved organic carbon (DOC), Sulfate $\left(\mathrm{SO}_{4}\right)$, Chloride (Cl), and alkalinity were measured in the laboratory.

Specific analytical methods are summarized in Table 3 for this study. For the 1996-1997 sites, measurements and water samples were taken either at the time of fish collecting, or on separate trips. The 1992-1994 sites were revisited in order to take water samples and measurements. Measurements of pH were done as part of the 1992-1993 screening study, using Orion SA250 pH meters (ANSP 1994a). Additional pH data were taken from USGS 1991 and 1992 surface sampling data (USGS 1991a,b, 1992), from RMC (1992, Merrill Creek Reservoir), Wagner (1979, Round Valley Reservoir) and unpublished data taken by several groups: C. Goulden (ANSP) at Round Valley Reservoir; Newark Water District at Clinton and Canistear reservoirs; North Jersey Water District at Wanaque and Monksville reservoirs; and NJDEP at Atlantic City Reservoir. Mean pH values were taken from these external sources (mean of all measurements for partial records, mean of monthly means for daily measurements). Sulfate concentrations are expressed as mg sulfate $/ \mathrm{kg}$.

For analysis of correlation among physico-chemical variables, only data taken at the same time were used. For correlation of physico-chemical variables with mercury data, the mean of all observations of each parameter was used, e.g., means of pH values from the 1992-1993 screening study and the 1996-1997 resampling were used.

Measurements and samples were taken about 10 cm below the water surface, usually near the shore of the waterbody. In a few cases, water samples were taken, held on ice, and measurements of pH and conductivity were taken within 12 hours of collection. DOC samples were usually filtered at the time of sample collection. In a few cases, water samples were taken, held on ice, and filtering was done within 12 hours of collection.

Statistical Analysis

Two basic statistical approaches were used to assess differences in mercury concentrations among specimens and sites. The first estimates mean mercury concentrations within discrete units (strata, and waterbodies within strata). The second estimates mercury concentrations as functions of the physico-chemical parameters. For both approaches, it is necessary to account for the increase in mercury with increasing age/size of fish.

Adjustments for size and species of fish. Adjustments for size and species of fish were made to provide more powerful comparisons between waterbodies and groups of waterbodies. A re-

Table 3. Analytical methods and procedures for chemical analysis of water.
$\mathbf{p H}$: Reported as standard pH units; determined by electrometric method with a Fisher Accumet 1001 meter. U.S. EPA, 1983; Method 150.1.

Conductance: Reported as μ S; determined by YSI SCT meter or equivalent. U.S. EPA, 1983; Method 120.1.

Temperature: Reported as degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$; determined by thermometer or thermistor method, pre-calibrated using a YSI meter. U.S. EPA, 1983; Method 170.1.

Total Alkalinity: Reported as $\mathrm{mg} / \mathrm{LCaCO}_{3}$; determined by titration with 0.02 N sulfuric acid to the potentiometric end point (pH 4.5). U.S. EPA, 1983; Method 310.1.

Dissolved Chloride: Reported as $\mathrm{mg} \mathrm{Cl} / \mathrm{L}$; determined by the titrimetric mercuric nitrate method. U.S. EPA, 1983; Method 325.3.

Dissolved Sulfate: Reported as $\mathrm{mg} / \mathrm{L} \mathrm{SO}_{4}$; determined by the automated methylthymol blue method. U.S. EPA, 1993a; Method 375.2.

Dissolved ($<0.7 \boldsymbol{\mu m}$ filtered) Organic Carbon (DOC): Reported as mg C/L; determined on a Dohrmann Envirotech DC-80, utilizing ultra-violet oxidation conversion to carbon dioxide followed by infrared detection. Dohrmann, 1981, U.S. EPA, 1983; Method 415.2., and Wangersky, 1993.
gression of mercury concentration against age, total length or total weight of the specimen was made for each species. Within species, different regressions were made for each stratum. (In general, too few specimens were analyzed from each site to allow accurate site-specific mercury-length regressions.) The regression models were used to calculate a predicted concentration based on specimen length, weight or age, stratum and waterbody. These regressions also allow calculation of a predicted mercury concentration at a standardized age or size. The regressions were calculated using analysis of covariance (ANCOVA), in PROC GLM (SAS 1985). Regressions were of the form:

$$
\ln (\text { mercury concentration })=\mathrm{I}+\mathrm{B}_{\text {stratum }}+\mathrm{D}_{\text {waterbody nested within stratum }} \mathrm{C}^{*} \ln \text { (total length) }
$$

where I is an intercept fit by the model, $\mathrm{B}_{\text {group }}$ is a "treatment" effect, fit for each stratum, D is a "nested treatment" effect estimating the deviation of each lake from the average within the stratum, and C is a slope fit by the model. The model in \ln (mercury concentration) and \ln (total length) is equivalent to the power function:

Mercury concentration $=\left[\exp \left(I+B_{\text {group }}+D\right)(\text { total length })^{C}\right.$
This model fits the same power C for all groups, and varies the multiplier.
Statistical analyses were done using the GLM procedure in SAS (SAS 1985). Calculations of predicted Hg concentrations were calculated from parameters derived from the SAS runs, using EXCEL.

Comparison of strata and waterbodies. The mercury concentrations of waterbodies and strata were compared by using ANCOVA, as explained in the previous section. Statistical models were written, which estimate mercury concentrations within strata, and in waterbodies within each stratum, after adjustment for the length or age of individual specimens.

Relationship between mercury concentration and physico-chemical parameters. Multiple regression was used to estimate mercury concentrations as functions of the physico-chemical parameters after adjusting for size or age of fish. These models are of the form:
$\ln [\mathrm{Hg}]=\mathrm{A}+\mathrm{B}_{\mathrm{A} / \mathrm{S}} * \ln (\mathrm{TL}$ or Age $)+\mathrm{C}_{1} * \mathrm{P}_{1}+\ldots \mathrm{C}_{\mathrm{n}} * \mathrm{P}_{\mathrm{n}}$
where TL is total length, and the P_{i} are physico-chemical parameters.
The regression models were formed in three ways:

1) Stepwise regression was used to identify groups of parameters with significant effect. This procedure sequentially adds parameters with significant correlations with the dependent variable ($\ln [$ mercury concentration]), starting with those with the most significant relationships. After each new variable is added, variables previously included are retested, and any variables which are no longer significant are removed.

These models were done using PROC REG in SAS (1985). Models used pH , alkalinity, $\ln (\mathrm{DOC})$, \ln (conductivity), $\ln (\mathrm{Cl})$ and $\ln (\mathrm{SO} 4)$ as potential independent variables, as well as \ln (total length), \ln (total weight) or $\ln ($ age $)$.

Multiple regression is sensitive to correlation among the independent parameters. Since there were correlations among many of the physico-chemical variables, the results must be interpreted carefully. With high correlation among a pair of variables, either variable (but not both) may explain the dependent variables, and which independent variable appears as significant or the most significant will depend on the order in which variables are added, and significance can be sensitive to small changes in the values of the independent and dependent variables. Alternately, both variables may appear significant due to nonlinear relationships between the independent variable and a dependent variable. Fitting a line to the nonlinear relationship can create a pattern of residuals which is fit by a second independent variable which is correlated with the first.

To check for these effects, the slope of the relationships between $\ln [\mathrm{Hg}]$ and each significant parameter was checked. If the sign of the slope was opposite that expected from known relationships, the relationship was assumed to be an artifact and the model was rerun excluding that parameter. For example, pH and DOC are highly positively correlated. Mercury concentrations typically increase with decreasing pH or DOC, i.e., there is a negative relationship between $\ln [\mathrm{Hg}]$ and both parameters. If a regression model fits a significant negative relationship with pH and a significant positive relationship to DOC after fitting the pH regression, it is assumed that the DOC relationship is an artifact, and DOC is removed from the model. For these comparisons, it was assumed that the relationship between $\ln [\mathrm{Hg}]$ should be negative with $\mathrm{pH}, \mathrm{DOC}$, alkalinity, conductivity, and sulfate. No a priori direction for the relationship with chloride was assumed.
2) Reduced regression with parameters assumed to be most important. Multiple linear regression was done using $\mathrm{pH}, \ln (\mathrm{DOC})$ and a size/age variable $(\ln (\mathrm{TL}), \ln (\mathrm{TW})$ or $\ln ($ age $)$. These regressions were done, since pH and DOC have been established as correlating significantly with mercury bioaccumulation in many systems.
3) Reduced regression with most easily measured parameters. One of the goals of the analyses is to determine relationships which can be used to predict mercury concentrations, which can be used in setting advisories or selecting sites for further study. It would be especially advantageous if these predictions could be done using easily collected predictor variables.

Regressions were done using only $\ln (\mathrm{TL}), \mathrm{pH}$, and \ln (conductivity). Length is routinely measured, while ageing of specimens requires additional preparation and analysis, while pH and conductivity can be measured in the field with meters. Reasonable accuracy can be obtained with inexpensive meters. The other parameters require more complex field collection procedures, as well as laboratory analysis for quantification.

Corbin City Impoundment was excluded from all the regression analyses. This site is brackish, with extreme values of several parameters (very high conductivity, chloride and sulfate). Inclusion of this site could obscure relationships between mercury concentrations and water chemistry among other sites.

Estimation of Whole Body Concentrations

Estimates of bioaccumulation among trophic levels are most meaningful with respect to whole body concentrations. However, fillet concentrations were measured on most larger fish, because of their relevance to human health. For selected specimens of largemouth bass, chain pickerel and brown bullhead, measurements of carcass concentrations were made as well, allowing estimation of whole body concentrations as:

$$
\mathrm{C}_{\text {whole }}=\left(\mathrm{C}_{\text {fillet }} * \mathrm{~W}_{\text {fillet }}+\mathrm{C}_{\text {carcass }} * \mathrm{C}_{\text {weight }}\right) /(\text { Total weight })
$$

Data recording errors on a few specimens necessitated special handling. The carcass weight of one specimen was not measured. The carcass weight of two other specimens was entered incorrectly, as evident from the relative fillet, carcass and total body weights. Among all specimens other than these, the fillet plus carcass weight was between 91% and 98% of the total body weight (excepting one specimen with a value of 87%), with an average of 95%. The difference presumably represents fluid and other tissue lost from the fillet and/or carcass prior to weighing. For these three specimens, the carcass weight was estimated from the total weight and fillet weight, assuming that fillet and carcass weight would total 95% of the total body weight.

RESULTS

Results of 1996-1997 Study

Mercury concentrations differed among species and strata (Table 4, Appendix Table A-1, Appendix B). The 1996-1997 data showed similar patterns to the 1992-1993 screening study results. Among species, mercury concentrations were highest in piscivores (e.g., largemouth bass and chain pickerel). Among strata, mercury concentrations were highest in the Pine Barrens and adjacent waters. The Pine Barrens sites sampled in 1996-1997 included sites in the northern part of the Pine Barrens, while the 1992-1993 sites were mainly in the central and southern Pine Barrens. Thus, the 1996-1997 results show consistent patterns throughout the Barrens. Two of the sites with low to moderate pH (Malaga Lake and Willow Grove Lake) had concentrations as high or higher than those in the Pine Barrens sites. Both of these sites are near the edge of the Pine Barrens. Fish from the other moderate pH sites (Cedar Lake in southern New Jersey and De Voe Lake in central New Jersey) had moderate mercury concentrations. Moderate concentrations were seen in bass from some of the sites in the northern part of the state. Several of these are rivers with current or former industrial use, such as the Rockaway, Passaic, lower Raritan and Pompton rivers, but moderate concentrations were also seen in some larger reservoirs (Boonton and Oak Ridge reservoirs) and in large individual bass from other lakes (e.g., Greenwood Lake and Grovers Mill Pond). Moderate concentrations were seen in brown bullhead and yellow perch from Crater Lake in Sussex County. This is notable, since these species have low concentrations in most sites. Concentrations were low in many of the higher pH sites (e.g., Sunset Lake, Hainesville Pond, Echo Lake) and some riverine sites (e.g., the upper Raritan). Concentrations tended to increase with age and length of fish, so quantitative comparisons of concentrations among sites or species need to adjust for these differences. These adjustments are discussed below, incorporating data from the previous ANSP studies into the 1996-1997 data, to increase reliability of analyses.

The Toxics in Biota Committee of NJDEP, DOH and DOA has developed guidelines for consumption advisories (Toxics in Biota Committee 1994, Stern 1993). These guidelines define mercury concentration categories, based on recommended maximal frequencies of consumption for higher risk people (pregnant women, women planning pregnancy and young women) and lower risk people. The proportions of fish in these advisory groups for each lake is summarized in Table 5. For the lower risk groups, most fish fell in the unrestricted category, with predatory and Pine Barren fish falling into restricted categories. For the higher risk group, most fish fell into some restricted category, with some species (sunfish, brown bullhead, trout) usually in the unrestricted category.

Correlation among Physico-chemical Parameters and Variation among Sites

As part of the 1996-1997 study, measurements of a suite of physico-chemical parameters was measured in each of the 1996-1997 study lakes, as well as most of the lakes previously studied (ANSP 1994a, b, c). These analyses form a basis for interpreting observed differences in mercury bioaccumulation among sites and strata. They also allow a separate analysis of bioaccumulation-

Table 4. Average and range of mercury concentrations in fish from ANSP studies. Type indicates sample type (individual or composite), Sa is the tissue used (fillet or whole body), and N is the number of samples analyzed.

							l Length (cm)		$\begin{aligned} & \text { ge } \\ & \text { ars) } \end{aligned}$	$\begin{gathered} \mathrm{Hg} \mathrm{Ct} \\ (\mathrm{mg} / \mathrm{kg} \end{gathered}$	centration wet weight)
Water Body	Species	Year	Type	Sa	N	Avg.	Range	Avg.	Range	Avg.	Range
Coastal Plain Lake - pH 5 (CPL5)											
Malaga Lake	Esox niger	1996	Ind	F	5	32.50	29.3-36.2	2.6	2-4	0.99	0.73-1.38
Malaga Lake	Micropterus salmoides	1996	Ind	F	1	32.40	32.4	3.0	3	0.95	0.95
Coastal Plain Lake - pH 6 (CPL6)											
Cedar Lake	Ameiurus nebulosus	1996	Ind	F	1	31.50	31.5	6.0	6	0.06	0.06
Cedar Lake	Esox niger	1996	Ind	F	3	54.07	47.9-64.7	4.3	3-6	0.43	0.24-0.76
Cedar Lake	Micropterus salmoides	1996	Ind	F	3	41.43	39.0-43.8	5.0	3-6	0.48	0.25-0.61
De Voe Lake	Ameiurus nebulosus	1996	Ind	F	1	27.00	27.0	5.0	5	0.09	0.09
De Voe Lake	Esox niger	1996	Ind	F	3	44.33	41.5-48.5	4.3	3-5	0.22	0.14-0.27
De Voe Lake	Micropterus salmoides	1996	Ind	F	3	34.10	31.7-36.5	2.7	2-3	0.18	0.07-0.26
Willow Grove Lake	Ameiurus catus	1997	Ind	F	1	43.00	43.0	9.0	9	0.17	0.17
Willow Grove Lake	Ameiurus natalis	1997	Ind	F	2	29.25	28.0-30.5	4.5	4-5	0.87	0.82-0.91
Willow Grove Lake	Ameiurus nebulosus	1997	Ind	F	2	32.70	32.4-33.0	4.0	4-4	0.25	0.23-0.28
Willow Grove Lake	Esox niger	1997	Ind	F	5	42.76	31.0-53.0	3.4	2-4	1.09	0.76-1.29
Willow Grove Lake	Micropterus salmoides	1997	Ind	F	1	33.20	33.2	3.0	3	1.68	1.68
Coastal Plain Lake - pH 8 (CPL8)											
Sunset Lake	Dorosoma cepedianum	1996	Ind	F	1	31.80	31.8	-	-	0.04	0.04
Sunset Lake	Esox niger	1996	Ind	F	1	30.70	30.7	2.0	2	0.09	0.09
Sunset Lake	Lepomis gibbosus	1996	Ind	F	1	9.40	9.4	-	-	0.04	0.04
Sunset Lake	Lepomis gibbosus	1996	Comp	W	2	6.10	5.6-6.5	-	-	0.03	-
Sunset Lake	Lepomis macrochirus	1996	Ind	F	2	10.00	8.8-11.2	2.0	2-2	0.04	0.03-0.05
Sunset Lake	Lepomis macrochirus	1996	Comp	W	35	-	2.2-3.4	-	-	0.03	-
Sunset Lake	Lepomis macrochirus	1996	Comp	W	37	-	2.3-3.3	-	-	0.02	-
Sunset Lake	Lepomis macrochirus	1996	Comp	W	30	-	2.4-3.5	-	-	0.01	-
Sunset Lake	Micropterus salmoides	1996	Ind	F	5	37.20	22.5-53.0	3.8	2-9	0.30	0.10-0.69
Sunset Lake	Morone americana	1996	Comp	W	3	5.33	5.0-5.5	-	-	0.05	-
Sunset Lake	Morone americana	1996	Comp	W	3	5.47	5.4-5.5	-	-	0.04	-
Sunset Lake	Notemigonus crysoleucas	1996	Comp	W	14	-	3.0-5.7	-	-	0.01	-
Sunset Lake	Notemigonus crysoleucas	1996	Comp	W	11	-	4.3-5.8	-	-	0.01	-
Sunset Lake	Pomoxis nigromaculatus	1996	Comp	W	2	5.05	4.8-5.3	-	-	0.02	-
Sunset Lake	Pomoxis nigromaculatus	1996	Comp	W	4	4.13	4.1-4.2	-	-	0.02	-

Table 4 (continued). Average and range of mercury concentrations in fish from ANSP studies. Type indicates sample type (individual or composite), Sa is the tissue used (fillet or whole body), and N is the number of samples analyzed.

							Length (cm)		ears)	$\begin{gathered} \mathrm{Hg} \mathrm{Co} \\ (\mathrm{mg} / \mathrm{kg} \end{gathered}$	centration wet weight)
Water Body	Species	Year	Type	Sa	N	Avg.	Range	Avg.	Range	Avg.	Range
Cold-water Stream (CWS)											
Raritan River, South Br., Clairemont stretch	Salmo trutta	1996	Ind	F	3	17.73	16.6-19.6	2.0	2-2	0.01	0.00-0.01
Raritan River, South Br., Clairemont stretch	Salvelinus fontinalis	1996	Ind	F	1	16.20	16.2	2.0	2	0.02	0.02
Delaware River - below Camden (DRBC)											
Delaware River - Below Camden	Ictalurus punctatus	1996	Ind	F	4	47.88	43.5-50.0	7.8	5-9	0.16	0.02-0.40
Delaware River - Below Camden	Morone americana	1996	Ind	F	4	21.03	19.1-22.9	4.5	3-6	0.10	0.07-0.16
Delaware River - from Camden to Trenton (DRTS)											
Delaware River - Above Camden	Ictalurus punctatus	1996	Ind	F	2	46.35	44.5-48.2	11.0	11-11	0.16	0.12-0.21
Delaware River - Above Camden	Morone americana	1996	Ind	F	2	19.00	18.9-19.1	6.0	5-7	0.13	0.12-0.15
Northern Carbonaceous Lake (NCARB)											
Echo Lake	Micropterus salmoides	1996	Ind	F	4	32.20	29.0-35.0	4.0	4-4	0.15	0.12-0.17
Northern Industrial River (NINDR)											
Passaic River at Hatfield Swamp	Ameiurus natalis	1996	Ind	F	1	21.40	21.4	4.0	4	0.11	0.11
Passaic River at Hatfield Swamp	Lepomis gibbosus	1996	Ind	F	2	12.50	12.4-12.6	3.0	3-3	0.09	0.08-0.09
Passaic River at Hatfield Swamp	Lepomis macrochirus	1996	Ind	F	1	18.90	18.9	4.0	4	0.19	0.19
Passaic River at Hatfield Swamp	Micropterus salmoides	1996	Ind	F	3	27.50	23.0-36.0	3.7	2-7	0.31	0.17-0.53
Passaic River at Hatfield Swamp	Pomoxis nigromaculatus	1996	Ind	F	4	19.25	18.1-20.0	5.8	4-7	0.26	0.21-0.32
Pompton River at Lincoln Park	Esox lucius	1996	Ind	F	3	45.47	27.8-66.6	2.7	2-3	0.39	0.17-0.59
Pompton River at Lincoln Park	Esox niger	1996	Ind	F	1	22.70	22.7	2.0	2	0.23	0.23
Pompton River at Lincoln Park	Micropterus salmoides	1996	Ind	F	2	35.45	35.4-35.5	7.5	7-8	0.59	0.50-0.68
Pompton River at Lincoln Park	Perca flavescens	1996	Ind	F	2	22.50	21.0-24.0	3.0	3-3	0.23	0.21-0.26
Pompton River at Pequannock River	Ambloplites rupestris	1997	Ind	F	3	20.77	19.2-22.0	4.0	3-5	0.58	0.54-0.68
Pompton River at Pequannock River	Ameiurus natalis	1997	Ind	F	1	26.20	26.2	7.0	7	0.80	0.80
Pompton River at Pequannock River	Erimyzon oblongus	1997	Ind	W	3	9.27	8.2-9.8	1.0	1-1	0.06	0.05-0.07
Pompton River at Pequannock River	Lepomis auritus	1997	Ind	F	2	14.75	13.7-15.8	5.0	3-7	0.37	0.32-0.41
Pompton River at Pequannock River	Lepomis gibbosus	1997	Ind	W	3	9.47	9.1-9.7	1.0	1-1	0.14	0.12-0.16
Pompton River at Pequannock River	Lepomis gibbosus	1997	Ind	F	2	14.3	14.1-14.5	2.5	2-3	0.57	0.35-0.78
Pompton River at Pequannock River	Lepomis gibbosus	1997	Comp	W	3	5.33	4.9-5.6	-	-	0.11	-
Pompton River at Pequannock River	Micropterus dolomieu	1997	Ind	F	4	29.90	25.4-36.8	5.0	4-6	0.96	0.57-1.14

Table 4 (continued). Average and range of mercury concentrations in fish from ANSP studies. Type indicates sample type (individual or composite), Sa is the tissue used (fillet or whole body), and N is the number of samples analyzed.

						Total Length (cm)		$\begin{gathered} \text { Age } \\ \text { (years) } \end{gathered}$		Hg Concentration($\mathrm{mg} / \mathrm{kg}$ wet weight)	
Water Body	Species	Year	Type	Sa	N	Avg.	Range	Avg.	Range	Avg.	Range
Pompton River at Pequannock River	Micropterus salmoides	1997	Ind	F	2	39.40	39.0-39.8	7.5	7-8	1.17	0.99-1.36
Pompton River at Pequannock River	Pomoxis nigromaculatus	1997	Ind	F	1	19.30	19.3	2.0	2	0.24	0.24
Raritan River at Millstone Creek	Ameiurus nebulosus	1996	Ind	F	2	26.45	25.4-27.5	4.5	4-5	0.07	0.06-0.07
Raritan River at Millstone Creek	Ictalurus punctatus	1996	Ind	F	1	39.80	39.8		-	0.15	0.15
Raritan River at Millstone Creek	Micropterus salmoides	1996	Ind	F	4	37.68	32.5-44.9	6.8	5-12	0.37	0.33-0.46
Raritan River at Neshanic Station	Ambloplites rupestris	1996	Ind	F	1	15.00	15.0	3.0	3	0.09	0.09
Raritan River at Neshanic Station	Ameiurus natalis	1996	Ind	F	2	16.75	16.3-17.2	2.5	2-3	0.07	0.06-0.08
Raritan River at Neshanic Station	Lepomis auritus	1996	Ind	F	2	15.80	15.7-15.9	2.5	2-3	0.12	0.09-0.15
Raritan River at Neshanic Station	Micropterus dolomieu	1996	Ind	F	1	20.70	20.7	2.0	2	0.18	0.18
Raritan River at Neshanic Station	Micropterus salmoides	1996	Ind	F	1	18.20	18.2	2.0	2	0.11	0.11
Rockaway River near Whippany	Lepomis macrochirus	1996	Ind	F	1	14.50	14.5	2.0	2	0.12	0.12
Rockaway River near Whippany	Micropterus salmoides	1996	Ind	F	1	39.80	39.8	9.0	9	0.92	0.92
Rockaway River near Whippany	Pomoxis nigromaculatus	1996	Ind	F	1	17.90	17.9	6.0	6	0.21	0.21
Northern Midlands Lake (NML)											
Boonton Reservoir	Ameiurus catus	1996	Ind	F	1	40.00	40.0	15.0	15	0.54	0.54
Boonton Reservoir	Ameiurus nebulosus	1996	Ind	F	2	31.65	30.5-32.8	6.0	5-7	0.02	0.01-0.02
Boonton Reservoir	Micropterus salmoides	1996	Ind	F	3	40.57	35.0-45.1	6.3	5-8	0.58	0.33-0.81
Green Turtle Lake	Esox niger	1996	Ind	F	3	39.80	28.1-46.6	1.7	1-2	0.13	0.11-0.15
Green Turtle Lake	Micropterus salmoides	1996	Ind	F	3	28.13	23.6-34.7	3.0	2-5	0.24	0.17-0.32
Green Turtle Lake	Perca flavescens	1996	Ind	F	2	22.70	20.8-24.6	7.5	5-10	0.09	0.09-0.10
Grovers Mill Pond	Ameiurus nebulosus	1997	Ind	F	2	32.60	32.2-33.0	9.5	9-10	0.24	0.08-0.40
Grovers Mill Pond	Enneacanthus gloriosus	1997	Comp	W	6	6.02	5.6-6.5		-	0.05	-
Grovers Mill Pond	Enneacanthus gloriosus	1997	Comp	W	3	6.40	6.1-6.9		-	0.03	-
Grovers Mill Pond	Enneacanthus gloriosus	1997	Comp	W	8	4.86	4.5-5.3		-	0.02	-
Grovers Mill Pond	Esox niger	1997	Ind	F	4	36.05	35.2-37.2	2.5	2-3	0.15	0.12-0.18
Grovers Mill Pond	Lepomis gibbosus	1997	Ind	W	6	9.80	8.7-10.8	1.0	1-1	0.01	0.01-0.02
Grovers Mill Pond	Lepomis gibbosus	1997	Comp	W	2	6.15	6.0-6.3		-	0.01	-
Grovers Mill Pond	Micropterus salmoides	1997	Ind	F	5	34.32	28.0-41.5	4.2	3-6	0.35	0.25-0.47
Grovers Mill Pond	Notemigonus crysoleucas	1997	Ind	W	5	19.18	17.0-21.1	4.0	4-4	0.01	-0.01-0.04
Hainesville Pond	Esox niger	1996	Ind	F	3	37.47	36.5-39.3	3.0	3-3	0.14	0.14-0.15
Hainesville Pond	Micropterus salmoides	1996	Ind	F	3	30.87	30.3-31.3	3.0	3-3	0.19	0.13-0.23

Table 4 (continued). Average and range of mercury concentrations in fish from ANSP studies. Type indicates sample type (individual or composite), $S a$ is the tissue used (fillet or whole body), and N is the number of samples analyzed.

						Total Length (cm)		$\begin{gathered} \text { Age } \\ \text { (years) } \end{gathered}$		Hg Concentration (mg/kg wet weight)	
Water Body	Species	Year	Type	Sa	N	Avg.	Range	Avg.	Range	Avg.	Range
Oak Ridge Reservoir	Ameiurus natalis	1997	Ind	F	1	24.50	24.5	4.0	4	0.25	0.25
Oak Ridge Reservoir	Ameiurus nebulosus	1997	Ind	F	2	33.75	33.0-34.5	4.0	4-4	0.02	0.02-0.02
Oak Ridge Reservoir	Esox niger	1997	Ind	F	4	35.40	25.0-58.0	1.8	1-3	0.28	0.24-0.30
Oak Ridge Reservoir	Lepomis auritus	1997	Ind	W	3	10.83	10.6-11.1	3.0	3-3	0.04	0.03-0.05
Oak Ridge Reservoir	Lepomis gibbosus	1997	Ind	W	3	9.67	9.3-9.9	1.0	1-1	0.03	0.02-0.05
Oak Ridge Reservoir	Lepomis macrochirus	1997	Ind	W	4	9.50	9.0-10.4	1.0	1-1	0.04	0.03-0.05
Oak Ridge Reservoir	Micropterus dolomieu	1997	Ind	F	1	40.20	40.2	4.0	4	0.49	0.49
Oak Ridge Reservoir	Micropterus salmoides	1997	Ind	F	4	43.83	36.8-48.0	7.5	4-11	0.65	0.38-0.89
Oak Ridge Reservoir	Notemigonus crysoleucas	1997	Ind	W	2	13.85	9.6-18.1	2.0	0-4	0.02	-0.03-0.06
Oak Ridge Reservoir	Perca flavescens	1997	Ind	W	2	17.50	16.7-18.3	2.0	2-2	0.04	0.04-0.04
Speedwell Lake	Ameiurus nebulosus	1996	Ind	F	1	21.00	21.0	4.0	4	0.01	0.01
Speedwell Lake	Lepomis macrochirus	1996	Ind	F	2	19.00	18.3-19.7	6.5	6-7	0.12	0.12-0.13
Speedwell Lake	Micropterus salmoides	1996	Ind	F	3	32.03	27.5-36.1	3.7	2-5	0.28	0.10-0.38
Wawayanda Lake	Esox niger	1996	Ind	F	6	39.55	35.0-42.4	3.5	3-4	0.32	0.25-0.44
Northern Midlands Lake - Shawangunk Formation (NMLSSG)											
Crater Lake	Ameiurus nebulosus	1996	Ind	F	1	30.00	30.0	10.0	10	0.39	0.39
Crater Lake	Perca flavescens	1996	Ind	F	3	23.13	19.9-27.9	10.3	8-13	0.44	0.29-0.58
Steenykill Lake	Micropterus salmoides	1996	Ind	F	6	27.90	26.5-29.6	2.2	2-3	0.18	0.15-0.22
Pine Barrens Lake (PBL)											
Butterfly Bogs	Ameiurus nebulosus	1996	Ind	F	1	30.60	30.6	3.0	3	0.08	0.08
Butterfly Bogs	Esox niger	1996	Ind	F	1	33.90	33.9	4.0	4	0.78	0.78
Double Trouble Lake	Corixidae	1996	Comp	W	many		-		-	0.16	-
Double Trouble Lake	Ameiurus natalis	1996	Ind	F	3	27.00	26.1-28.3	9.3	8-12	1.03	0.82-1.18
Double Trouble Lake	Enneacanthus chaetodon	1996	Comp	W	15		3.0-4.4		-	0.10	-
Double Trouble Lake	Enneacanthus chaetodon	1996	Comp	W	3		5.9-6.2		-	0.16	-
Double Trouble Lake	Enneacanthus chaetodon	1996	Comp	W	3	-	5.9-6.7	-	-	0.20	-
Double Trouble Lake	Enneacanthus chaetodon	1996	Comp	W	3		5.9-6.4		-	0.18	-
Double Trouble Lake	Enneacanthus chaetodon	1996	Comp	W	12	-	3.4-4.5		-	0.11	-
Double Trouble Lake	Erimyzon oblongus	1996	Ind	F	2	25.15	22.3-28.0	4.5	3-6	0.38	0.25-0.52
Double Trouble Lake	Esox niger	1996	Ind	W	1	11.20	11.2	0.0	0	0.28	0.28
Double Trouble Lake	Esox niger	1996	Ind	F	1	18.10	18.1	2.0	2	0.74	0.74
Double Trouble Lake	Esox niger	1996	Ind	F	4	48.60	37.7-57.6	9.8	7-11	1.84	1.24-2.30

Table 4 (continued). Average and range of mercury concentrations in fish from ANSP studies. Type indicates sample type (individual or composite), $S a$ is the tissue used (fillet or whole body), and N is the number of samples analyzed.

						Total Length (cm)		$\begin{gathered} \text { Age } \\ \text { (years) } \end{gathered}$		Hg Concentration(mg/kg wet weight)	
Water Body	Species	Year	Type	Sa	N	Avg.	Range	Avg.	Range	Avg.	Range
Success Lake	Esox niger	1996	Ind	F	8	33.30	27.5-40.0	4.0	3-6	0.93	0.63-1.64
Whitesbog Pond	Esox niger	1997	Ind	F	5	32.18	23.0-39.6	2.0	2-2	0.71	0.43-1.02
Pine Barrens River (PBR)											
Ridgeway Branch of Tom's River	Ameiurus nebulosus	1996	Ind	F	4	25.45	22.8-27.0	7.0	3-11	0.83	0.17-1.57
Ridgeway Branch of Tom's River	Esox niger	1996	Ind	F	1	36.00	36.0	4.0	4	1.22	1.22
Unique Lake (UL)											
Greenwood Lake	Alosa pseudoharengus	1996-7	Ind	W	4	15.70	15.0-16.8		-	0.05	0.05-0.07
Greenwood Lake	Lepomis macrochirus	1996-7	Ind	W	4	13.25	13.0-13.6	3.0	3-3	0.02	0.01-0.03
Greenwood Lake	Micropterus salmoides	1996-7	Ind	F	5	35.64	31.4-40.0	4.2	3-7	0.24	0.15-0.40
Greenwood Lake	Morone americana	1996-7	Ind	W	2	17.70	17.2-18.2	2.0	2-2	0.00	-0.01-0.00
Greenwood Lake	Morone americana	1996-7	Ind	F	2	18.75	18.3-19.2	2.0	2-2	0.01	0.00-0.02

Table 5. Percentages of fish within concentration groupings used for consumption advisories by the state Toxics and Biota Committee. High Risk: Pregnant Women, Women Planning Pregnancy Within a Year and Young Children 1: < 0.08ppm; 2: 0.08-0.18 ppm; 0.19-0.54 ppm; > 0.54 ppm . Normal Risk: Other Adults and Adolescents 1: < 0.35ppm; 2: 0.35-0.93 ppm; 0.94-2.81 ppm; > 2.81 ppm .

Water Body			High Risk				Normal Risk				
	Species	Yr.	\mathbf{N}	$\mathbf{1}$	2	3	4	$\mathbf{1}$	2	3	4

Coastal Plain Lake - pH 5 (CPL5)

Malaga Lake	Esox niger	96	5	-	-	-	100	-	40	60	-
Malaga Lake	Micropterus salmoides	96	1		-	-	-	100	-	-	100
Coastal Plain Lake - pH 6 (CPL6)											

Coastal Plain Lake - pH 6 (CPL6)

Cedar Lake	Ameiurus nebulosus	96	1	100	-	-	-	100	-	-	-
Cedar Lake	Esox niger	96	3	-	-	67	33	67	33	-	-
Cedar Lake	Micropterus salmoides	96	3	-	-	33	67	33	67	-	-
De Voe Lake	Ameiurus nebulosus	96	1	-	100	-	-	100	-	-	-
De Voe Lake	Esox niger	96	3	-	33	67	-	100	-	-	-
De Voe Lake	Micropterus salmoides	96	3	-	33	67	-	100	-	-	-
Willow Grove Lake	Ameiurus catus	97	1	-	100	-	-	100	-	-	-
Willow Grove Lake	Ameiurus natalis	97	2	-	-	-	100	-	100	-	-
Willow Grove Lake	Ameiurus nebulosus	97	2	-	-	100	-	100	-	-	-
Willow Grove Lake	Esox niger	97	5	-	-	-	100	-	20	80	-
Willow Grove Lake	Micropterus salmoides	97	1	-	-	-	100	-	-	100	-

Coastal Plain Lake - pH 8 (CPL8)

Sunset Lake	Esox niger	96	1	-	100	-	-	100	-	-	-
Sunset Lake	Lepomis gibbosus	96	1	100	-	-	-	100	-	-	-
Sunset Lake	Lepomis macrochirus	96	2	100	-	-	-	100	-	-	-
Sunset Lake	Micropterus salmoides	96	5	-	40	40	20	60	40	-	-

Cold-water Stream (CWS)

Raritan River, South Br., Clairemont Stretch	Salmo trutta	96	3	100	-	-	-	100	-	-	-
Raritan River, South Br., Clairemont Stretch	Salvelinus fontinalis	96	1	100	-	-	-	100	-	-	-

Delaware River - below Camden (DRBC)

Delaware River - Below Camden	Ictalurus punctatus	96	4	50	25	25	-	75	25	-	-
Delaware River - Below Camden	Morone americana	96	4	25	75	-1	-	100	-1	-1	

Table 5 (continued). Percentages of fish within concentration groupings used for consumption advisories by the state Toxics and Biota Committee. High Risk: Pregnant Women, Women Planning Pregnancy Within a Year and Young Children 1: <0.08ppm; 2: 0.08-0.18 ppm; 0.19-0.54 ppm; > 0.54 ppm . Normal Risk: Other Adults and Adolescents 1: < 0.35ppm; 2: 0.35-0.93 ppm; 0.94-2.81 ppm; > 2.81 ppm .

			High Risk				Normal Risk			
Water Body	Species	Yr. ${ }^{\text {N }}$	1	2	,	4	1	2	3	4

Delaware River - Above Camden	Ictalurus punctatus	96	2		50	50		100			
Delaware River - Above Camden	Morone americana	96	2		100	-		100			
Northern Carbonate Lake (NCARB)											
Echo Lake	Micropterus salmoides	96	4		100	-		100			

Northern Carbonate Lake - Unique Lake (NCARB-UL)

Northern Industrial River (NINDR)

Passaic River at Hatfield Swamp	Ameiurus natalis	96	1		100	-		100			
Passaic River at Hatfield Swamp	Lepomis gibbosus	96	2		100	-		100	-	-	
Passaic River at Hatfield Swamp	Lepomis macrochirus	96	1		-	100		100			
Passaic River at Hatfield Swamp	Micropterus salmoides	96	3		33	67		67	33	-	
Passaic River at Hatfield Swamp	Pomoxis nigromaculatus	96	4		-	100		100		-	
Pompton River at Lincoln Park	Esox lucius	96	3		33	33	33	33	67		
Pompton River at Lincoln Park	Esox niger	96	1		-	100		100		-	
Pompton River at Lincoln Park	Micropterus salmoides	96	2		-	50	50		100	-	
Pompton River at Lincoln Park	Perca flavescens	96	2		-	100		100	-		
Pompton River at Pequannock River	Ambloplites rupestris	97	3			33	67		100		
Pompton River at Pequannock River	Ameiurus natalis	97	1		-	-	100		100	-	
Pompton River at Pequannock River	Erimyzon oblongus	97	3	67	33	-		100		-	
Pompton River at Pequannock River	Lepomis auritus	97	2			100		50	50		
Pompton River at Pequannock River	Lepomis gibbosus	97	5		60	20	20	60	40	-	
Pompton River at Pequannock River	Micropterus dolomieu	97	4		-		100		25	75	
Pompton River at Pequannock River	Micropterus salmoides	97	2		-		100			100	
Pompton River at Pequannock River	Pomoxis nigromaculatus	97	1			100		100	-	-	
Raritan River at Millstone Creek	Ameiurus nebulosus	96	2	50	50	-		100	-	-	
Raritan River at Millstone Creek	Ictalurus punctatus	96	1		100	-		100		-	
Raritan River at Millstone Creek	Micropterus salmoides	96	4	-	-	100		50	50	-	

Table 5 (continued). Percentages of fish within concentration groupings used for consumption advisories by the state Toxics and Biota Committee.
High Risk: Pregnant Women, Women Planning Pregnancy Within a Year and Young Children 1: <0.08ppm; 2: 0.08-0.18 ppm; 0.19-0.54 ppm; > 0.54 ppm. Normal Risk: Other Adults and Adolescents 1: < 0.35ppm; 2: 0.35-0.93 ppm; 0.94-2.81 ppm; > 2.81 ppm.

				High Risk				Normal Risk			
Water Body	Species	Yr.	N	1	2	3	4	1	2	3	4
Raritan River at Neshanic Station	Ambloplites rupestris	96	1	-	100		-	100	-		
Raritan River at Neshanic Station	Ameiurus natalis	96	2	50	50	-	-	100	-		-
Raritan River at Neshanic Station	Lepomis auritus	96	2	-	100	-	-	100			
Raritan River at Neshanic Station	Micropterus dolomieu	96	1	-	100		-	100			
Raritan River at Neshanic Station	Micropterus salmoides	96	1	-	100		-	100			
Rockaway River near Whippany	Lepomis macrochirus	96	1	-	100	-	-	100	-		
Rockaway River near Whippany	Micropterus salmoides	96	1	-	-	-	100	-	100		-
Rockaway River near Whippany	Pomoxis nigromaculatus	96	1	-		100		100			-

Northern Midland Lake (NML)

Boonton Reservoir	Ameiurus catus	96	1	-	-	100	-		100	-	
Boonton Reservoir	Ameiurus nebulosus	96	2	100	-		-	100	-	-	-
Boonton Reservoir	Micropterus salmoides	96	3	-	-	33	67	33	67	-	
Green Turtle Lake	Esox niger	96	3	-	100	-	-	100	-	-	
Green Turtle Lake	Micropterus salmoides	96	3	-	33	67	-	100	-	-	
Green Turtle Lake	Perca flavescens	96	2	-	100	-	-	100	-	-	
Grovers Mill Pond	Ameiurus nebulosus	97	2	-	50	50	-	50	50	-	
Grovers Mill Pond	Esox niger	97	4	-	100		-	100	-	-	
Grovers Mill Pond	Lepomis gibbosus	97	5	100	-	-	-	100	-	-	
Grovers Mill Pond	Micropterus salmoides	97	5	-		100	-	40	60	-	
Grovers Mill Pond	Notemigonus crysoleucas	97	5	100	-		-	100	-	-	
Hainesville Pond	Esox niger	96	3	-	100		-	100	-	-	
Hainesville Pond	Micropterus salmoides	96	3	-	33	67	-	100	-	-	
Oak Ridge Reservoir	Ameiurus natalis	97	1	-		100	-	100	-	-	
Oak Ridge Reservoir	Ameiurus nebulosus	97	2	100	-		-	100	-	-	
Oak Ridge Reservoir	Esox niger	97	4	-	-	100	-	100	-	-	
Oak Ridge Reservoir	Lepomis auritus	97	3	100	-		-	100	-	-	
Oak Ridge Reservoir	Lepomis gibbosus	97	3	100	-		-	100	-	-	

Table 5 (continued). Percentages of fish within concentration groupings used for consumption advisories by the state Toxics and Biota Committee.
High Risk: Pregnant Women, Women Planning Pregnancy Within a Year and Young Children 1: <0.08ppm; 2: 0.08-0.18 ppm; 0.19-0.54 $\mathrm{ppm} ;>0.54 \mathrm{ppm}$. Normal Risk: Other Adults and Adolescents 1: < 0.35ppm; 2: 0.35-0.93 ppm; 0.94-2.81 ppm; > 2.81 ppm .

				High Risk				Normal Risk			
Water Body	Species	Yr.	N	1	2	3	4	1	2	3	4
Oak Ridge Reservoir	Lepomis macrochirus	97	4	100				100			
Oak Ridge Reservoir	Micropterus dolomieu	97	1			100			100		
Oak Ridge Reservoir	Micropterus salmoides	97	4			25	75		100		
Oak Ridge Reservoir	Notemigonus crysoleucas	97	2	100				100			
Oak Ridge Reservoir	Perca flavescens	97	2	100				100			
Speedwell Lake	Ameiurus nebulosus	96	1	100				100			
Speedwell Lake	Lepomis macrochirus	96	2		100			100			
Speedwell Lake	Micropterus salmoides	96	3		33	67		33	67		
Wawayanda Lake	Esox niger	96	6			100		67	33		

Northern Midland Lake - Shawangunk Formation (NMLSSG)

Crater Lake	Ameiurus nebulosus	96	1	-	-	100	-	-	100	-	-
Crater Lake	Perca flavescens	96	3	-	-	67	33	33	67	-	-
Steenykill Lake	Micropterus salmoides	96	6	-	50	50	-	100	-	-	-
Pine Barrens Lake (PBL)											
Butterfly Bogs	Ameiurus nebulosus	96	1	-	100	-	-	100	-	-	-
Butterfly Bogs	Esox niger	96	1	-	-	-	100	-	100	-	-
Double Trouble Lake	Ameiurus natalis	96	3	-	-	-	100	-	33	67	-
Double Trouble Lake	Erimyzon oblongus	96	2	-	-	100	-	50	50	-	-
Double Trouble Lake	Esox niger	96	6	-	-	17	83	17	17	67	-
Success Lake	Esox niger	96	8	-	-	-	100	-	63	38	-
Whitesbog Pond	Esox niger	97	3	-	-	33	67	-	100	-	-

Pine Barrens River (PBR)											
Ridgeway Branch of Tom's River	Ameiurus nebulosus	96	4	-	25	25	50	25	25	50	-
Ridgeway Branch of Tom's River	Esox niger	96	1	-	-	-	100	-	-	100	-

Unique Lake (UL)

$|$

chemistry relationships, which can be used to predict mercury concentrations in different types of sites. These analyses are presented later, incorporating mercury data from the previous ANSP studies.

There was high correlation among the physico-chemical parameters (Tables 6-7), largely reflecting the gradient from soft, low pH sites (e.g., Pine Barrens sites) through hard, high pH sites. Corbin City Impoundment was not included in the correlation analysis, since its extreme values for several parameters (e.g., conductivity, chloride and sulfate) would affect overall correlations among other sites. DOC was negatively correlated with pH , decreasing with increasing pH up to a pH of about 6.5 , with little apparent relationship at higher pH 's. Alkalinity was 0 for the low pH sites and tended to increase with increasing pH . However, there were also low-alkalinity sites of moderate to high pH, such as Assunpink Lake, Saw Mill Pond, Crater Lake, Steenykill Lake, Clinton Reservoir and Split Rock Reservoir. This pattern is related to geological setting, with most of these sites located in sandstone, metamorphic or igneous rocks in the northern part of the state. Conductivity showed high correlation with pH and alkalinity, being lowest in the Pine Barrens and low alkalinity sites. Chloride concentrations tend to vary both with location (e.g., higher near the coast, and northern areas where road salting is more frequent) and land use (higher in urban areas). Chloride concentrations were lowest in sites in the northwestern part of the state (especially Crater Lake). Sulfate concentrations were relatively low in a few lakes in or near the Pine Barrens (e.g., Atlantic City Reservoir), in northwestern lakes, and in some northern lakes (e.g., Green Turtle Pond, Clinton Reservoir, Split Rock Reservoir). Sulfate was highest in the southern Coastal Plain streams and ponds.

Concentrations of Mercury in Fish Most Likely to Be Consumed

Analysis focused on chain pickerel and largemouth bass, since these species are likely to have high bioaccumulation. However, many fish of these species which are caught may be released instead of being consumed. Other species with lower mercury concentrations, but higher frequency of consumption, might pose greater human health risks. Additional analyses were targeted at species more commonly consumed by people. These fish include catfish, bullheads, and a variety of "pan fish", including white and yellow perch, crappies, and sunfish.

In general, catfish (white and channel) bioaccumulate mercury more slowly than piscivores such as bass and pickerel (e.g., ANSP 1994a). However, because these species are long-lived, moderately high concentrations were found in some specimens from this study (Table 3) or from the previous studies (ANSP 1994a, b c; Appendix Table A-2). Concentrations greater than $0.50 \mathrm{mg} / \mathrm{kg}$ wet weight were found in a large specimen of white catfish from Boonton Reservoir $0.54 \mathrm{mg} / \mathrm{kg}$ wet weight), and in two specimens analyzed in the 1992-1993 screening study ($0.72 \mathrm{mg} / \mathrm{kg}$ wet weight in a very large channel catfish from the Delaware and Raritan Canal and $0.58 \mathrm{mg} / \mathrm{kg}$ wet weight in a large white catfish from Budd Lake). Other observed values (mostly from specimens from the Delaware River and tributaries) were less than $0.30 \mathrm{mg} / \mathrm{kg}$ wet weight.

Yellow bullhead were collected mainly from low pH sites, while brown bullhead were more typical of higher pH sites. The two species were collected together at few sites (Oak Ridge

Table 6. Results of water chemistry analyses, by lake.

Waterbody	Avg. pH	Date	pH	$\begin{gathered} \text { Temp., } \mathrm{H}_{2} \mathrm{O} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Conductivity ($\mu \mathrm{mhos}$)	$\begin{gathered} \text { DOC } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	Alkalinity (mg / L)	$\begin{aligned} & \hline \text { Chloride } \\ & (\mathrm{mg} / \mathrm{L}) \end{aligned}$	Sulfate $(\mathrm{mg} / \mathrm{L})$
Alcyon Lake	6.82	7/18/96	7.11	25.7	159.3	3.91	22.55	23.44	12.38
Assunpink Creek - Lower	6.97	11/20/96	7.02	9.1	170	4.88	29.59	25	18.76
Assunpink Lake	7.19	11/20/96	6.88	7.3	85	3.04	3.12	13.54	18.26
Atlantic City Reservoir	5.62	8/22/96	5.30	23.8	46	7.24	2	10.64	4.56
Atlantic City Reservoir	5.62	8/22/96	6.46	26.4	63.4	4.62	2.94	14.58	4.31
Atsion Lake	4.48	7/18/96	4.33	26.8	56.7	27.84	0	8.33	11.56
Atsion Lake	4.48	7/21/96	4.28		57	32.8	0		
Batsto Lake	4.72	7/18/96	4.53	25.6	51.3	15.1	0	8.33	7.2
Big Timber Creek	7.18	12/18/96	7.05	9.4	149	4.62	25.96	16.67	16.87
Boonton Reservoir	7.35	11/27/96	7.35	12.3	190	4	37	32.78	10.74
Budd Lake	8.60	12/12/96	8.64	4.0	210	5.07	31.37	50	10.14
Butterfly Bogs Pond	4.63	11/6/96	5.05	11.5	62				
Butterfly Bogs Pond	4.63	7/15/96	4.21	24.0	68	22.41	0	12.24	8.62
Canistear Reservoir	7.47	10/28/96	7.36	12.6		6.47	24.51	10.5	7.15
Lake Carasaljo	6.77	11/6/96	6.48	9.9	91	7.36	7.29	16.84	11.87
Carnegie Lake	7.40	11/20/96	7.00	8.8	185	4.46	28	27.78	19.27
Cedar Lake	6.51	10/23/96	6.51	13.9	81	4.19	8.82	11.22	9.11
Cranberry Lake	8.08	12/11/96	7.25	3.5	120	4.78	28.12	21.02	9.59
Clementon Lake	6.72	8/22/96	7.13	25.0	96	2.96	10.78	13.02	9.73
Clinton Reservoir	7.11	10/28/96	7.01	14.8		4.58	7	4.5	6.26
Cooper River Park Lake	6.65	12/18/96	6.98	8.4	117.3	5.83	19.39	13.54	14.87
Corbin City Impoundment \#3	6.35	7/18/96	6.02	30.1	4000	15.44	4.9	1375	144.09
Crater Lake	6.92	6/24/96	7.01	21.9	20	1.67	5	0.83	8.1
Crater Lake	6.92	12/11/96	6.82	2.3	24	2.23	3.06	1.63	7.78
Crosswick Creek	7.44	11/20/96	7.28	5.9	142	3.09	32.29	14.29	15.91
Crystal Lake	7.27	11/20/96	7.20	6.2	167	3.23	29	23.4	19.41
Delaware River - Below Camden	7.27	10/24/96	7.14	13.9	174	4.32	32	16.83	16.78
Delaware River - Camden to Trenton	7.28	11/20/96	7.32	5.4	125	2.59	30	13.54	13.95
Delaware River - Trenton to Easton	8.19	11/3/96	7.83	7.3	154	6.36	40.62	12.24	17.25
Delaware River - Easton to Water Gap	7.35	12/12/96	6.92	6.0	104	2.34	26	10.47	10.85

Table 6 (continued). Results of water chemistry analyses, by lake.

Waterbody	Avg. pH	Date	pH	$\begin{gathered} \text { Temp., } \mathrm{H}_{2} \mathrm{O} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Conductivity ($\mu \mathrm{mhos}$)	$\begin{gathered} \mathrm{DOC} \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	Alkalinity (mg / L)	$\begin{aligned} & \hline \text { Chloride } \\ & (\mathrm{mg} / \mathrm{L}) \end{aligned}$	Sulfate (mg/L)
Delaware River - above Water Gap	7.53	6/21/96	7.19		130	2.62	14	9.68	8.05
Delaware River - above Water Gap	7.53	12/11/96	7.03	5.8	60	2.28	11	8.51	7.67
Delaware Raritan Canal	7.90								
Devoe Lake (Spotswood)	6.15	7/22/96	6.15	24.1	138	3.85	2.04	22.96	23.08
Double Trouble Pond	4.96	11/6/96	4.96	12.0	39	5.92	0	5.85	4.56
Dundee Lake	7.70	10/29/96	7.39	12.2	189	9.41	36	32.5	13.93
East Creek Lake	4.96	7/18/96	4.49	31.0	51	17.96	0	8.85	7.09
Echo Lake	7.68	10/28/96	7.68	14.0		7.11	20	14.5	8.66
Evans Pond	6.86	12/18/96	6.94	10.0	182	5.23	26.6	23.13	24.66
Green Turtle Lake	6.42	11/1/96	6.42	9.8	74	2.87	11.22	13.46	6.78
Greenwood Lake	7.09	11/1/96	7.09	10.2	148	3.3	26.02	31.12	8.51
Grovers Mill Pond	5.95	11/20/96	5.95	8.4	160	2.46	14	27.6	15.06
Haddon Lake	7.16	12/18/96	6.90	10.3	211	1.88	31.25	25	19.15
Hainesville Pond	7.16	6/23/96	7.23	21.1	190	6.05	59	25	5.49
Hainesville Pond	7.16	12/11/96	7.08	2.8	63	2.85	17.35	6.91	8.05
Harrisville Lake	4.31	7/18/96	4.39	27.1	47.5	8.43	0	6.25	5.07
Lake Hopatcong	7.59	12/11/96	7.44	3.8	220	3.54	30	51.63	13.95
Lenape Lake	5.03	7/18/96	4.40	25.0	58.6	24.04	0	10.2	9.83
Little Timber Creek	7.16	12/18/96	7.10	9.9	267	3.71	47.96	22.56	39.04
Malaga Lake	4.98	10/23/96	4.98	16.1	47	14.98	0.51	10.2	9.27
Manasquan Reservoir	7.15	11/6/96	6.89	15.2	107	5.35	11	16.5	14.04
Marlton Lake	6.65								
Mary Elmer Lake	8.29	7/17/96	8.29	30.1	107	6.55	13	9.5	10.64
Maskells Mills Lake	5.31	7/17/96	5.62	27.8	66	8.22	1.96	10.94	8.19
Merrill Creek	7.68								
Merrill Creek Reservoir	7.36	12/12/96	7.04	6.2	107	2.23	26.47	9.44	13.78
Mirror Lake	5.18	11/7/96	5.90	12.9	39	8.34	0.98	7.35	8.54
Monksville Reservoir	7.43	10/29/96	7.48	12.9	130	3.65	21.57	23.98	8.33
Mountain Lake	8.20	12/12/96	7.23	4.9	220	2.82	101	14.29	12.78
Mullica River	4.59	7/18/96	4.43	25.7	56.3	26.32	0	10.64	10.68

Table 6 (continued). Results of water chemistry analyses, by lake.

Waterbody	Avg. pH	Date	pH	$\begin{gathered} \text { Temp., } \mathrm{H}_{2} \mathrm{O} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Conductivity ($\mu \mathrm{mhos}$)	$\begin{gathered} \text { DOC } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \text { Alkalinity } \\ \text { (mg / L) } \end{gathered}$	$\begin{aligned} & \hline \text { Chloride } \\ & (\mathrm{mg} / \mathrm{L}) \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Sulfate } \\ \text { (mg / L) } \end{array}$
New Brooklyn Lake	5.60	8/22/96	5.34	21.4	56	18.7	2.94	11.46	8.18
Newton Creek (North Branch)	7.31	12/18/96	7.19	9.2	194	3.29	48.04	14.02	19.71
Newton Lake	7.93	12/18/96	6.88	8.5	125	3.01	22.12	10.11	15.24
Lake Nummy	4.27	7/18/96	4.19	27.1	59.3	24.21	0	8.16	7.89
Oak Ridge Reservoir	7.41	10/28/96	7.42	14.3		5.39	29.59	20.1	8.08
Oak Ridge Reservoir	7.41	5/21/97	7.39	16.9	100	3.22	40.2	18.7	8.06
Oradell Reservoir	7.39	10/31/96	7.39	10.5	270	4.63	64.29	49	13.32
Passaic River at Hatfield Swamp	7.01	7/24/96	7.01	22.0	308	10.86	58	50	17.22
Passaic River at Great Piece	7.29	10/31/96	6.87	13.6	210	10.22	42.86	36	16.42
Pompton Lake	8.64	8/22/96	9.22		428	6.22	68	75.54	14.17
Pompton River at Lincoln Park	7.28	10/31/96	7.28	12.3	230	3.74	43.88	38.5	13.29
Pompton River at Pequannock River	7.40	10/31/96	7.38	12.2	188	4.58	40.82	40.82	13.41
Pompton River at Pequannock River	7.40	5/21/97	7.42	13.7	195	3.55	36.9	39	12.72
Rancocas Creek	6.92	11/20/96	7.06	6.5	140	6.18	18	20.31	21.78
Ridgeway Branch of Tom's River	5.16	7/28/96				19.9	0	10.42	11
Ridgeway Branch of Tom's River	5.16	11/6/96	5.16	10.3	52				
Raritan River at Millstone Creek	7.49	7/23/96	7.49	20.8	234	5.16	56.12	29.59	16.43
Raritan River at Neshanic Station	7.05	12/12/96	7.05	6.4	181	2.01	36.73	27.17	11.69
Raritan River, S. Branch, Clairemont Stretch	8.34	7/23/96	8.34	20.9	250	3.1	62.24	27.34	18.27
Rockaway River	7.35	11/27/96	7.08	12.6	149	5.19	28.43	25.53	10.57
Rockaway, Whippany Rivers	7.42	7/24/96	7.42	21.1	411	4.5	71.57	66.85	24.86
Round Valley Reservoir	8.00	12/13/96	7.51	7.3	110	1.95	32.69	10.42	13.54
Saw Mill Lake	6.90	12/11/96	6.80	1.3	26	2.58	1.92	2.13	7.08
Shadow Lake	7.93	11/6/96	6.90	11.3	220	6.95	25.5	33.16	23.89
Speedwell Lake	7.34	7/22/96	7.34	19.0	350	4.37	50	55.85	16.13
Spring Lake	8.04	11/6/96	7.19	11.7	182	7.03	23.96	33.85	11.18
Split Rock Reservoir	6.92	10/28/96	6.92	16.0	25	5.26	7	6	5.44
Spruce Run Reservoir	7.94	12/12/96	6.96	5.8	130	2.1	21.57	17.44	14.04
Stafford Forge Main Line	4.64								
Steenykill Lake	7.19	12/11/96	7.19	2.1	153	4.23	7	39.58	7.16

Table 6 (continued). Results of water chemistry analyses, by lake.

Waterbody	Avg. pH	Date	pH	$\begin{gathered} \text { Temp., } \mathrm{H}_{2} \mathrm{O} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Conductivity ($\mu \mathrm{mhos}$)	$\begin{gathered} \text { DOC } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	Alkalinity $(\mathrm{mg} / \mathrm{L})$	Chloride (mg / L)	Sulfate $(\mathrm{mg} / \mathrm{L})$
Strawbridge Ponds	6.82	12/18/96	6.78	9.8	223	3.06	17.35	25	44.14
Success Lake	4.37	11/7/96	4.37	19.8	44	13.72	0	8.33	7.47
Sunset Lake	8.84	7/17/96	8.84	30.0	162	4.95	14.71	18	15.37
Sunset Lake	8.84	10/22/96			150	6.33	14.42	20.41	15.59
Swartswood Lake	7.87	12/11/96	7.29	4.1	149	4.52	44.9	17.05	9.63
Tappan Lake	8.01	11/29/96	8.01	5.3	300	5.79	71.87	58.7	13.18
Union Lake	6.74	7/18/96	6.82	28.7	89.2	7.69	7	15.62	7.4
Wading River	4.35	7/18/96	4.21	25.3	53.8	14.02	0	6.5	8.69
Wanaque Reservoir	7.78	10/29/96	7.67	12.9	137	2.87	24	26.02	10.19
Wawayanda Lake	7.87	10/29/96	7.87	10.9	186	8.1	43.14	31.5	7.32
Whitesbog Pond	3.79	7/10/96	3.79		84	42.93	0	7.98	12.2
Whitesbog Pond	3.79	11/6/96	3.79	12.3	67	29.81	0	5.63	11.18
Willow Grove Lake	6.02	7/17/96	6.10	30.1	63	17.42	5	10.5	7.96
Willow Grove Lake	6.02	10/24/96	5.47	13.9	61	11.29	3.5	11.46	8.64
Willow Grove Lake	6.02	5/8/97	6.50	17.0	45	10.32	3	9.7	8.44
Wilson Lake	5.98	7/18/96	5.60	26.5	56.6	14.79	2.94	9.18	8.59
Woodstown Memorial Lake	7.01	7/17/96	7.02	28.9	240	9.95	33	25	27.38

Table 7. Correlations among physico-chemical parameters. Pearson correlations are shown above the diagonal, and Spearman rank correlations are shown below the diagonal. For this analysis, only measurements taken at the same time are included.

	Ave $\mathbf{p H}$	$\mathbf{p H}$	$\ln ($ alkalinity $)$	$\ln (\mathbf{D O C)}$	\ln (chloride)	$\ln ($ sulfate)	$\ln (c o n d u c t i v i t y)$
Ave pH	1.0	0.96	0.88	-0.69	0.37	0.30	0.54
$\mathbf{p H}$	0.88	1.0	0.88	-0.69	0.50	0.36	0.63
\ln (alkalinity)	0.76	0.82	1.0	-0.62	0.66	0.51	0.82
$\ln ($ DOC)	-0.49	-0.46	-0.43	1.0	-0.12	-0.21	-0.29
\ln (chloride)	0.49	0.57	0.71	-0.13	1.0	0.47	0.89
\ln (sulfate)	0.33	0.28	0.50	-0.18	0.53	1.0	0.68
\ln (conductivity)	0.62	0.67	0.84	-0.23	0.89	0.70	1.0

Reservoir in this study, and Batsto Lake and Rockaway River in the 1992-1993 screening study). Concentrations in yellow bullhead were much higher than those in brown bullheads at Oak Ridge Reservoir and Rockaway River at the latter two sites (accounting for age differences), but were similar at Batsto Lake. High concentrations in yellow bullheads (greater than $0.80 \mathrm{mg} / \mathrm{kg}$ wet weight) were seen in Pine Barren lakes, Willow Grove Lake, and the Pompton River at the mouth of the Pequannock River. A concentration of $0.25 \mathrm{mg} / \mathrm{kg}$ wet weight was found in one specimen from Oak Ridge Reservoir. High concentrations in brown bullhead were found only in specimens from Ridgeway Branch, a Pine Barrens site. Otherwise, concentrations greater than $0.12 \mathrm{mg} / \mathrm{kg}$ (between 0.18 and $0.47 \mathrm{mg} / \mathrm{kg}$ wet weight) were found in other relatively low pH sites (Willow Grove Lake, sampled in this study, and Maskell's Mill Pond and Batsto Lake, which were sampled in the 19921993 screening study), Grovers Mill Pond, Crater Lake and some sites sampled in the 1992 study (Little Timber Creek and Haddon Lake in the Delaware Drainage and Lake Dundee, an impoundment of the Passaic River). These higher values for both species are in the range for which consumption advisories for all people were generated in 1994, and many specimens are in the range for which consumption advisories for low risk groups (i.e., concentrations greater than $0.08 \mathrm{mg} / \mathrm{kg}$ wet weight) would be considered.

Three species of sunfish (bluegill, redbreast sunfish, and pumpkinseed), as well as rock bass, were analyzed from various sites. In general, concentrations were low, except for fish from industrial areas. For example, relatively high concentrations were found in rock bass (up to $0.58 \mathrm{mg} / \mathrm{kg}$ wet weight), redbreast sunfish (up to $0.41 \mathrm{mg} / \mathrm{kg}$ wet weight), and pumpkinseed (up to $0.78 \mathrm{mg} / \mathrm{kg}$ wet weight) from the Pompton River at the mouth of the Pequannock River and bluegill from the Passaic River in Hatfield Swamp (up to $0.19 \mathrm{mg} / \mathrm{kg}$ wet weight).

Concentrations in crappies appeared to be less variable than those of sunfish. Low concentrations (maximum of $0.13 \mathrm{mg} / \mathrm{kg}$ wet weight) were seen in the Delaware tributary sites, which were sampled in the 1992-1993 screening study (Newton Lake, Cooper River Park Lake, and Big Timber Creek). Average concentrations of $0.20-0.25 \mathrm{mg} / \mathrm{kg}$ wet weight and maximum observed concentrations of $0.21-0.32 \mathrm{mg} / \mathrm{kg}$ wet weight were seen in Northern industrial areas (sites in the Passaic, Pompton and Rockaway rivers), and Coastal Plain lakes (Maskells Mill Pond, Alcyon Lake, and Strawbridge Pond, which were sampled in the 1992-1994 studies). Concentrations in all fish analyzed were less than those triggering advisories for low risk people, but fish from most sites might trigger advisories for high risk groups.

White and yellow perch were not widespread in collections. White perch typically showed relatively low concentrations (site averages less than or equal to $0.13 \mathrm{mg} / \mathrm{kg}$ wet weight and maximum observed concentration of $0.19 \mathrm{mg} / \mathrm{kg}$ wet weight). Moderately high concentrations were seen in old yellow perch from Crater Lake $(0.29-0.58 \mathrm{mg} / \mathrm{kg})$, and from the Pompton River at Lincoln Park (0.21 to $0.26 \mathrm{mg} / \mathrm{kg}$ wet weight).

Brook, brown and rainbow trout were collected from a few sites. Concentrations were typically low, especially in small trout, which were probably stocked fish with short residence times in the wild. Moderate concentrations were found in rainbow trout (and large lake trout) from Merrill Creek Reservoir in 1992.

Relationship Between Filet and Carcass Concentrations

Separate analyses of fillet and carcass material were done on 33 samples (8 chain pickerel, 10 largemouth bass, 2 brown bullhead, 9 sunfish, crappies and rock bass, 2 chubsuckers, and 2 white perch). These were used to estimate whole body concentrations, and ratios of fillet to whole body concentrations (Table 8). Mercury was not detected in either tissue of the two white perch analyzed. For the other samples, whole body concentrations were lower than fillet concentrations. The ratio of fillet to whole body concentration ranged from 1.17 to 2.18 . Mean values for each species are given in Table 8; because of the skewed distribution of ratio estimates, ranges and medians may be more useful. The ratios tended to be lower for chain pickerel (range 1.17-1.42, median $=1.33$) and creek chubsucker (range 1.33-1.35, median=1.34) than the other species (1.46 for black crappie, 1.47 for rock bass, 1.65 for pumpkinseed, 1.86 for brown bullhead, and 1.88 for bluegill) . Ratios for largemouth bass were variable (range 1.19-2.18; median $=1.65$), although ratios for 8 of the 10 specimens were between 1.49 and 1.77 .

Variation in Mercury Concentrations among Trophic Groups

Analyses of fish from several trophic levels were done on specimens from seven sites. These include sites in the Pine Barrens (Double Trouble), Coastal Plain (Sunset Lake), upland lakes (Grovers Mill Pond, Oak Ridge Reservoir, and Greenwood Lake), and industrial rivers (Passaic River at Hatfield Swamp, and Pompton River at the mouth of the Pequannock). Comparisons of concentrations were based on whole body concentrations, since these are probably more relevant to bioaccumulation ratios, and since fillet samples would have been difficult to obtain on some smaller specimens. The geometric means of the ratios of fillet to whole body (see previous section and Table 9) were used to estimate whole body concentrations for specimens on which only fillet analyses were done. The species and sizes of fish analyzed depended on occurrence at the sites. Trophic groups included piscivores (largemouth bass and chain pickerel), probable omnivores (brown and yellow bullhead), and invertebrate feeders (sunfish, crappies, rock bass, yellow perch, white perch, golden shiner, alewife, and creek chubsucker). These invertebrate feeders differ in feeding habits. Golden shiner and alewife are principally zooplanktivores; golden shiner may eat some algae as well. White perch and yellow perch typically eat a variety of macroinvertebrates, and may eat zooplankton and small fish, as well. Rock bass typically eat macroinvertebrates, especially crayfish, but may eat small fish, as well. The sunfish mainly eat macroinvertebrates, but may eat zooplankton. Crappies typically eat a mix of macroinvertebrates and zooplankton, but may eat small fish. The chubsucker feeds on macroinvertebrates in benthic habitats.

The comparisons of mercury concentrations among trophic groups within lakes (Table 9) shows the general pattern of higher concentrations in piscivores, but there is considerable amongspecies variation within trophic groups. For example golden shiners (mainly zooplanktivorous) had low concentrations in the three lakes from which it was analyzed. Alewife, the other zooplanktivore, had concentrations similar to that of sunfish from the same lake. White perch tended to have lower concentrations than sunfish, yellow perch or other mixed invertebrate feeders.

Table 8. Mercury concentrations in whole body and fillets from specimens with multiple mercury analyses. Fields are estimated whole body concentration of mercury (EWC, mg/kg wet weight), concentration in one or both fillets (FilC), concentration in carcass or carcass and one fillet (CcC), length of the fish (LTL, in cm), weight of the fish (LNW, in g), sample weight of the fillet(s) (FillW), sample weight of the carcass or carcass and one fillet (CcW), estimated ratio of the fillet concentration to whole body concentration (RFW), In(RFW), and proportion of carcass plus fillet sample weights to total body weight (Psmp). The whole body mercury concentration (EWC) is estimated from the carcass and fillet concentrations weighted by the sample weights of each tissue type. Since the quantitated mercury concentration in fillets and carcass of white perch from Greenwood Lake was negative, no meaningful estimate of RFW could be obtained.

Station	Age	LTL	EWC	CcC	FillC	RFW	Ln(RFW)	Psmp	LNW	CcW	FilW
Chain pickerel											
Double Trouble	2	18.1	0.536	0.465	0.743	1.39	0.326	0.94	29.5	20.7	7.13
Whitesbog	2	23.0	0.337	0.309	0.433	1.28	0.250	0.95	70.3	51.8	15.1
	2	32.5	0.647	0.617	0.758	1.17	0.159	0.98	181.6	140.6	37.5
	2	34.3	0.592	0.551	0.737	1.25	0.220	0.97	229.9	174.5	48.8
Grover's Mill Pond	2	35.2	0.112	0.098	0.160	1.42	0.353	0.95	262.3	191.7	57.5
	3	35.3	0.088	0.079	0.121	1.37	0.316	0.96	268.2	202.1	55.9
	2	36.5	0.125	0.111	0.175	1.40	0.339	0.96	248.9	186.8	51.0
	3	37.2	0.132	0.125	0.157	1.19	0.174	0.95	268.2	200.7	55.1
Largemouth bass											
Grover's Mill Pond	4	28.0	0.316	0.279	0.470	1.49	0.398	0.93	318.3	239.5	56.8
	3	31.3	0.114	0.086	0.249	2.18	0.781	0.97	530.2	424.1	88.2
Greenwood Lake	3	31.4	0.118	0.096	0.208	1.77	0.570	0.96	406.2	315.8	75.8
	3	34.3	0.120	0.104	0.179	1.49	0.400	0.96	525.6	398.3	106.7
Grover's Mill Pond	4	35.0	0.230	0.201	0.364	1.58	0.460	0.97	616.6	490.9	104.3
	4	35.8	0.173	0.147	0.296	1.72	0.540	0.96	674.4	537.1	112.0

Table 8 (continued). Mercury concentrations in whole body and fillets from specimens with multiple mercury analyses. Fields are estimated whole body concentration of mercury (EWC, $\mathrm{mg} / \mathrm{kg}$ wet weight), concentration in one or both fillets (FilC), concentration in carcass or carcass and one fillet (CcC), length of the fish (LTL, in cm), weight of the fish (LNW, in g), sample weight of the fillet(s) (FillW), sample weight of the carcass or carcass and one fillet (CcW), estimated ratio of the fillet concentration to whole body concentration (RFW), In(RFW), and proportion of carcass plus fillet sample weights to total body weight (Psmp). The whole body mercury concentration (EWC) is estimated from the carcass and fillet concentrations weighted by the sample weights of each tissue type. Since the quantitated mercury concentration in fillets and carcass of white perch from Greenwood Lake was negative, no meaningful estimate of RFW could be obtained.

Station	Age	LTL	EWC	CcC	FillC	RFW	Ln(RFW)	Psmp	LNW	CcW	FilW
Greenwood Lake	4	36.2	0.090	0.073	0.154	1.72	0.540	0.95	708.6	537.4	138.5
	4	36.3	0.140	0.114	0.241	1.72	0.540	0.97	750.0	573.8	150.2
Greenwood Lake	7	40.0	0.263	0.233	0.398	1.51	0.412	0.98	921.6	732.7	166.2
Grover's Mill Pond	6	41.5	0.328	0.315	0.391	1.19	0.175	0.97	1242.6	996.4	209.1
Brown bullhead											
Grover's Mill Pond	10	32.2	0.246	0.223	0.398	1.62	0.482	0.92	512.1	411.6	61.5
	9	33.0	0.038	0.028	0.079	2.10	0.740	0.95	488.0	375.7	86.9
Pumpkinseed											
Sunset	.	9.4	0.030	0.021	0.042	1.43	0.357	0.91	15.6	$\begin{aligned} & 8.4 \\ & 8 \end{aligned}$	5.70
Passaic at Hatfield Swamp	3	12.4	0.050	0.042	0.084	1.69	0.525	0.95	51.0	39.5	8.80
	3	12.6	0.056	0.048	0.092	1.65	0.503	0.95	45.7	35.6	7.70
Bluegill											
Sunset	.	8.8	0.016	0.008	0.029	1.83	0.603	0.87	14.8	$\begin{aligned} & 8.0 \\ & 6 \end{aligned}$	4.88
	2	11.2	0.027	0.020	0.052	1.93	0.658	0.92	23.0	16.7	4.60

Table 8 (continued). Mercury concentrations in whole body and fillets from specimens with multiple mercury analyses. Fields are estimated whole body concentration of mercury (EWC, mg/kg wet weight), concentration in one or both fillets (FilC), concentration in carcass or carcass and one fillet (CcC), length of the fish (LTL, in cm), weight of the fish (LNW, in g), sample weight of the fillet(s) (FillW), sample weight of the carcass or carcass and one fillet (CcW), estimated ratio of the fillet concentration to whole body concentration (RFW), In(RFW), and proportion of carcass plus fillet sample weights to total body weight (Psmp). The whole body mercury concentration (EWC) is estimated from the carcass and fillet concentrations weighted by the sample weights of each tissue type. Since the quantitated mercury concentration in fillets and carcass of white perch from Greenwood Lake was negative, no meaningful estimate of RFW could be obtained.

Station	Age	LTL	EWC	CcC	FillC	RFW	Ln(RFW)	Psmp	LNW	CcW	FilW
Black crappie											
Passaic at Hatfield Swamp	6	18.1	0.202	0.178	0.295	1.46	0.378	0.95	113.8	85.6	22.4
	7	18.9	0.218	0.189	0.321	1.47	0.387	0.95	103.2	76.2	21.6
Rock bass											
Pompton at Pequannock R.	3	19.2	0.360	0.315	0.543	1.51	0.410	0.92	191.3	141.1	35.1
	4	21.1	0.375	0.336	0.535	1.43	0.356	0.93	205.8	154.8	37.5
Creek chubsucker											
Double Trouble	3	22.3	0.184	0.165	0.249	1.35	0.299	0.95	150.2	109.8	33.2
	6	28.0	0.391	0.352	0.521	1.33	0.289	0.93	278.1	200.6	59.2
White perch											
Greenwood Lake	2	18.3	-0.0048	-0.007	0.004	.	.	0.95	79.6	61.3	14.3
	2	19.2	-0.0045	-0.010	0.019	.	.	0.95	88.7	68.0	16.6

Table 9. Estimated average whole body concentrations of mercury ($\mathrm{mg} / \mathrm{kg}$ wet weight) in specimens from sites with analyses of large and forage fishes. Whole body concentrations estimated from whole body samples, from separate fillet and carcass samples, or from fillet samples and average ratios of fillet to whole body concentrations (see text). Waterbodies are: Double Trouble (DT), Grover's Mill Pond (GMP), Greenwood Lake (GWL), Oak Ridge Reservoir (ORR), Passaic River at Hatfield Swamp (PHS), Pompton River at the mouth of the Pequannock River (PPQ), Sunset Lake (SUN), and Whitebog (WHI).

Species	PresumedAge	WATERBODY							
		DT	GMP	GWL	ORR	PHS	PPQ	SUN	WHI
Piscivores									
Chain pickerel	All	1.08	0.11	-	0.22	-	-	0.069	0.56
	0	0.28							
	1				0.20				
	2-3	0.54	0.11		0.23			0.069	
	7	0.95							
	10-11	1.57							
Largemouth bass	All	-	0.23	0.15	0.40	0.19	0.73	0.19	-
	2					0.12		0.084	
	3-4		0.21	0.12				0.17	
	6-8		0.33	0.26		0.33	0.73		
	9							0.43	
Smallmouth bass	All	-	-	-	0.30	-	0.59	-	-

Forage Fish (feed mainly on macroinvertebrates; possibly some zooplankton and fish)

Rock bass	$4-5$	-	-	-	-	-	0.41	-	-
Yellow perch	2	-	-	-	0.036	-	-	-	-
White perch	All	-	-	-0.006	-	-	-	0.044	-
Black crappie	All	-	-	-	-	0.18	0.16	0.023	-
	$1-2$						0.16	0.023	
	$4-7$					0.18			

Forage fish (feed mainly on macroinvertebrates; some zooplankton)

Redbreast sunfish	All	-	-	-	0.044	-	0.23	-	-
Pumpkinseed	All	-	0.013	-	0.033	0.053	0.21	0.028	-
	0		0.012				0.11		
	1		0.013		0.033		0.14		

Table 9 (continued). Estimated average whole body concentrations of mercury ($\mathrm{mg} / \mathrm{kg}$ wet weight) in specimens from sites with analyses of large and forage fishes. Whole body concentrations estimated from whole body samples, from separate fillet and carcass samples, or from fillet samples and average ratios of fillet to whole body concentrations (see text). Waterbodies are: Double Trouble (DT), Grover's Mill Pond (GMP), Greenwood Lake (GWL), Oak Ridge Reservoir (ORR), Passaic River at Hatfield Swamp (PHS), Pompton River at the mouth of the Pequannock River (PPQ), Sunset Lake (SUN), and Whitebog (WHI).

Species	Presumed Age	WATERBODY							
		DT	GMP	GWL	ORR	PHS	PPQ	SUN	WHI
	2						0.22		
	3					0.053	0.49		
Bluegill	All	-	-	0.017	0.041	0.10	-	0.020	-
	0								
	1				0.041				
	3			0.017					
	4					0.10			
Creek chubsucker	All	0.29	-	-	-	-	0.060	-	-
Black-banded sunfish	All	0.15	-	-	-	-	-	-	-
	a. 1-2	0.10							
	a. 3	0.18							
Bluespotted sunfish	a. 2-3	-	0.036	-	-	-	-	-	-

Forage fish (mainly zooplankton)

Golden shiner	All	-	$\begin{aligned} & 0.007 \\ & 8 \end{aligned}$	-	0.016	-	-	$\begin{aligned} & 0.008 \\ & 5 \end{aligned}$	-
	0-1				-0.025			$\begin{aligned} & 0.008 \\ & 5 \end{aligned}$	
	4				0.056				
Alewife	All	-	-	0.052	-	-	-	-	-
Insect									
Corixidae		0.16	-	-	-	-	-	-	-
Omnivores									
Yellow bullhead	Adult	0.56	-	-	0.14	0.058	0.43	-	-
Brown bullhead	Adult	-	0.14	-	0.012	-	-	-	-

Concentrations in forage species vary with age of fish. As a result, differences in growth rates of forage fish will affect mercury concentrations in food of predators. For example, the Enneacanthus sunfish (black-banded and blue-spotted sunfish) are small species, with maximum sizes of about 8 cm (Jenkins and Burkhead 1994). Examination of scales of some of the Enneacanthus indicated that the larger fish ($6-7 \mathrm{~cm}$) were 3 years old. These fish are comparable in size to young-of-year or yearling Lepomis sunfishes (bluegill, pumpkinseed, and redbreast sunfish), crappies, and perch. Enneacanthus are expected to have higher mercury concentrations than Lepomis of the same size, because of these age differences alone. This pattern was seen for Grovers Mill Pond, where both blue-spotted and pumpkinseed sunfishes were analyzed.

Joint Analysis of 1992-1997 Data

The 1996-1997 study was designed as a supplement to the earlier studies, i.e., sampling priorities were chosen to fill data gaps and provide larger sample sizes for important strata. Thus, joint analysis of all the data provides the best description of statewide patterns of mercury concentrations in fishes. In this section, two types of analyses of statewide patterns are discussed. The first describes among-strata variation in mercury concentrations and variation among waterbodies within strata. Since the strata are defined on the basis of water chemistry, the amongstrata comparisons analyze effects of water chemistry on mercury bioaccumulation by comparison of discrete chemistry classes. The second type of analyses directly use water chemistry data to explain among site variation in mercury concentration.

Mercury concentrations increase with the size and age of fish. Differences in the age and size distribution of fish in samples from different lakes must be accounted for in making comparisons across sites. For all analyses, the relationships between age, length or weight and mercury concentration are modeled by linear regression. Where significant relationships are found, comparisons among sites are done after adjusting for the age or size. This allows comparison of mercury concentration among sites of a standard-sized or standard-age fish.

Adjustment for Fish Size and Comparison among Strata and Sites

In general, mercury concentrations increased with the size and age of the fish (Figs. 2-8), so that size adjustment is needed for among-site comparisons. Adjustment among strata was done using analysis of covariance (ANCOVA), with \ln (age) or \ln (total length) as a covariate, and strata as a discrete (treatment) effect. Sites were nested within strata, to assess variation within strata. This is equivalent to fitting a linear regression between \ln (mercury concentration) and $\ln ($ age $)$ or $\ln ($ size $)$, and comparing strata after adjusting for the linear relationship. Analyses were done for largemouth bass, chain pickerel, and brown bullhead, the three species with moderate-large sample sizes across a number of sites. Because of differences among unique lakes, each unique lake was treated as a separate stratum. Similar analyses of the 1992-1993 screening study data indicated no heterogeneity of slopes of the mercury-size relationships among strata, so only a single slope was estimated for each species.

Figure 2. Log normalized mercury concentration (ppm) vs $\ln ($ Age $)$ for largemouth bass in Pine Barrens and low pH Coastal Plain Lakes.

Figure 3. Log normalized mercury concentration (ppm) vs In (Age) for largemouth bass in moderate pH Coastal Plain Lakes, the Delaware River and Southern Industrial Lakes and Rivers.

Figure 4. Log normalized mercury concentration (ppm) vs In (Age) for largemouth bass in Northern Lakes and Rivers.

Figure 5. Log normalized mercury concentration (ppm) vs In (Age) for largemouth bass in Unique Lakes.

Figure 6. Log normalized mercury concentration (ppm) vs ln (Age) for chain pickerel in Pine Barrens Lakes and Rivers.

Figure 7. Log normalized mercury concentration (ppm) vs $\ln ($ Age) for chain pickerel in Coastal Plains Lakes.

Figure 8. Log normalized mercury concentration (ppm) vs \ln (Age) for chain pickerel in Northern Lakes and Rivers and Unique Lakes.

There were highly significant relationships between $\ln [\mathrm{Hg}]$ and $\ln ($ age $)$ for all three species ($\mathrm{p}<0.0001$). There were also highly significant relationships between $\ln [\mathrm{Hg}]$ and $\ln ($ total length $)$ for largemouth bass and chain pickerel ($\mathrm{p}<0.0001$), but not for brown bullhead. There were highly significant differences among strata for all three species. For chain pickerel, regression using \ln (age) was much better than regression using $\ln (t+t a l ~ l e n g t h), ~ b a s e d ~ o n ~ m o d e l ~ r ~ r ~ . ~ F o r ~ l a r g e m o u t h ~ b a s s, ~$ model fit using \ln (total length) was slightly better ($\mathrm{r}^{2}=0.91$ for model with \ln (total length), strata and site nested within strata) than that using $\ln ($ age $)\left(\mathrm{r}^{2}=0.89\right.$ for the analogous model $)$.

Strata and sites were compared by using the statistical models to predict average mercury concentrations of a standard-aged (age 3) or standard-sized fish (33.4 cm largemouth bass, i.e., the average size of a 3-year old fish). Predictions were made for each stratum and for each site (Table 10). The prediction for each stratum was calculated as the average predicted $\ln (\mathrm{Hg})$ among all sites within the stratum, i.e., all sites were weighted equally in calculating the average. Two sets of predictions were made using length. The first used only the specimens for which ages were also available. This set provides the best comparison of age-adjustment versus length-adjustment. The second set uses all specimens of bass. This provides more accurate length-adjustment, since it is based on more specimens.

For chain pickerel (Table 10), adjusted concentrations decreased along the gradient from the Pine Barrens to more alkaline sites. The highest concentrations were seen in Pine Barrens rivers and lakes and Union Lake, other Coastal Plain sites had intermediate values, and the lowest concentrations were found in northern lakes and rivers, and in Sunset Lake (a eutrophic lake in Southern New Jersey). There was considerable variation among strata, especially in those with higher concentrations. Although they had higher pH, Willow Grove Lake and Lake Malaga had adjusted concentrations typical of Pine Barrens lakes. Wanaque and Monksville reservoirs also had relatively high concentrations.

Largemouth bass showed similar patterns (Table 10), although there were fewer specimens from the low pH sites (where bass are relatively uncommon). Relatively high adjusted concentrations were seen in Atlantic City Reservoir, Manasquan Reservoir, Union Lake, Wanaque Lake and the Pine Barrens and pH 5 Coastal Plain lakes. Intermediate concentrations were seen in northern lakes and Coastal Plain lakes outside the Pine Barrens. The lowest concentrations were seen in higher pH sites (including sites with adjacent carbonate rocks), small Coastal Plain lakes and rivers, and the Delaware River sites. Several sites had high concentrations relative to their strata. As with chain pickerel, bass from Willow Grove Lake and Malaga Lake had adjusted concentrations similar to those of Pine Barrens lakes. Other such sites were Atlantic City Reservoir, Pompton-Lincoln Park (based on age-adjustment), Clinton Reservoir and Monksville Reservoir.

For many strata and individual sites, size-adjusted and age-adjusted concentrations were similar. However, the two types of adjustments produced very different values for some sites, e.g., Union Lake, Marlton Lake, Evans Lake, Pompton-Pequannock, and Rockaway-Whippany, where age-adjusted concentrations were lower than size-adjusted concentrations, and Manasquan Reservoir, Pompton-Lincoln Park, where age-adjusted concentrations were higher. Higher age-adjusted concentrations would be expected from sites where fish grow more slowly than average (i.e., where

Table 10. Station and strata averages of adjusted mercury concentrations (ppm) for chain pickerel, brown bullhead and largemouth bass. Mercury concentrations are adjusted by age (standardized to a three year old fish) for all three species. In addition, mercury concentrations are adjusted to total length (standardized to a 33.4-cm fish) for large mouth bass. Total length adjustments were done using only those fish used in the age adjustment and using all fish.

	Age		Total Length		Total Length (AII)	
	Strata	Lake	Strata	Lake	Strata	Lake
Chain Pickerel						
Pine Barrens River (PBR)	1.27					
Mullica River		1.63				
Ridgeway Branch of Tom's River		0.98				
Wading River		0.81				
Unique Lake (UL)	1.08					
Union Lake		1.08				
Pine Barren Lake (PBL)	0.94					
East Creek Lake		1.83				
Harrisville Lake		1.37				
Lake Nummy		1.36				
Stafford Forge Main Line		0.98				
Batsto Lake		0.86				
Whitesbog Pond		0.84				
Double Trouble Lake		0.80				
Success Lake		0.73				
Butterfly Bogs		0.63				
Lenape Lake		0.63				
Unique Lake (UL)	0.75					
Wanaque Reservoir		0.75				
Coastal Plain Lake - pH 5 (CPL5)	0.60					
Malaga Lake		1.11				
Wilson Lake		0.84				
New Brooklyn Lake		0.73				
Mirror Lake		0.38				
Maskells Mill Lake		0.30				
Coast Plain Lake - pH 7 (CPL7)	0.40					
Assunpink Lake		0.40				
Coastal Plain Lake - pH 6 (CPL6)	0.35					
Willow Grove Lake		1.00				
Clementon Lake		0.39				
Cedar Lake		0.30				
Lake Carasaljo		0.28				
De Voe Lake		0.17				
Northern Midland Lake (NML)	0.28					
Monksville Reservoir		0.71				
Oak Ridge Reservoir		0.46				
Wawayanda Lake		0.28				

Table 10 (continued). Station and strata averages of adjusted mercury concentrations (ppm) for chain pickerel, brown bullhead and largemouth bass. Mercury concentrations are adjusted by age (standardized to a three year old fish) for all three species. In addition, mercury concentrations are adjusted to total length (standardized to a $33.4-\mathrm{cm}$ fish) for large mouth bass. Total length adjustments were done using only those fish used in the age adjustment and using all fish.

	Age		Total Length		Total Length (AII)	
	Strata	Lake	Strata	Lake	Strata	Lake
Green Turtle Lake		0.21				
Grovers Mill Pond		0.18				
Hainesville Pond		0.14				
Northern Warmwater River (NWWR)	0.27					
Rockaway River		0.27				
Unique Lake (UL)	0.27					
Lake Hopatcong		0.27				
Northern Carbonate Lake (NCARB)	0.21					
Cranberry Lake		0.33				
Swartswood Lake		0.14				
Coastal Plain Lake - pH 8 (CPL8)	0.12					
Sunset Lake		0.12				
Brown Bullhead						
Pine Barren River (PBR)	0.22					
Ridgeway Branch of Tom' River		0.22				
Coastal Plain Lake - pH 5 (CPL5)	0.17					
Maskells Mill Lake		0.17				
Pine Barren Lake (PBL)	0.10					
Batsto Lake		0.12				
Butterfly Bogs		0.08				
Coastal Plain Lake - pH 6 (CPL6)	0.06					
Willow Grove Lake		0.17				
De Voe Lake		0.05				
Cedar Lake		0.02				
Northern Industrial River (NINDR)	0.05					
Lake Dundee		0.06				
Raritan River at Millstone Creek		0.04				
Coastal Plain Lake - pH 7 (CPL7)	0.03					
Crystal Lake		0.03				
Northern Midland Lake - Shawangunk Formation (NMLSSG)	0.03					
Crater Lake		0.08				
Saw Mill Lake		0.01				
Northern Warm-water River (NWWR)	0.03					
Rockaway River		0.03				
Southern Industrial Lake (SINDL)	0.03					
Haddon Lake (South Branch Newton)		0.03				

Table 10 (continued). Station and strata averages of adjusted mercury concentrations (ppm) for chain pickerel, brown bullhead and largemouth bass. Mercury concentrations are adjusted by age (standardized to a three year old fish) for all three species. In addition, mercury concentrations are adjusted to total length (standardized to a $33.4-\mathrm{cm}$ fish) for large mouth bass. Total length adjustments were done using only those fish used in the age adjustment and using all fish.

	Age		Total Length		Total Length (All)	
	Strata	Lake	Strata	Lake	Strata	Lake
Coastal Plain River (CPR)	0.02					
Little Timber Creek		0.02				
Southern Industrial River (SINDR)	0.02					
Big Timber Creek		0.03				
Crosswick Creek		0.03				
Newton Creek, North Branch		0.02				
Northern Midland Lake (NML)	0.01					
Grovers Mill Pond		0.04				
Boonton Reservoir		0.01				
Oak Ridge Reservoir		0.01				
Speedwell Lake		0.00				
Largemouth Bass						
Unique Lake (UL)	2.66		1.78		1.70	
Manasquan Reservoir		2.66		1.78		1.70
Unique Lake (UL)	1.17		1.25		1.23	
Union Lake		1.17		1.25		1.23
Pine Barrens Lake (PBL)	0.65		1.08		1.09	
Batsto Lake		0.65		1.08		1.09
Coastal Plain Lake - pH 5 (CPL5)	0.63		0.62		0.65	
Malaga Lake		0.95		1.02		1.03
Maskells Mill Lake		0.72		0.57		0.60
Mirror Lake		0.36		0.42		0.45
Unique Lake (NCARB-UL)	0.57		0.55		0.52	
Wanaque Reservoir		0.57		0.55		0.52
Northern Warm-water River (NWWR)	0.50		0.74		0.79	
Rockaway River		0.50		0.74		0.79
Southern Industrial Lake (SINDL)	0.49		0.49		0.47	
Atlantic City Reservoir		4.36		3.40		3.28
Haddon Lake (South Branch Newton)		0.35		0.37		0.36
Newton Lake		0.08		0.09		0.09
Unique Lake (NCARB-UL)	0.42		0.52		0.49	
Merrill Creek Reservoir		0.42		0.52		0.49
Coastal Plain Lake - pH 6 (CPL6)	0.37		0.46		0.46	
Willow Grove Lake		1.68		1.70		1.71
Marlton Lake		0.66		1.07		1.02
Lake Carasaljo		0.43		0.50		0.47
Alcyon Lake		0.36		0.61		0.64

Table 10 (continued). Station and strata averages of adjusted mercury concentrations (ppm) for chain pickerel, brown bullhead and largemouth bass. Mercury concentrations are adjusted by age (standardized to a three year old fish) for all three species. In addition, mercury concentrations are adjusted to total length (standardized to a $33.4-\mathrm{cm}$ fish) for large mouth bass. Total length adjustments were done using only those fish used in the age adjustment and using all fish.

	Age		Total Length		Total Length (All)	
	Strata	Lake	Strata	Lake	Strata	Lake
Clementon Lake		0.33		0.33		0.33
Cedar Lake		0.32		0.28		0.26
Evans Pond		0.23		0.47		0.54
Strawbridge Ponds		0.17		0.24		0.26
De Voe Lake		0.17		0.15		0.15
Northern Industrial River (NINDR)	0.36		0.47		0.48	
Pompton River at Lincoln Park		0.79		0.52		0.50
Raritan River at Neshanic Station		0.55		0.40		0.51
Passaic River at Great Piece		0.44		0.50		0.50
Passaic River at Hatfield Swamp		0.40		0.43		0.47
Passaic River - Lake Dundee		0.36		0.38		0.40
Pompton River at Pequannock River		0.29		0.81		0.75
Rockaway River near Whippany		0.21		0.63		0.58
Raritan River at Millstone Creek		0.19		0.29		0.27
Unique Lake (NCARB-UL)	0.34		0.26		0.26	
Spruce Run Reservoir		0.34		0.26		0.26
Northern Industrial Lake (NINDL)	0.33		0.37		0.36	
Pompton Lake		0.33		0.37		0.36
Northern Midland Lake (NML)	0.32		0.37		0.29	
Clinton Reservoir		0.54		0.60		0.59
Monksville Reservoir		0.53		0.62		0.61
Canistear Reservoir		0.39		0.38		0.35
Oak Ridge Reservoir		0.33		0.35		0.31
Boonton Reservoir		0.32		0.36		0.33
Grovers Mill Pond		0.27		0.33		0.33
Green Turtle Lake		0.25		0.35		0.37
Speedwell Lake		0.22		0.26		0.27
Hainesville Pond		0.19		0.22		0.23
Northern Midland Lake - Shawangunk Formation (NMLSSG)	0.22		0.26		0.28	
Steenykill Lake		0.22		0.26		0.28
Coastal Plain Lake - pH 8 (CPL8)	0.20		0.20		0.21	
Spring Lake						0.24
Sunset Lake		0.23		0.21		0.20
Shadow Lake		0.17		0.19		0.19
Northern Carbonate Lake (NCARB)	0.20		0.25		0.24	
Mountain Lake		0.29		0.31		0.29
Carnegie Lake		0.24		0.30		0.28
Echo Lake		0.12		0.16		0.16

Table 10 (continued). Station and strata averages of adjusted mercury concentrations (ppm) for chain pickerel, brown bullhead and largemouth bass. Mercury concentrations are adjusted by age (standardized to a three year old fish) for all three species. In addition, mercury concentrations are adjusted to total length (standardized to a $33.4-\mathrm{cm}$ fish) for large mouth bass. Total length adjustments were done using only those fish used in the age adjustment and using all fish.

	Age		Total Length		Total Length (All)	
	Strata	Lake	Strata	Lake	Strata	Lake
Coastal Plain Lake - pH 7 (CPL7)	0.19		0.24		0.23	
Assunpink Lake		0.30		0.27		0.26
Woodstown Memorial Lake		0.19		0.27		0.27
Crystal Lake		0.13		0.18		0.18
Unique Lake (UL)	0.18		0.19		0.19	
Greenwood Lake		0.18		0.19		0.19
Southern Industrial River (SINDR)	0.17		0.16		0.17	
Crosswick Creek		0.31		0.22		0.24
Cooper River Park Lake		0.13		0.15		0.16
Big Timber Creek		0.12		0.12		0.13
Unique Lake (UL)	0.17		0.23		0.22	
Lake Hopatcong		0.17		0.23		0.22
Unique Lake - Unique Lake (NCARB-UL)	0.15		0.23		0.23	
Round Valley Reservoir		0.15		0.23		0.23
Coastal Plain River (CPR)	0.14		0.20		0.24	
Assunpink Creek - Lower		0.14		0.20		0.24
Delaware River (DRET)	0.14		0.15		0.14	
From Trenton to Eaton		0.14		0.15		0.14
Delaware River (DRTS)	0.13		0.14		0.15	
From Camden to Trenton		0.13		0.14		0.15

a fish of average size is older than average), and vice versa. Several of the sites with lower ageadjusted concentrations were represented by a few, small specimens, so the differences between the two adjustments may reflect statistical uncertainty in extrapolation.

Brown bullhead showed similar patterns among strata (Table 10), although concentrations were low and there was little resolution among most strata. The highest concentrations were in Pine Barrens and Coastal Plain pH 5 sites. As with bass and pickerel, concentrations were relatively high in Willow Grove Lake.

The slopes of the mercury-age or mercury-length relationships can be used to predict mercury concentrations in a fish from the adjusted values in Table 10. For example, if the mercury concentration in a 3-year old fish is X and the slope of the $\ln (\mathrm{Hg})-\ln ($ age $)$ relationship is $b_{\text {age }}$, then the predicted mercury concentration in a fish of age N is:

$$
\operatorname{Pred}\left(\mathrm{Hg}_{\text {age }}\right)=\mathrm{Hg}_{\text {age } 3}+\mathrm{b}_{\text {age }} *(\ln \mathrm{~N}-\ln 3) .
$$

Analogously:

$$
\operatorname{Pred}\left(\mathrm{Hg}_{\text {size } \mathrm{Y}}\right)=\mathrm{Hg}_{33.4 \mathrm{~cm}}+\mathrm{b}_{\mathrm{TL}} *(\operatorname{lnN}-\ln 33.4) .
$$

The calculated slopes of the regressions are shown in Table 11. Estimates depend on the exact model used. For largemouth bass, the length slope was 2.60 for a model with strata and site, but 2.70 for a model with strata only. In the next section, models using physico-chemical parameters are calculated (Table 11-15), which also provide estimates of the $\ln (\mathrm{Hg})-\ln ($ age $)$ and $\ln (\mathrm{Hg})-\ln (\mathrm{TL})$ relationships. These are similar to those derived from the models using site and stratum. For example, the length slope from the best model for largemouth bass is 2.62 . For chain pickerel, the age slope from the model with strata and site is 0.74 , that for strata only is 0.61 and the best model using physico-chemical parameters is 0.66 .

Correlation of Mercury Concentrations with Physico-chemical Parameters

The regressions showed clear relationships between mercury concentrations in fish and water chemistry (Tables 11-15). For regressions involving a single parameter and age or length (Table 12), pH , conductivity, alkalinity or DOC were highly significant. The strength of the relationships was approximately similar among the parameters (based on the r^{2}), although there were some differences. Conductivity was the best single predictor for largemouth bass (age or length models) and chain pickerel (age models), and pH was the best predictor for brown bullhead (age models). The significant relationships with all four parameters reflects the high correlation among these parameters (Table 7).

The multiple regression models (stepwise and specification of several parameters) improved model fit, especially for largemouth bass and brown bullhead. Linear regressions with physicochemical parameters, along with age or length (see above), explained a substantial part of the variation in mercury concentrations: the r^{2} for the best stepwise models were $0.78,0.61$ and 0.56 for

Table 11. Summary of ANCOVA or ANOVA statistical analyses of mercury concentrations (as in[mercury concentration, $\mathrm{mg} / \mathrm{kg}$ wet weight]) as functions of strata, lakes nested within strata, age or total length (cm) as a covariate, and physico-chemical parameters as covariates.. N is the number of specimens. N varies among analyses, since not all specimens were aged and physico-chemical data are not present for all sites. r^{2} is the correlation coefficient for the entire model. Entries for separate terms show the p-value associated with each effect. P-values are for type III effects (only one value shown) or type I/type III (where two values shown). Ns indicates a non-significant effect.

	Largemouth Bass		Chain Pickerel	Brown Bullhead
	Age	TL(all)	Age	Age
Number of Specimens	210	252	119	41

Age or TL, Strata and station nested within strata				
r^{2}	0.90	0.90	0.95	0.93
Slope of $\ln (\mathrm{Hg})-\ln ($ Age or TL)	0.74	2.60	0.74	1.35
Age or TL	0.0001	0.0001	0.0001	0.001
Strata	0.0001	0.0001	0.0001	0.0001
Sta(Str)	0.0001	0.0001	0.0001	0.01

Age or TL, and strata				
r^{2}	0.38	0.48	0.71	0.73
Slope of $\ln (\mathrm{Hg})-\ln ($ Age or TL)	0.61	2.70	0.61	1.78
Age or TL	0.0001	0.0001	0.0001	0.0002
Strata	0.0001	0.0001	0.0001	0.0001

Age or TL, strata, and pH				
r^{2}	0.43	0.54	0.71	0.80
Age or TL	0.0001	0.0001	0.0001	0.0036
Strata	0.0001	0.0001	$0.0001 / 0.0$ 014	$0.0001 / 0.01$ 1
pH	0.0001	0.0001	ns	0.0040

Age or TL, strata, and $\ln (D O C)$				
r^{2}	0.46	0.52	0.74	0.74
Age or TL	0.0001	0.0001	0.0001	0.0002
Strata	0.0001	0.0001	0.0001	$0.0001 / \mathrm{ns}$
DOC	0.0001	0.0001	0.0012	ns

Table 11 (continued). Summary of ANCOVA statistical analyses of mercury concentrations (as In[mercury concentration, $\mathrm{mg} / \mathrm{kg}$ wet weight]) as functions of strata, lakes nested within strata, age or total length (cm) as a covariate, and physico-chemical parameters as covariates..N is the number of specimens. N varies among analyses, since not all specimens were aged and physico-chemical data are not present for all sites. r^{2} is the correlation coefficient for the entire model. Entries for separate terms show the p-value associated with each effect. P-values are for type III effects (only one value shown) or type I/type III (where two values shown). Ns indicates a non-significant effect.

	Largemouth Bass			Chain Pickerel
	Age	TL(all)	Age	Age
Number of Specimens	$\mathbf{2 1 0}$	$\mathbf{2 5 2}$	$\mathbf{1 1 9}$	$\mathbf{4 1}$
Age or TL, strata, and ln(conductivity)	0.52	0.61	0.75	0.81
r^{2}	0.0001	0.0001	0.0001	0.0001
Age or TL	0.0001	0.0001	$0.0001 /$ 0.0035	0.0001
Strata	0.0001	0.0001	0.0001	0.0025
Conductivity	0.43	0.56	0.71	0.80
Age or TL, strata, and alkalinity		0.0001	0.0001	0.0079
r^{2}	0.0001	0.0001	0.0001	0.0001
Age or TL			$0.0001 /$	
Strata	0.0001	0.0001	ns	0.0011
Alkalinity			0.0042	

Table 12. Summary of analyses of mercury concentrations as functions of fish length or age, and physicochemical parameters. Unless otherwise labeled, entries are the type III p-values associated with each effect. The column TL is for models using total length, and only specimens for which ages are also available; TL (all) used all specimens.

Model	Largemouth Bass			Chain Pickerel			Brown Bullhead		
	Age	TL	TL(all)	Age	TL	TL(all)	Age	TL	TL (all)
N	228	228	$\begin{gathered} 235- \\ 252 \end{gathered}$	$\begin{gathered} 116- \\ 118 \end{gathered}$	$\begin{gathered} 116- \\ 118 \end{gathered}$	126	41	41	44
1. Best models from stepwise linear regression									
r^{2}	0.46	0.56	0.52	0.78	0.71	0.69	0.61	0.48	
Slope of age or TL	0.84	2.75	2.62	0.66		1.30	1.34		
Age or TL	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	ns	
pH	x	x	x	x	0.06	x	x	x	
DOC	0.0066	0.0002	0.0005	0.0001	0.0001	0.0001	0.0005	0.04	
Alkalinity	sign	sign	x	x	0.0041	0.0001	0.008	0.0001	
Conductivity	0.0001	0.0001	0.0001	0.05	x	x	x	x	
Sulfate	x	x	x	0.0002	0.02	0.0001	sign	x	
Chloride	0.0001	0.0001	0.0001	0.003	0.03	0.10	x	x	
2. With Waterbody Type (WType). Only models with significant waterbody effects shown.									
r^{2}	0.48								0.58
Age or TL	0.0001								ns
WType	0.003								0.04
DOC	0.0002								0.09
Conductivity	0.0001								
Chloride	0.0001								
Alkalinity									0.0001

Table 13. Summary of analyses of mercury concentrations as functions of fish length or age, and physicochemical parameters. Unless otherwise labeled, entries are the type III p-values associated with each effect. The column TL is for models using total length, and only specimens for which ages are also available; TL (all) used all specimens.

Model	Largemouth Bass			Chain Pickerel			Brown Bullhead		
	Age	TL	TL(all)	Age	TL	TL(all)	Age	TL	TL (all)
N	213-	$\begin{aligned} & 213- \\ & 228 \end{aligned}$	$\begin{aligned} & 235- \\ & 252 \end{aligned}$	$\begin{aligned} & 116- \\ & 118 \end{aligned}$	$\begin{aligned} & 116- \\ & 118 \end{aligned}$	126	41	41	44
3. Reduced model with easily measured parameters									
r^{2}		0.40	0.40		0.62	0.64		0.45	0.48
Slope of $\ln (\mathrm{Hg})-\ln (\mathrm{TL})$		2.92	2.84		1.34	1.47			
TL		0.0001	0.0001		0.0001	0.0001		ns	ns
pH		ns	ns		0.0003	0.0001		0.0001	. 0001
Conductivity		0.02	0.0002		0.0001	0.0001		0.09	0.09
4. Model with pH and DOC specified									
r^{2}	0.26	0.44	0.41	0.67	0.60	0.61	0.62		
Age/size	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0007		
pH	0.0015	0.0002	0.0001	0.0001	0.0001	0.0001	0.0001		
DOC	0.0001	0.0001	0.0001	0.0001	0.0001	0.0027	0.03		
5. Model with pH , DOC and waterbody type (Wtype). Only models with significant waterbody type terms shown.									
r^{2}	0.36		0.43				0.62		
Age or TL	0.0001		0.0001				0.0001		
Wtype	0.0001		0.004				0.07		
pH	0.0002		0.0001				0.0001		
DOC	0.0001		0.0001				0.001		

Table 14. Summary of analyses of mercury concentrations as functions of fish length or age, and physicochemical parameters. Unless otherwise labeled, entries are the type III p-values associated with each effect. The column TL is for models using total length, and only specimens for which ages are also available; TL (all) used all specimens.

Model	Largemouth Bass			Chain Pickerel			Brown Bullhead		
	Age	TL	TL(all)	Age	TL	TL(all)	Age	TL	$\begin{gathered} \text { TL } \\ \text { (all) } \end{gathered}$
N	$\begin{aligned} & 213- \\ & 228 \end{aligned}$	$\begin{gathered} 213- \\ 228 \end{gathered}$	$\begin{aligned} & 235- \\ & 252 \end{aligned}$	$\begin{gathered} 116- \\ 118 \end{gathered}$	$\begin{gathered} 116- \\ 118 \end{gathered}$	126	41	41	44
6. Models with single physico-chemical parameter									
r^{2}	0.22		0.37	0.62		0.58	0.56		0.43
Age or TL	0.0001		0.0001	0.0001		0.0001	0.0007		ns
pH	0.0004		0.0001	0.0001		0.0001	0.0001		0.0001
r^{2}	0.22		0.36	0.62		0.50	0.53		0.32
Age or TL	0.0001		0.0001	0.0001		0.0001	0.0001		ns
DOC	0.0001		0.0001	0.0001		0.0001	0.0001		0.0001
r^{2}	0.22		0.38	0.57		0.45	0.46		0.45
Age or TL	0.0001		0.0001	0.0001		0.0001	0.12		ns
Alkalinity	0.0002		0.0001	0.0001		0.0001	0.0001		0.0001
r^{2}	0.28		0.40	0.68		0.58	0.28		0.31
Age or TL	0.0001		0.0001	0.0001		0.0001	ns		0.05
Conductivity	0.0001		0.0001	0.0001		0.0001	0.0084		0.0002
7. Models with pH only									
r^{2}	NA	0.03	0.03	0.45	0.43	NA	0.41	NA	0.44
pH	NA	0.01	0.005	0.0001	0.0001	NA	0.0001	NA	0.0001

Table 15. Summary of analyses of mercury concentrations as functions of fish length or age, and physicochemical parameters. Unless otherwise labeled, entries are the type III p-values associated with each effect. The column TL is for models using total length, and only specimens for which ages are also available; TL(all) used all specimens.

Model	Largemouth Bass			Chain Pickerel			Brown Bullhead		
	Age	TL	TL(all)	Age	TL	TL(all)	Age	TL	TL (all)
N	$213-$	$213-$	$235-$						
228	228	252	$116-$	$116-$	126	41	41	44	
		118							

8. Models with single physico-chemical parameter and waterbody type. Only models with significant waterbody terms shown.

r^{2}	0.32								
Age or TL	0.0001								
Waterbody type 1-3	0.0014								
Conductivity	0.0001								
r^{2}	0.32		0.37			0.52			
Age or TL	0.0001		0.0001			0.0001			
Waterbody type 1-3	0.0001		0.02			0.03			
DOC	0.0001		0.0001			0.0001			
r^{2}	0.26						0.54		
Age or TL	0.0001						0.09		
Waterbody type 1-3	0.002								
Alkalinity	0.004								
r^{2}	0.29	0.23							
Age or TL	0.0001	0.0001							
Waterbody type L/R	0.0001	0.06							
pH	0.0001	0.0002							

chain pickerel, brown bullhead and largemouth bass, respectively. Among the different parameters, DOC was significant in all of the final stepwise models (Table 12). Conductivity, alkalinity, chloride and sulfate were significant in models for one or two of the three species. pH was not significant in the final models for any species, although it was significant by itself for all species.

Models were run using the three most easily measured variables, total length, pH and conductivity. For largemouth bass, the r^{2} for this model was 0.40 compared to 0.52 for the best stepwise model (using all data). This reflects the complexity of the stepwise model for bass, which included DOC and chloride as well as conductivity. For chain pickerel, the "simple" model had an r^{2} of 0.64 , which was similar to the best stepwise model using length (0.69), but less than that of the best overall model (0.78), which included age instead of length. For brown bullhead, the "simple" model was nearly as good as the equivalent model using length, but not as good as the best overall model, which included age.

The differences among the species in the apparent relationships with the physico-chemical parameters partly reflects the range of sites at which the species occurred. The chain pickerel occurred in many low pH sites, as well as some higher pH lakes. It was not present in collections from most rivers outside the Pine Barrens or in many lakes. As a result, mercury concentrations for pickerel can be modeled reasonably well along a single softwater to hardwater gradient. This gradient can be modeled by any of the four parameters ($\mathrm{pH}, \mathrm{DOC}$, alkalinity and conductivity), although other parameters (e.g., sulfate and chloride) improve the relationship.

Largemouth bass and brown bullhead were not found in the sites with the lowest pH , alkalinity, and conductivity, and in few low pH lakes. They were found in a variety of other sites, including many rivers, lakes, urban areas, etc. As a result, the softwater to hardwater gradient was not as strong and single parameter models were not as good as they were for chain pickerel. Concentrations of mercury were generally low for brown bullhead (often near detection levels), so analytical variability may contribute to the low r^{2} for models for this species.

These models can be used to predict tissue concentrations of mercury based on water quality parameters. For the best stepwise models (including only terms with slopes consistent with bioaccumulation relationships) and for the models using easily measured parameters, models are:

Largemouth bass

$$
\begin{array}{ll}
\ln (\mathrm{Hg})=2.82+0.84 * \ln (\text { Age })+0.32 * \ln (\mathrm{DOC})-1.85 * \ln (\text { Cond })+1.23 * \ln (\mathrm{Cl}) & \mathrm{r}^{2}=0.46 \\
\ln (\mathrm{Hg})=-7.04+2.75 * \ln (\mathrm{TL})+0.39 * \ln (\mathrm{DOC})-1.54 * \ln (\text { Cond })+0.89 * \ln (\mathrm{Cl}) & \mathrm{r}^{2}=0.52 \\
\ln (\mathrm{Hg})=-7.71+2.84 * \ln (\mathrm{TL}) & -0.092 * \mathrm{pH}
\end{array} \quad-0.55 * \ln (\text { Cond }) \quad \mathrm{r}^{2}=0.40
$$

Chain pickerel
$\begin{array}{lll}\ln (\mathrm{Hg})=-0.90+0.66 * \ln (\mathrm{Age})+0.39 * \ln (\mathrm{DOC})-0.59 * \ln (\mathrm{Cond}) & -0.84 * \ln (\mathrm{SO} 4)+0.61 * \ln (\mathrm{Cl}) & \mathrm{r}^{2}=0.78 \\ \ln (\mathrm{Hg})=-4.39+1.30 * \ln (\mathrm{TL})+0.45 * \ln (\mathrm{DOC})-0.029 * \ln (\mathrm{Alk}+1)-1.11 * \ln (\mathrm{SO} 4)+0.30 * \ln (\mathrm{Cl}) & \mathrm{r}^{2}=0.69 \\ \ln (\mathrm{Hg})=-1.44+1.47 * \ln (\mathrm{TL}) & -0.27 * \mathrm{pH} & -0.70 * \ln (\mathrm{Cond})\end{array} \quad \mathrm{r}^{2}=0.64$
The physico-chemical parameters do not necessarily show differences between rivers and lakes, which may affect mercury bioaccumulation. To investigate this, waterbody type was used as an explanatory variable along with the other physico-chemical variables. Waterbody type was
significant for few models, and contributed little to explanatory power. Waterbody type was designated by two methods. For the first method, three types were designated: rivers (given a value of 1), narrow, run-of-river impoundments (given a value of 2), and lakes (given a value of 3). This variable was used as a regression variable. The second method divided rivers (value of ' R ') and lakes (value of ' L '), and this variable was used as a class variable. Waterbody type (1-3) was significant in a stepwise model for largemouth bass (with age) and for brown bullhead (with length), but these models were not much better than corresponding models without waterbody type.

The physico-chemical parameters were also used to improve models using the pre-defined sampling strata (Table 11). Single parameters were used as covariates within models with fish size (age or length) as a covariate and strata as a class variable. The analyses show that the physicochemical parameters explain some of the variation in mercury concentrations within strata. For example, the model for largemouth bass using age and strata had an r^{2} of 0.38 , while that using length, strata and conductivity had an r^{2} of 0.52 . The improvement was least for chain pickerel, reflecting the good separation of the primary softwater-hardwater gradient by the different strata. For chain pickerel, pH and alkalinity effected no model improvement, since the strata were designed on the basis of pH variation. Conductivity and DOC did improve model fit somewhat. These variables can explain deviation of sites like Willow Grove Lake, which had mercury concentrations higher than that of other sites in its stratum. Willow Grove Lake has DOC and conductivity near or similar to that of Pine Barrens sites, although its pH was higher (Table 6).

Comparison With Previous Studies of Mercury in New Jersey Fish

Data on mercury in New Jersey and nearby areas are available from several sources and are summarized in Appendix C. Jacangelo (1977) reported results of a study focusing on mercury contamination in New Jersey. Study sites are predominantly in rivers, streams and some small lakes and impoundments. Most samples are from industrial regions, especially in the northeastern part of the state. This emphasis reflects the main concern at that time with point source discharges during that period. As a result, little sampling was done in the larger lakes and acidic sites which showed highest concentrations in the present study. A variety of fish were sampled, with a high proportion of suckers and sunfish. Relatively few large piscivores were collected, although some large pickerel and moderate-sized bass were analyzed. Many samples were composites of fish of roughly similar sizes. Results are somewhat difficult to interpret since there is often relatively large variation among samples within sites, often not clearly related to size of fish. Precise information on date and location of sampling are not given so that some variability may reflect between-year or local spatial variation. In addition, the accuracy and precision of measurement are difficult to assess.

Jacangelo (1977) noted greater frequencies of high mercury concentrations in the industrial rivers in the northeastern part of the state. High concentrations are seen, for example, in the Passaic, Pompton, Pequannock, Rockaway and Whippany rivers in the Passaic Drainage, the Swimming River, and the Millstone, Neshanic, North Branch Raritan and South Branch Raritan rivers in the Raritan Drainage. In general, concentrations were low in a variety of fish from Round Valley Reservoir, the upper Delaware River, and a number of small ponds and tributaries. These results parallel those seen in comparisons of comparable sites in the 1992-1993 screening study.

Concentrations in several of the sites in the Passaic Drainage were higher than expected on the basis of pH group. However, the 1971-1975 analyses show relatively high levels in fish expected to have relatively low bioaccumulation, e.g., moderate-sized sunfish (especially bluegill and pumpkinseed), white suckers, small goldfish, carp and white perch. Relatively high concentrations (up to 0.41 $\mathrm{mg} / \mathrm{kg}$ wet weight) were found in small (presumably young-of-year) alewife and blueback herring from the lower Delaware River. However, there was large variability among herring, with other samples showing very low concentrations. It is plausible that the differences between the earlier and present survey reflect decreases in mercury bioaccumulation related to decreasing discharges. However, without better information on precise site locations, etc., and directly comparable data it is difficult to rule out other explanations (e.g., selection of known "hot spots" in earlier studies).

Ellis et al. (1980) reported on analyses of a suite of metals in New Jersey fish. Sampling was predominantly in estuarine waters, although it included some freshwater sites mainly in the Delaware River. Data summaries are coarse, without separation of data from individual stations, size classes, etc. The main target species, striped bass, eel, white perch and sunfish, were not analyzed in this study, so relatively little direct comparison is possible. As in the present study, concentrations in catfish (presumably channel or white catfish) from the Delaware River were low. Higher concentrations were seen in the Raritan, Passaic and lower Hudson regions. Like Jacangelo, high concentrations were noted in some sunfish samples from the Raritan and Passaic drainages.

Additional data on fish from the Delaware River are available from small datasets from NYDEC (1981), ANSP (1974, 1985), and USFWS (1983). These indicate low concentrations of mercury in a variety of smaller species from the lower river (e.g., black crappie, brown bullhead, white sucker) and in adult American shad from the upper river.

Spotts and Rice (1992) analyzed mercury in fish from 12 Pennsylvania lakes. Lakes were selected which had pHs less than 7 . However, it is difficult to compare these results with those from the present study, since pH data were not compiled (C. Rice, pers. comm.), although data on these lakes may be available. Average concentrations near or greater than $0.5 \mathrm{mg} / \mathrm{kg}$ were seen in chain pickerel from Lake Jean and Lake Black Moshannon and largemouth bass from Sunfish Pond. Data on reservoirs in the upper Delaware Basin are available from NYDEC (1981). Data from Onandaga Lake (NYDEC 1981, 1987), an intensively-studied lake with known point source contamination, are also presented in Appendix C.

Comparison With NJDEP 1994 Study of Mercury in New Jersey Fish

In February 1994, the 1992-1993 ANSP screening study identified mercury concentrations in fish from 55 freshwater lakes, rivers and reservoirs throughout the state. Mercury concentrations in fish collected from 15 of the 55 New Jersey water bodies tested exceeded the U.S. Food and Drug Administration (FDA) 1.0 ppm tolerance level for the protection of human health. As a result, in March 1994 the NJDEP and NJDHSS jointly issued an interim public health notice to all anglers not to eat any largemouth bass, Micropterus salmoides, chain pickerel, Esox niger or yellow bullhead, Ameiurus natalis, from those waterways. The list of the 15 water bodies includes Carnegie Lake (Mercer County), Manasquan Reservoir (Monmouth County), East Creek Lake and Lake Nummy
(Cape May County), New Brooklyn Lake (Camden County), Wilson Lake (Gloucester County), Batsto Lake, Harrisville Lake, Wading River and the Mullica River (Burlington County), Atlantic City Reservoir (Atlantic County), Monksville Reservoir and Wanaque Reservoir (Passaic County), Union Lake (Cumberland County), and Merrill Creek Reservoir (Warren County).

In April 1994, NJDEP resampled the 15 water bodies under the interim public health notice and the results are reported in Appendix D. The objective of this project was to provide the department with additional data to confirm the findings of the 1992-1993 ANSP study. The data were also used in the design of the 1996-1997 ANSP followup study and will be used in future consumption advisories. The NJDEP project included collection of fishes of four trophic levels, including one forage group at each waterbody. A total of 15 gamefish species and 5 forage fish species were represented in this study. All of the gamefish species sampled are considered important for recreational sport fishing and are known to be consumed by New Jersey anglers. The inclusion of these three higher trophic levels and forage fish species in the study design provided varying perspectives of intra- and inter- specific relationships of mercury bioaccumulation in the aquatic system. Where applicable, all gamefish were either at or exceeded the legal size limit established by NJDFGW regulation. Where no species size limit regulation existed, fish sampled were of a size considered "typical" of those taken by anglers for consumption.

Overall, the data generated through this project paralleled the findings of the 1992-1993 ANSP study, where typically the largest specimen of gamefish sampled exhibited the highest mercury concentration. As in the 1992-1993 ANSP study, largemouth bass and chain pickerel were targeted as the top trophic level (TL-1) species at each of the 15 waterbodies. These two species are functionally piscivorous (fish eating) predators, though their diet also consists of invertebrates and amphibians and were identified to have elevated mercury tissue concentrations. Other TL-1 species sampled include smallmouth bass, brown trout, walleye and lake trout. Walleye and lake trout were collected from two separate lakes and each represents a unique top trophic level fishery at that waterbody. White perch, yellow perch, black crappie, bluegill, mud sunfish, and pumpkinseed sunfish comprise the TL-2 trophic level. These species are typically smaller omnivorous gamefish, feeding primarily upon a variety of invertebrates, insects and other fish. The TL-3 group included catfishes and bullheads, which are omnivorous demersal species. These species are widely distributed throughout the state and have similar feeding patterns as TL-2 species, but their diet may also include freshwater mollusks and vegetative matter. The TL-3 species most often collected were brown bullhead, yellow bullhead, white catfish and channel catfish. The TL-2 and the TL-3 species have the highest per capita consumption rate by anglers among New Jersey freshwater fish (NJDFGW, pers. Comm.). Forage fish samples consist of minnow, sucker, and herring species or, where applicable, juvenile specimens of white perch or mud sunfish. The common forage species sampled in this project were alewife, golden shiner, American eel and creek chubsucker.

The highest mean mercury concentrations (Appendix D) identified in the top trophic level species were in largemouth bass ($1.078 \mathrm{mg} / \mathrm{g}$ wet weight) and chain pickerel $(0.777 \mathrm{mg} / \mathrm{g}$ wet weight). The mean results for other top trophic level gamefish include walleye $(0.737 \mathrm{mg} / \mathrm{g}$ wet weight), lake trout ($0.503 \mathrm{mg} / \mathrm{g}$ wet weight) and smallmouth bass $(0.406 \mathrm{mg} / \mathrm{g}$ wet weight). The highest mean value for lower trophic level gamefish were identified in mud sunfish $(1.01 \mathrm{mg} / \mathrm{g}$ wet
weight) from Harrisville Lake. The results for other species within this trophic level include yellow perch ($0.588 \mathrm{mg} / \mathrm{g}$ wet weight), white perch $(0.453 \mathrm{mg} / \mathrm{g}$ wet weight), pumpkinseed sunfish $(0.386$ mg / g wet weight), black crappie ($0.254 \mathrm{mg} / \mathrm{g}$ wet weight) and bluegill sunfish ($0.234 \mathrm{mg} / \mathrm{g}$ wet weight). Mean mercury concentration in bottom dwelling species include yellow bullhead (0.545 mg / g wet weight), brown bullhead ($0.221 \mathrm{mg} / \mathrm{g}$ wet weight), white catfish ($0.300 \mathrm{mg} / \mathrm{g}$ wet weight), channel catfish ($0.225 \mathrm{mg} / \mathrm{g}$ wet weight), and American eel ($1.496 \mathrm{mg} / \mathrm{g}$ wet weight from Atlantic City Reservoir). Forage species were analyzed as whole body individual or five-fish composite samples. The results revealed mean mercury concentrations in composite samples of golden shiner at ($0.368 \mathrm{mg} / \mathrm{g}$ wet weight) and ($0.107 \mathrm{mg} / \mathrm{g}$ wet weight) in individual samples. Mean mercury levels in other forage species include American eel $(0.302 \mathrm{mg} / \mathrm{g}$ wet weight), creek chubsucker (0.228 mg / g wet weight), alewife ($0.132 \mathrm{mg} / \mathrm{g}$ wet weight) and juvenile white perch ($0.052 \mathrm{mg} / \mathrm{g}$ wet weight).

In July 1994, prior to the completion of this NJDEP project, the NJDEP/DHSS rescinded the interim public health notice on the 15 waterbodies for a more comprehensive fish consumption advisory. The NJDEP/DHSS reviewed and statistically evaluated the initial ANSP (1994a) data, and a detailed, risk-based consumption advisory was developed and ultimately adopted. The new consumption advisory recommended restrictive consumption frequencies of both largemouth bass and chain pickerel, for the general population and a high risk sub-group, on both a statewide, regional and lake specific basis (NJDEP 1994).

Collections of chain pickerel and largemouth bass from the same sites in both the NJDEP 1994 and the 1992-1993 ANSP studies allow more detailed comparison of mercury concentrations (Table 16). The observed mercury concentrations for the 1994 NJDEP study were adjusted to the standard size of 33.4 cm , allowing comparison with the adjusted values from the 1992-1993 studies (Table 10 and Table 16). The adjustments were done using the slopes (1.30 for chain pickerel and 2.60 for largemouth bass) of the $\ln (\mathrm{Hg})-\ln$ (total length) relationships derived in the ANCOVA model including \ln (total length), strata and waterbody which were developed for the various ANSP New Jersey studies (see above). The adjusted mercury concentration for a fish of size L is:

$$
\text { Adj } \mathrm{Hg}_{33.4}=\mathrm{HG}_{\mathrm{L}}+\text { Slope }^{*}(\ln (33.4)-\ln (\mathrm{L})) \text {. }
$$

The average adjusted mercury concentrations were generally similar for the lakes sampled in both studies (Table 16), with a few exceptions. For chain pickerel, the averages for the 1994 NJDEP studies at Wilson Lake were higher than 1992-1993 results, while the 1994 averages at Lake Nummy, Wanaque Reservoir and the Mullica River were lower. The difference for the Mullica River may reflect the sampling site. The occurrence of white perch in the 1994 NJDEP samples suggests that sampling occurred in the lower river, while the 1992-1993 sample was taken from the more acid reach below Atsion. For largemouth bass, the average for the 1994 NJDEP analyses at Manasquan Reservoir were considerably lower than the 1992-1993 results.

Table 16. Station averages of adjusted mercury concentrations (ppm) for chain pickerel and largemouth bass for taxa sampled in both the 1992-1993 ANSP screening study and the 1994 NJDEP followup study. Mercury concentrations are adjusted to total length (standardized to a $33.4-\mathrm{cm}$ fish) for largemouth bass. For the 1992-1993 data, adjustments were done using all fish (see Table 10). For the 1994 NJDEP data, adjustments were done using the slope of the $\ln (\mathrm{Hg})-\ln (\mathrm{TL})$ relationship developed using all ANSP samples.

	NJDEP 1994		ANSP 1992-1993	
	Total Length	N	Total Length (all specimens)	N
Largemouth Bass				
Unique Lake (UL)				
Manasquan Reservoir	0.88	5	1.70	7
Unique Lake (UL)				
Union Lake	1.48	4	1.23	6
Pine Barrens Lake (PBL)				
Batsto Lake	1.01	5	1.09	3
Unique Lake (NCARB-UL)				
Wanaque Reservoir	0.38	5	0.52	6
Southern Industrial Lake (SINDL)				
Atlantic City Reservoir	2.47	5	3.28	6
Unique Lake (NCARB-UL)				
Merrill Creek Reservoir	0.55	5	0.49	3
Northern Midland Lake (NML)				
Monksville Reservoir	0.53	4	0.61	3
Northern Carbonate Lake (NCARB)				
Carnegie Lake	0.20	5	0.28	6
Chain Pickerel				
Pine Barrens River (PBR)				
Mullica River	0.47	5	0.94	1
Wading River	0.62	5	0.73	5
Unique Lake (UL)				
Union Lake	0.80	4	0.70	1
Pine Barren Lake (PBL)				
East Creek Lake	0.98	5	1.20	9
Harrisville Lake	1.46	5	1.29	5
Lake Nummy	0.57	5	1.28	1
Batsto Lake	0.54	5	0.53	1
Unique Lake (UL)				
Wanaque Reservoir	0.21	6	0.38	2
Coastal Plain Lake - pH 5 (CPL5)				
Wilson Lake	0.92	6	0.66	4
New Brooklyn Lake	0.35	5	0.41	5

DISCUSSION AND CONCLUSIONS

The results of the 1996-1997 are generally in concordance with the results of the preliminary assessment (ANSP 1994). Major findings are:

1) Relatively high concentrations in fishes from the Pine Barrens. The sites selected for the 1992-1993 screening study were generally in the southern Pine Barrens. The present study analyzed fish from more northern sites as well (Butterfly Bog, Lake Success, Ridgeway Branch, Double Trouble). These showed consistent patterns across the Pine Barrens.
2) Variable concentrations in sites adjacent to the Pine Barrens, with some sites having relatively high concentrations. This pattern was seen in the sites sampled in the 1996-1997 study as well, with relatively high concentrations in some sites (e.g., Willow Grove Lake), and lower concentrations in others (e.g., Cedar Lake). Much of this variation is explained by differences in water chemistry. For example, although pH in Willow Grove lakes was higher than that of most Pine Barrens sites, other parameters were similar.
3) Elevated concentrations in sites in industrial areas in the Northeastern part of the state. Several sites in the Passaic drainage (Passaic River, Pompton River, Rockaway and Whippany Rivers) were sampled in the 1996-1997 study. These showed higher concentrations than would be expected on the basis of water chemistry.
4) Variable concentrations in Piedmont-montane lakes. There was a general relationship between water chemistry and mercury concentrations in fish in these lakes, with higher concentrations in sites with igneous and metamorphic geology, and lower concentrations in sites with carbonaceous rocks in the immediate drainage. Relatively high concentrations were seen in fish from Crater Lake, a site located in the Shawangunk sandstone. However, there was much site-to-site variation not explained by simple geological patterns.

The stratification of New Jersey waterbodies was modified for the 1996-1997 study, to better separate chemical conditions which are expected to affect bioaccumulation. The amount of amongsite variation explained by the stratification indicates its general validity. As noted above, there is still substantial variation among sites within strata, particularly within Piedmont-Montane lakes (Northern-midland lakes) and in sites adjacent to the Pine Barrens. Inclusion of water chemistry and strata in models of mercury concentrations shows that some of the within-stratum variation can be explained by differences in water chemistry. This effect has three components:
a) Given the continuous nature of variation in bioaccumulation, the strata define rather arbitrary distinctions along gradients of water chemistry. Thus, variation within strata partly reflects variation in the chemical factors used to define the strata;
b) Sites may have been misclassified. The strata were defined largely on the basis of $\mathrm{pH} . \mathrm{pH}$ will vary temporally, and values measured at a single time may not be fully representative of long term conditions, which affect bioaccumulation.
c) A variety of factors, which are not encompassed by the stratification, may affect bioaccumulation, so these can create within-stratum variation in mercury. For example, Willow Grove Lake was similar in most water chemistry parameters to Pine Barrens lakes, but had a higher pH . Mercury concentrations in fish from the lake were similar to those of Pine Barrens lakes, and higher than those of similar pH .

Originally, a stratum was designated for a few streams in the Pine Barrens with mixed agricultural and forest land uses, since the water chemistry of these sites may differ from that of Pine Barrens sites. One site from this stratum, Ridgeway Branch, was selected for sampling. However, its water chemistry was similar to that of other Pine Barrens sites, and it was reclassified as a Pine Barrens site. Given the small number of streams in this group and the possibility of spatial variation in water chemistry, inferences about these sites should be based on reach-specific chemical measurements.

Analyses of mercury from fillets (muscle tissue) and carcasses of the same specimens allowed estimation of whole body concentrations and comparisons (Table 14). Among the eight species analyzed, median ratios of fillet to whole body concentrations for each species ranged from 1.33 to 1.88 . Goldstein et al. (1996) compared muscle and fillet concentrations in carp and channel catfish from the Red River of the North, in Minnesota. They found consistent ratios within each of the two species and similar muscle-whole body regressions between the two species. They fit \ln (whole body concentration) to \ln (muscle concentration), producing slightly nonlinear relationships for the two species. Their regressions corresponded to average muscle/whole body ratios of 2.34 for carp and 1.51 for channel catfish.

The analyses of relationships between mercury concentrations and physico-chemical parameters were done to allow prediction of mercury concentration in unsampled sites. This could allow assessments of potential bioaccumulation based on relatively simple water sampling in sites where fish sampling and tissue analysis have not been done. The analyses indicated that a substantial amount of the among-site variation can be explained by simple measurements. pH and conductivity, which can be measured easily in the field, provided good explanatory power. Measurements of alkalinity and DOC increase model fit in several models, and chloride and sulfate were also important for some comparisons.

The results of these regression analyses demonstrate relationships between mercury bioaccumulation and general gradients in alkalinity/pH/conductivity which are concordant with other studies on mercury bioaccumulation (Wiener et al. 1990, Lathrop et al. 1989, Wren and MacCrimmon 1983, Gloss et al. 1990, Sorensen et al. 1990). DOC was also a significant correlate of mercury, as noted in other studies (e.g., Watras et al. 1995b,d) The analyses and others (Parks et al. 1994, Price 1995) also indicate relationships with parameters, such as sulfate and chloride, not strongly correlated with the alkalinity $/ \mathrm{pH} /$ conductivity gradient. Correlations between mercury bioaccumulation and chloride concentrations, e.g., as in this study, may be due to the joint correlation with urbanization, sewage plant effluents, and other point and non-point source inputs of mercury. However, the importance of each variable in the analyses does not necessarily indicate
the relative causal importance of that variable to mercury bioaccumulation. There are several statistical and geochemical factors which affect these relationships:

1) The analyses are based on small numbers of measurements of each parameter (usually one measurement). Tissue concentrations reflect mercury bioaccumulation integrated over long time periods. They may be affected by average conditions of important causal factors, or by episodic extreme conditions. These long term averages or episodic extremes may not be wellmeasured by a few, single point-in-time water samples. Other parameters may be more closely correlated with these long-term average or extreme events, providing better predictive power. For example, a parameter correlated with a causal factor, but showing less temporal variation, may be a better predictor of average values than the a single measurement of the causal factor. For example, pH may show diel variations of several units due to productivity/respiration cycles, decreasing the reliability of a few measurements to estimate typical site levels. Typical values of some parameters may indicate the vulnerability to extreme variation in another parameter. For example, pH fluctuations are expected to be greater in low alkalinity sites, so alkalinity may be a good predictor of extreme values.
2) Similar arguments apply to spatial variation within sites. Mercury bioaccumulation may be regulated by factors within sediments, adjacent wetlands, deep water, etc. (Rudd 1995, Watras et al. 1995c), which may not be well measured by surface water measurements.
3) Relationships between bioaccumulation and chemical parameters may be nonlinear. Without specific nonlinear models to fit, linear modeling is appropriate to determine general relationships. However, deviations from linearity may appear as model noise.
4) Many of the parameters are highly correlated. Thus, results of the analyses are sensitive to small changes in the parameters, the order of introduction of each variable into regression models, etc.
5) The strength of correlations will depend on the range of values of different, measured parameters among the lakes sampled or from which a given species was caught. For example, chain pickerel were caught in many low pH lakes and a few higher- pH lakes. Mercury concentrations in pickerel were strongly related to the single gradient relating to $\mathrm{pH} /$ alkalinity/DOC/conductivity. Models for largemouth bass were more complex, partly because of the rarity of bass at the low pH sites, and the variety of moderate- pH sites at which bass were caught.
6) The strength of correlations will depend on the variation in types of sites sampled and the variation in parameters not measured. For example, patterns of mercury transport and methylation may differ between seepage and drainage lakes (Driscoll et al. 1994), or between shallow lakes and deeper lakes which stratify. Within each type of lake, there may be strong correlations with a single or with a few parameters. However, these relationships may be obscured when date from different types of lakes are analyzed together.
7) Many of the causal factors have multiple effects which may enhance or counteract each other. For example, DOC may enhance bioaccumulation both by stimulating of methylation or mercury and by increasing transport of methylmercury to rivers and lakes. Within rivers and lakes, binding of DOC and mercury may increase or decrease bioavailability of mercury to different consumers. Furthermore, many of the causal factors are correlated in occurrence. For example, Pine Barrens sites are characterized by high DOC (i.e., humic acids) and high amounts of wetland. Because of these effects, complex relationships between potential causal factors and mercury concentrations, as observed in this study, are to be expected.

One of the goals of relating mercury concentrations to water chemistry was to provide a tool for screening lakes for potential mercury problems or for setting advisories on lakes from which no fish have been analyzed. The high correlations suggest that water chemistry data are informative about the likely level of mercury bioaccumulation. The size (length or age) adjusted site means (Table 6) were used as an index of mercury bioaccumulation to investigate simple contingency models (Tables 17, 18). For chain pickerel and largemouth bass, observed relationships between adjusted mercury concentrations and chemical parameters were used to categorize sites on the basis of pairs of water chemistry parameters. Cutpoints between levels of chemical parameters were chosen visually from graphs of relationships. For chain pickerel (Table 17), these categorizations separated lakes of high and low adjusted mercury concentrations. For example, pH and conductivity could be used to separate most lakes, although a few sites (Union Lake, Monksville Reservoir and Wanaque Reservoir) with moderate conductivity and pH had relatively high adjusted mercury concentrations. The success of the categorization is consistent with the high correlations between mercury and the pH , alkalinity, and conductivity gradient found in the regression models. The categorization for largemouth bass (Table 18) was not as good, with water chemistry groups containing fish of a range of adjusted mercury concentrations. This is also consistent with the results of the regression analyses, which found lower total correlation and relationships with a number of parameters. Some sites probably had historical mercury sources which would not be reflected by the water chemistry parameters, so a perfect separation is not expected. These analyses suggest that site water chemistry can provide a good, but not perfect, estimate of the likelihood of high mercury concentrations. Based on this, a monitoring strategy could be sample three types of sites: those identified by water chemistry as having a high probability of high mercury concentrations; sites with other factors which could result in high mercury (e.g., new reservoirs, historical point sources), and sites which are particularly important for fisheries.

In this study, mercury concentrations were contrasted in different species of forage fish in several lakes. Species included zooplanktivores (e.g., golden shiner and alewife), and invertebrate feeders (e.g., sunfish). The comparisons did not show consistent differences among trophic groups other than piscivores. Among zooplanktivores, mercury concentrations were low in golden shiners. However, where analyzed, concentrations in alewife, another zooplanktivore, were similar to those of sunfish from the same site. The lack of strong relationships may be due to coupling of sediment and water mercury by physical and chemical processes, and by trophic links between different food webs. For example, invertebrate feeders may feed on benthic organisms as well as invertebrates

Table 17. Number of sites with adjusted average mercury concentration of chain pickerel within different ranges, for different combinations of measured site water chemistry.

Chain Pickerel						
Conductivity	pH	Mercury Concentration Ranges (ppm)				All
$\mu \mathrm{mhos}$		< 0.36	0.36-0.54	0.54-0.94	> 0.94	
<80	<6	1	1	9	6	17
<80	>6	1	-	-	1	2
> 80	<6	1	-	-	-	1
> 80	> 6	10	3	2	1	16
DOC	SO_{4}	Mer	y Concentr	tion Ranges	pm)	
mg/L	mg / L	<0.36	0.36-0.54	0.54-0.94	>0.94	All
<10	<8.5	4	1	2	2	9
<10	>8.5	9	3	1	-	13
> 10	<13	-	-	8	6	14
> 10	>13	-	-	-	-	0
DOC	Alkalinity	Mer	y Concentr	tion Ranges	pm)	
mg/L	mg / L	< 0.36	0.36-0.54	0.54-0.94	>0.94	All
<10	<	2	2	1	1	6
<10	>5	11	2	2	1	16
> 10	<5	-	-	8	6	14
> 10	>5	-	-	-	-	0

Table 18. Number of sites with adjusted average mercury concentration of largemouth bass within different ranges, for different combinations of measured site water chemistry.

Largemouth Bass						
Conductivity	pH	Mercury Concentration Ranges (ppm)				
$\mu \mathrm{mhos}$		<0.36	0.36-0.54	0.54-0.94	>0.94	AII
<80	<6	-	1	1	3	5
<80	>6	-	1		1	2
>80	<6	1	-	-	-	1
>80	>6	29	11	5	2	47
DOC	SO_{4}	Mercury Concentration Ranges (ppm)				
mg / L	mg / L	<0.36	0.36-0.54	0.54-0.94	>0.94	All
< 4	<13	5	3	-	-	8
<4	> 13	8	2	1	3	14
4-10	<13	9	3	2	1	15
4-10	>13	7	4	2	3	16
> 10	<13	1	1	1	-	3
>10	>13	1	-	1	-	2
DOC	Alkalinity	Mercury Concentration Ranges (ppm)				
mg/L	mg / L	< 0.36	0.36-0.54	0.54-0.94	> 0.94	All
<4	< 5	1	-	-	1	2
<4	>5	12	5	1	2	20
4-10	<	2	1	-	-	3
4-10	>5	14	6	4	4	28
>10	< 5	1	1	1	-	3
>10	>5	1	-	1	-	2

epiphytic on submerged plants. These epiphytic organisms may be more linked to openwater food webs than benthic. Several species of fish, especially bluegill, blue-spotted sunfish (Graham 1989), black crappie, and yellow perch, may feed on zooplankton as well as benthic or epiphytic prey.

This study did document a fish size related effect which can affect bioaccumulation of mercury. "Dwarf" species of sunfish (genus Enneacanthus; blue-spotted and black-banded sunfish) were analyzed from several sites. These species live several years, but reach maximal sizes typical of large young-of-year of Lepomis sunfishes (e.g., bluegill, pumpkinseed and redbreast sunfish). The dwarf sunfish can be important parts of the diet of chain pickerel and other predatory fish. Both Enneacanthus and Lepomis were analyzed from Grover's Mill Pond. For similar-sized fish, concentrations were higher in the blue-spotted sunfish. Bioaccumulation by predatory fish may be increased by the presence of the dwarf sunfish, since these present relatively old (and higher mercury) prey to moderate-sized predatory fish. The dwarf sunfish are the dominant or only sunfish in Pine Barrens lakes, and their presence could be a factor in mercury bioaccumulation in these sites. Since the Pine Barrens lakes have other characteristics enhancing bioaccumulation (high DOC, much
wetland area within their watersheds), the importance of this factor cannot be established. Mercury concentrations of largemouth bass in Grover's Mill Pond were not notably high.

RECOMMENDATIONS FOR FURTHER STUDY

This followup study generally corroborated the findings of the earlier screening study. Together, these studies provide extensive information on mercury in New Jersey freshwater fishes. Future work can focus more narrowly on unresolved issues and on trend analysis. Areas for future work include providing more precise information on regions or taxa which are variable or currently poorly known, sampling over time to determine temporal trends, and investigation of mechanisms of bioaccumulation.

Increasing Precision and Spatial Coverage

Several types of investigations will aid New Jersey in estimating potential risks from mercury bioaccumulation and defining consumption advisories. Sampling of previously unsampled sites or taxa is valuable to identify localities or species with potential high bioaccumulation. More information on correlates of mercury concentration would also improve predictive models, which will aid in identifying potential areas of risk.

1) Waterbodies in strata with variable mercury levels. The analyses of among-site variation show that while broad predictions can be made about mercury bioaccumulation from lake characteristics, there is much variability among sites. This variability probably derives from influences of historical mercury inputs and effects of factors not accounted for in the predictive models. The most critical areas for more work would be in the north part of the state, especially in the northeastern area, where industrial inputs were probably more prevalent. In addition, areas at the edge of the Pine Barrens are relatively variable in the amount of bioaccumulation. In contrast, there was relatively low variability among Pine Barrens sites (most sites having relatively high bioaccumulation), in Coastal Plain streams or lakes outside the Pine Barrens, and in coldwater streams and rivers (with relatively low bioaccumulation).
2) Sampling of poorly characterized strata. Some fish from Crater Lake, in Sussex County, had relatively high mercury concentrations considering their trophic level. Crater Lake was selected as a representative of lakes on the Shawangunk Formation, which are poorly buffered, possibly leading to high bioaccumulation. Further investigation of fish, especially piscivorous fish, from similar lakes is recommended.
3) Sampling of some additional taxa is recommended. Snapping turtles are high trophic level species which are consumed. Eels can be resident in freshwater for a number of years, have a potential for bioaccumulation, and support an important commercial fishery. Sampling of both species is being done as part of ongoing studies by ANSP. These studies can provide information on the need for more intensive sampling.
4) Correlations between mercury concentrations in fish and water quality parameters were established. While strongly significant, there was still substantial variation in mercury concentrations which was not explained by these models. Improvements in these models may
be obtained by more extensive measurements of water quality parameters and by inclusion of additional types of variables. The analysis was based largely on spot sampling of water chemistry which is unable to incorporate seasonal or spatial variation in water quality parameters. More extensive sampling in a few lakes would be valuable in establishing ranges of variability in water chemistry. Such sampling could be especially valuable in lakes at the edge of the Pine Barrens, where considerable seasonal variation is expected, and in northern lakes, especially the larger lakes, where spatial and seasonal variation is expected.

Information on watershed characteristics could be valuable in modeling mercury concentrations. Information such as proportion of wetlands, soil/geology, and land use could be derived from GIS data and would provide information on factors influencing mercury transport and methylation. These variables would supplement the water chemistry parameters.

Information on Temporal Trends in Mercury Concentrations

Analyses of temporal trends in mercury concentrations are important. The time scale of sampling to detect temporal trends depends on the expected rates of change in mercury concentrations. Different rates of change are expected for waterbodies with different sources of mercury, and these differences should be considered in planning subsequent sampling. Comparison of studies conducted in New Jersey during 1992-1997 with studies in the 1970s suggests decreases in mercury concentrations in areas which were affected by point-source contamination. These changes probably result from decreases in inputs, and burial or flushing of mercury from historical contamination. For most waterbodies, atmospheric inputs have been the dominant ultimate sources of mercury. Regulation of anthropogenic sources in recent years have decreased atmospheric emissions of mercury. However, it is currently unknown how fast aquatic systems will respond to such changes. Because of long distance transport and mixing of mercury in the atmosphere, and because of reservoirs of mercury in soils and sediments within watersheds and waterbodies, there may be an appreciable lag between decrease in emissions and decreases in bioaccumulations. However, there have been suggestions that relatively rapid changes may occur, e.g., in locations near industrial areas which have decreased emissions. Thus, trend sampling in the next few years would be important to determine rates of response of aquatic systems to environmental regulation.
5) Monitoring of a small group of lakes over time would be valuable in determining temporal trends in bioaccumulation, e.g., resulting from decreases in atmospheric emissions and deposition. An alternative approach would be to select sites randomly from the existing stratification and look for temporal trends in mean concentrations within strata.
6) Monitoring of atmospheric deposition. There are currently no mercury deposition monitoring sites in New Jersey in the National Atmospheric Deposition Program. Data on atmospheric deposition would important to demonstrate changes in mercury inputs, e.g., resulting from controls on anthropogenic emissions. Such sampling, combined with analyses of mercury in sediment and biota, would be important in understanding the importance of input rates and in-lake processes on mercury bioaccumulation.
7) Sampling of relatively new reservoirs which were previously sampled. High rates of bioaccumulation have been observed in newly impounded reservoirs. Mercury concentrations in fish tissue in such reservoirs tend to decrease over time, though the rate of decrease cannot be generally predicted. In the 1992-1993 study, relatively high concentrations were seen in fish from Manasquan Reservoir and Merrill Creek Reservoir, two young reservoirs. Repeat sampling by NJDEP in Manasquan Reservoir in 1994 did not find as high levels in largemouth bass. Repeat sampling, e.g., at 4- to 6-year intervals, is recommended to follow possible temporal trends in bioaccumulation.
8) Sampling of other sites with high mercury concentrations. Sampling is recommended where historic point sources are likely or known to have been present. Decreases in concentrations may be expected. Repeat sampling at intervals of about 6-10 years is recommended.

Information on Mechanisms Controlling Bioaccumulation

Several of the studies mentioned above will provide information on mechanisms. In particular, relationships between deposition rates and mercury concentrations in fish tissues will be useful in making the link between sources and bioaccumulation. Additional information on processes within waterbodies would also be important.
9) Mercury concentrations in sediments. Information on concentrations of methylmercury in sediments would be useful in establishing the relative importance of sediment methylation as the dominant control of mercury concentrations in higher trophic levels, e.g., relative to trophic relationships controlling bioaccumulation through the food chain. Together with information on deposition rates, this information would provide important information on external and internal processes affecting bioaccumulation.
10) The role of small, relatively long-lived prey (e.g., "dwarf" sunfishes) as forage fishes in Pine Barrens and other systems should be further investigated. Information on ages and agespecific concentrations of these forage fishes, their role in the diets of predators could be used to model the importance of this factor in bioaccumulation.

LITERATURE CITED

The Academy of Natural Sciences of Philadelphia (ANSP). 1974. Delaware River chemical and biological studies for the Chambers Works Plant, E.I. du Pont de Nemours and Company. 83 pp.
\qquad . 1985. Studies to assess accumulation of target compounds by fishes of Schmidt's Lake and Lake Idaline and the Delaware River for the Rohm \& Haas Co. Rept. No. 85-19F. Acad. Nat. Sci. Phila. 330 pp.
\qquad . 1994a. Preliminary assessment of total mercury concentrations in fishes from rivers, lakes and reservoirs of New Jersey. Report to the New Jersey Department of Environmental Protection and Energy, Division of Science and Research. Rept. No. 93-15F. Acad. Nat. Sci. Phila. 92 pp.
. 1994b. Preliminary assessment of mercury in freshwater fish from Camden County, New Jersey. Rept. No. 94-22D. Acad. Nat. Sci. Phila. 21 pp.
. 1994c. Total mercury concentrations in fishes from three Hackensack Water Company reservoirs. Rept. No. 94-16F. Acad. Nat. Sci. Phila. 28 pp.

Allen-Gil, S.M., D.J. Gilroy and L.R. Curtis. 1995. An ecoregion approach to mercury bioaccumulation by fish in reservoirs. Arch. Environ. Contam. Toxic. 28:61-68

Balogh, S. and L. Liang, 1995. Mercury pathways in municipal wastewater treatment plants. Water, Air and Soil Pollut. 80:1181-1190.

Becker, D.S. and G.N. Bigham. 1995. Distribution of mercury in the aquatic food web of Onondaga Lake, New York. Water, Air and Soil Pollut. 80: 563-571.

Bishop, K. Y. Lee, C. Pattersson and B. Allard. 1995. Terrestrial sources of methylmercury in surface waters: the importance of the riparian zone on the Svartberget Catchment. Water, Air and Soil Pollut. 80:4354-444.

Branfireun, B.A., A. Heyes and N.T. Roulet. 1996. The hydrology and methylmercury dynamics of a Precambrian Shield headwater peatland. Wat. Resources Res. 32(6):1785-1794.

CEM Corporation (CEM). 1991. Microwave sample preparation manual. General guidelines for microwave sample preparation. CEM Corporation, Matthews, NC.

Checker, L.B., C.C. Gilmour, J.P. Hurley and D.P. Krabbenhoft. 1998. Mercury methylation in periphyton of the Florida Everglades. American Geophysical Union, Boston. May 1998.

Dohrmann. 1981. DC-80 carbon analyzer instruction manual, Dohrmann Envirotech; Edition 3.

Driscoll, C.T., C. Yan, C.L. Schofield, R. Munson and J. Holsapple. 1994. The mercury cycle and fish in the Adirondack lakes. Env. Sci. Technol. 28(3):136a-143a.

Driscoll, C.T., V. Blette, C. Yan, C.L. Schofield, R. Munson and J. Holsapple. 1995. The role of dissolved organic carbon in the chemistry and bioavailability of mercury in remote Adirondack lakes. Water, Air and Soil Pollut. 80: 499-508.

Ellis, R.H., S.J. Koepp, J. Weis, E.D. Santoro and S.L. Cheng. 1980. A comprehensive monitoring and assessment program for selected heavy metals in New Jersey Aquatic fauna. Rept. to New Jersey Marine Sciences Consortium.

EPMAP (Expert Panel on Mercury atmospheric processes). 1994. Mercury atmospheric processes: A synthesis report. EPRI Rep. TR-104214.

France, R.L. 1995. Differentiation between littoral and pelagic food webs in lakes using stable carbon isotopes. Limnol. Oceanogr. 40(7):1310-1313.

Gagnon, C. and N.S. Fisher. 1997. Bioavailability of sediment-bound methyl and inorganic mercury to a marine bivalve. Env. Sci. Technol 31:993-998.

Gilmour, C.C. and D.G. Capone. 1987. Relationship between Hg methylation and the sulfur cycle in estuarine sediments. Ocean Sciences Abstr. Meet., EOS 68:1718.

Gilmour, C.C. and E.A. Henry. 1991. Mercury methylation in aquatic systems affected by acid deposition. Environ. Pollut. 71:131-169.

Gilmour, C.C., J. Benoit, G.A. Gill and M.C. Stordal. Mercury Methylation and Sulfur Cycling in the Northern Everglades. 1997. Am. Soc. Limnol. Oceanogr., Aquatic Sciences Meeting, Santa Fe, NM, February 1997.

Gloss, S.P., T.M. Grieb, C.T. Driscoll, C.L. Schofield, J.P. Baker, D.H. Landers and D.B. Porcella. 1990. Mercury levels in fish from the Upper Peninsula of Michigan (ELS Subregion 2B) in relation to lake acidity. USEPA Corvallis Env. Res. Lab. Corvallis.

Goldstein, R.M., M.E. Brigham and J.C. Stauffer. 1996. Comparison of mercury concentrations in liver, muscle, whole bodies and composites of fish from the Red River of the North. Can. J. Fisher. Aq. Sci. 53:244-252.

Graham, J.H. 1989. Foraging by sunfishes in a bog lake. Pages 517-527 in R.R. Sharitz and J.W. Gibbons, eds. Freshwater Wetlands and Wildlife. DOE Symposium Series No. 61, CONF8603101, USDOE Office of Scientific and Technical Information, Oak Ridge, TN.

Harju, J.A., V. Kuhnel, D.S. Charlton and J.M. Evans. 1995. Field-based research on elemental mercury spills. Water, Air and Soil Pollut. 80:1191-1197.

Hintelmann, H., P.M. Welbourn and R.D. Evans. 1995. Binding of methylmercury compounds by humic and fulvic acids. Water, Air and Soil Pollut. 80: 1031-1034.

Hurley, J.P., J.M. Benoit, C.L. Babiarz, M.M. Shafer, A.W. Andren, J.R. Sullivan, R. Hammond and D.A. Webb. 1995. Influences of watershed characteristics on mercury levels in Wisconsin Rivers. Environ. Sci. Technol. 29(7):1867-1875.

Jacangelo, D.J. 1977. Mercury in freshwater fish. A reconnaissance survey, status report. New Jersey Dept. Env. Protection, Div. of Fish, Game and Shellfisheries. 19 pp.

Jasinski, Stephen M. 1995. The materials flow of mercury in the United States. Resources, Conservation and Recycling 15:145-179.

Jenkins, R.E. and N.M. Burkhead. 1994. Freshwater fishes of Virginia. American Fisheries Society. Bethesda, MD. 1079 pp.

Keeler, G., G. Glinsorn and N. Pirrone. 1995. Particulate mercury in the atmosphere: Its significance, transport, transformation and sources. Water, Air and Soil Pollut. 80:159-168.

Kidd, K.A., R.H. Hesslein, R.J.P. Fudge and K.A. Hallard. 1995. The influence of trophic level as measured by o15N on mercury concentrations in freshwater organisms. Water, Air and Soil Pollut. 80:1011-1015.

Klein, S.M. and L.A. Jacobs. 1995. Distribution of mercury in the sediments of Onondaga Lake, N.Y. Water, Air and Soil Pollut. 80:1035-1038.

Lathrop, R.C., K.C. Noonan, P.M. Guenther, T.L. Grasino and P.W. Rasmussen. 1989. Mercury levels in walleyes from Wisconsin lakes of different water and sediment chemistry characteristics. Tech. Bull. No. 163. Dept. of Natural Resources, State of Wisconsin, Madison.

Lee, Y.H., K. Bishop, C. Pettersson, A. Iverfeldt and B. Allard. 1995a Subcatchment output of mercury and methylmercury at Svartberget in Northern Sweden. Water, Air and Soil Pollut. 80:455-465.

Lee, Y.H., K. Bishop, H. Hultberg, C. Pettersson, A. Iverfeldt and B. Allard. 1995a Output of methylmercury from a catchment in Northern Sweden. Water, Air and Soil Pollut. 80:477-481.

Leermakers, M, C. Meuleman, and W. Baeyens. 1995. Mercury speciation in the Scheldt estuary. Water, Air and Soil Pollut. 80:641-652.

Matilainen, T. 1995. Involvement of bacteria in methylmercury formulation in anaerobic lake waters. Water, Air and Soil Pollut. 80:757-764.

Morrison, K.A. and N. Therien. 1995. Changes in mercury levels in lake whitefish (Coregonus clupeaformis) and northern pike (Esox lucius) in the LG-2 reservoir since flooding. Water, Air and Soil Pollut. 80:819-828.

New Jersey Department of Environmental Protection and Energy (NJDEPE), Div. Fish, Game and Wildlife. 1992. Places to Fish. List of New Jersey lakes, ponds reservoirs and streams open to public angling. 8 pp . Trenton.

NOAA (National Oceans and Atmospheric Administration). 1988. An historical reconstruction of major pollutant levels in the Hudson-Raritan Basin: 1880-1980. Volume II. Heavy metals and fossil fuels. NOAA Technical Memorandum NOS OMA 43. October 1988.

New York Department of Conservation (NYDEC). 1981. Toxic substances in fish and wildlife, 1979 and 1980 annual reports. Vol. 4, number 1. Division of Fish and Wildlife, Tech. Rept. 81-1 (BEP). 138 pp .
. 1987. Toxic substances in fish and wildlife, analyses since May 1, 1982. Volume 6. Div. of Fish and Wildlife. Tech. Rep. 87-4 (BEP). 182 pp.

Pacyna, J.M. and G.J. Keeler. 1995. Sources of mercury in the Arctic. Water, Air and Soil Pollut. 80:6 21-632.

Parks, J.W., P.C. Craig, and G.W. Ozburn. 1994. Relationships between mercury concentrations in walleye (Stizostedion vitreum) and northern pike (Esox lucius): implications for modeling and biomonitoring. Can. J. Fisher. Aq. Sci. 51:2090-2014.

Pettersson, C, K. Bishop, Y. Lee and B. Allard. 1995. Relations between organic carbon and methylmercury in humic rich surface waters from Svartberget catchment in Northern Sweden. Water, Air and Soil Pollut. 80:971-979.

Pirrone, N., G. Glinsorn and G.J. Keeler. 1995. Ambient levels and dry deposition fluxes of mercury to lakes Huron, Erie and St. Clair. Water, Air and Soil Pollut. 80:179-188.

Porvari, P. and M. Verta. 1995. Methylmercury production in flooded soils: a laboratory study. Water, Air and Soil Pollut. 80:765-773.

Price, A.D. 1995. Water quality and habitat as indicators of mercury concentrations in fish from Arkansas lakes. Poster at Second World Conference of the Society of Ecological Toxicology and Chemistry. Vancouver, B.C. 1995.

Rada, R.G., J.E. Findley and J.G. Wiener. 1986. Environmental fate of mercury discharged into the upper Wisconsin River. Water, Air and Soil Poll. 29:57-76.

RMC. 1992. Merrill Creek Reservoir Project, Aquatic Field Studies. Report of 1992 studies. RMC, Inc. to Philadelphia Electric Co.

Rudd, J.W.M. 1995. Sources of methyl mercury to freshwater ecosystems: a review. Water, Air and Soil Pollut. 80:697-713.

SAS. 1985. SAS User's Guide: Statistics. Version 5 Edition. SAS Institute Inc. Cary, N.C. 956 pp.
St. Louis, V.L., J.W.M. Rudd, C.A. Kelly, and L.A. Barrie. 1995. Wet deposition of methyl mercury in Northwestern Ontario compared to other geographic locations. Water, Air and Soil Pollut. 80:405-414.

St. Louis, V.L., J.W.M. Rudd, C.A. Kelly, K.G. Beaty, R.J. Flett and N.T. Roulet. 1996. Production and loss of methylmercury and loss of total mercury from boreal forest catchments containing different types of wetlands. Environ. Sci. Technol. 30:2719-2729.

Schindler, D.W., K.A. Kidd, D.C.G. Muir and W.L. Lockhart. 1995. The effects of ecosystem characteristics on contaminant distribution in northern freshwater lakes. Sci. Total Env. 160/161:1-17.

Slotton, D.G. , J.E. Reuter and C.R. Goldman. 1995. Mercury uptake patterns of biota in a seasonally anoxic Northern California reservoir. Water, Air and Soil Pollut. 80:841-850.

Sorensen, J.A., G.E. Glass, K.W. Schmidt, J.K. Huber and G.R. Rapp. 1990. Airborne mercury deposition and watershed characteristics in relation to mercury concentrations in water, sediments, plankton, and fish of eighty northern Minnesota lakes. Env. Sci. Techn. 24:17161726.

Spotts, D.E. and C.L. Rice 1992. Mercury concentrations in fish from twelve Pennsylvania lakes. U.S. Fish and Wildl. Serv., PA Field Off., Spec Proj. Rept. 92-2. 15 pp.

Stafford, C.P. and T.A. Haines. 1997. Mercury concentrations in Maine sport fishes. Trans. Amer. Fisher. Soc. 126:144-152.

Stern, A.H. 1993. Re-evaluation of the reference dose for methylmercury and assessment of current exposure levels. Risk Analysis 13(3):355-364.

Toxics in Biota Committee. New Jersey Department of Environmental Protection, New Jersey Department of Health, and New Jersey Department of Agriculture. 1994. Mercury contamination in New Jersey freshwater fish. Report of the Toxics in Biota Committee. July 1994. 88 pp.

United States Environmental Protection Agency (USEPA). 1979. Methods for chemical analysis of water and wastes. EPA-600/4-79-020. 430 pp.
\qquad . 1983. Methods for chemical analysis of water and wastes. Office of Research and Development, USEPA, Cincinnati, OH. EPA-600/4-79-020. 430 pp.
\qquad . 1993a. Methods for the determination of inorganic substances in environmental samples. EPA/600/R-93/100, Office of Research and Development, U.S. EPA, Washington, D.C.
\qquad . 1993b. Risk-Based concentration table, Fourth Quarter 1993. USEPA, Region III. Philadelphia, PA.
\qquad . 1998. Mercury Study Report to Congress. http://www.epa.gov/oar/mercury.html.

United States Fish and Wildlife Service (USFWS). 1983. Concentrations of environmental contaminants in fish from selected waters in Pennsylvania. Draft. 86 pp .

United States Geological Survey (USGS). 1991a. Water Resources Data for New Jersey. Water Year 1991. Vol. 1. Surface Water Data. U.S. Geol. Surv. Water-Data Rep. NJ-91-1. U.S. Dept. Int. Trenton.
. 1991b. Water Resources Data for Pennsylvania. Water Year 1991. Vol. 1. Delaware River Basin. U.S. Geol. Surv. Water-Data Rep. NJ-91-1. 342 pp. U.S. Dept. Int. Lemoyne.
. 1992. Water Resources Data for New Jersey. Water Year 1992. Vol. 1. Surface Water Data. U.S. Geol. Surv. Water-Data Rep. NJ-92-1. 507 pp. U.S. Dept. Int. Trenton.

Verta, M. and T. Matilainen. 1995. Methylmercury distribution and partitioning in stratified Finnish forest lakes. Water, Air and Soil Pollut. 80:585-588.

Wagner, K. 1979. Intensive lake survey of Round Valley Reservoir. Clinton, NJ. NJDEPE Division of Water Resources, Lakes Management Prog. 48 pp.

Wallschlager, D., M.V.M. Desai and R-D. Wilken. 1996. The role of humic substances in the aqueous mobilization of mercury from contaminated floodplain soils. Water, Air and Soil Pollut. 90:507-520.

Wangersky, P.J. 1993. Dissolved organic carbon methods: A critical review. Mar. Chem. 41:61-74
Ward, S.M., R.M. Neumann and R.P. Hanten, Jr. 1997. Assessment of mercury concentrations, bioaccumulation, and biomagnification in Connecticut fishes, with an examination of seasonal variations in mercury concentrations. Rep. To Connecticut Dept. of Environmental Protection. June 1997. 77 pp.

Watras, C.J., K.A. Morrison, and N.S. Bloom 1995a. Mercury in remote Rocky Mountain lakes of Glacier National Park, Montana, in comparison with other temperate North American regions. Can. J. Fisher. Aq. Sci. 52:1220-1228.

Watras, C.J., K.A. Morrison, J.S. Host and Bloom. 1995b. Concentration of mercury species in relationship to other site-specific factors in the surface waters of northern Wisconsin lakes. Limnol. Oceanogr. 40(3):556-565.

Watras, C.J., N.S. Bloom, S.A. Claas, K.A. Morrison, C.C. Gilmour and S.R. Craig. 1995c Methylmercury production in the anoxic hypolimnion of a dimictic seepage lake. Water, Air and Soil Pollut. 80:735-745.

Watras, C.J., K.A. Morrison, and N.S. Bloom. 1995d. Chemical correlates of Hg and methyl-Hg in northern Wisconsin lake waters under ice cover. Water, Air and Soil Pollut. 84:253-267.

Wiener, J.G., R.E. Martini, T.B. Sheffy and G.E. Glass. 1990. Factors influencing mercury concentrations in walleyes in northern Wisconsin lakes. Trans. Amer. Fisher. Soc. 119:862-870.

Wren, C.D. and H.R. MacCrimmon. 1983. Mercury levels in the sunfish, Lepomis gibbosus, relative to pH and other environmental variables of Precambrian lakes. Can. J. Fisher. Aq. Sci. 40:17371744.

Xun, L., N.E. Campbell and J.W. Rudd. 1987. Measurements of specific rates of net methylmercury production in the water column and surface sediments of acidified and circumnneutral lakes. Can. J. Fisher. Aq. Sci. 44:750-757.

Zillioux, E.J., D.B. Porcella and J.M. Benoit. 1993. Mercury cycling and effects in freshwater wetland ecosystems. Env. Tox. and Chem. 12(12):2245-2264

APPENDIX A

Summary data from previous ANSP studies (ANSP 1994a, b, c) on mercury concentrations in freshwater fishes in New Jersey. These data complement data from the 1996 study, as presented in Tables 4 and 5.

Appendix A Table 1. Average and range of mercury concentrations in fish from ANSP studies, 1992-1994. Type indicates sample type (individual or composite), Sa is the tissue used (fillet or whole body), and N is the number of samples analyzed.

Water body	Species	Year	Type	Sa	N	Total Length (cm)		$\begin{gathered} \text { Age } \\ \text { (years) } \end{gathered}$		Hg Concentration (mg/kg wet weight)	
						Avg.	Range	Avg.	Range	Avg.	Range
Brackish Coastal Plain Lake (BCPL)											
Corbin City Impoundment \#3	Ameiurus nebulosus	1992	Ind	F	1	26.70	26.7	4.0	4	0.07	0.07
Coastal Plain Lake - pH 5 (CPL5)											
Maskells Mills Lake	Ameiurus nebulosus	1992	Ind	F	3	27.73	25.4-28.9	5.0	4-7	0.34	0.23-0.47
Maskells Mills Lake	Esox niger	1992	Ind	F	1	28.00	28.0	4.0	4	0.37	0.37
Maskells Mills Lake	Micropterus salmoides	1992	Ind	F	2	29.15	25.9-32.4	1.5	1-2	0.42	0.36-0.48
Maskells Mills Lake	Pomoxis nigromaculatus	1992	Ind	F	2	23.55	20.8-26.3	4.0	2-6	0.25	0.20-0.29
Mirror Lake	Esox niger	1992	Ind	F	1	34.20	34.2	1.0	1	0.17	0.17
Mirror Lake	Micropterus salmoides	1992	Ind	F	2	27.40	26.6-28.2	2.0	2-2	0.27	0.26-0.28
New Brooklyn Lake	Esox niger	1992	Ind	F	5	41.78	18.7-59.7	3.0	1-4	0.65	0.10-1.30
Wilson Lake	Esox niger	1992	Ind	F	4	39.78	34.4-50.6	2.5	1-4	0.80	0.24-1.53
Coastal Plain Lake - pH 6 (CPL6)											
Alcyon Lake	Esox niger	1992	Ind	F	1	44.90	44.9			0.40	0.40
Alcyon Lake	Micropterus salmoides	1992	Ind	F	4	29.53	27.8-33.7	4.3	4-5	0.48	0.33-0.67
Alcyon Lake	Pomoxis nigromaculatus	1992	Ind	F	2	17.00	16.9-17.1	4.5	4-5	0.24	0.19-0.29
Clementon Lake	Esox niger	1992	Ind	F	6	41.12	32.1-48.2	1.7	1-3	0.26	0.14-0.38
Clementon Lake	Micropterus salmoides	1992	Ind	F	2	35.00	34.4-35.6	3.5	3-4	0.39	0.28-0.49
Evans Pond	Micropterus salmoides	1992	Ind	F	2	23.90	20.6-27.2	3.0	2-4	0.24	0.15-0.33
Lake Carasaljo	Esox niger	1992	Ind	F	1	34.90	34.9	3.0	3	0.28	0.28
Lake Carasaljo	Micropterus salmoides	1992	Ind	F	3	40.00	38.5-41.5	6.3	6-7	0.76	0.57-0.90
Marlton Lake	Micropterus salmoides	1992	Ind	F	1	37.30	37.3	8.0	8	1.36	1.36
Strawbridge Ponds	Micropterus salmoides	1992	Ind	F	5	26.94	21.3-33.5	3.0	2-5	0.15	0.08-0.21
Strawbridge Ponds	Pomoxis nigromaculatus	1992	Ind	F	3	14.80	14.3-15.3	6.0	5-7	0.20	0.13-0.24
Coastal Plain Lake - pH 7 (CPL7)											
Assunpink Lake	Esox niger	1992	Ind	F	2	53.10	47.7-58.5	3.5	3-4	0.45	0.43-0.47
Assunpink Lake	Micropterus salmoides	1992	Ind	F	3	39.60	37.3-41.5	4.3	4-5	0.40	0.36-0.45

Appendix A Table 1 (continued). Average and range of mercury concentrations in fish from ANSP studies, 1992-1994. Type indicates sample type (individual or composite), Sa is the tissue used (fillet or whole body), and N is the number of samples analyzed.

Water body	Species	Year	Type	Sa	N	Total Length (cm)		$\begin{gathered} \text { Age } \\ \text { (years) } \end{gathered}$		Hg Concentration (mg/kg wet weight)	
						Avg.	Range	Avg.	Range	Avg.	Range
Crystal Lake	Ameiurus nebulosus	1992	Ind	F	2	19.90	19.8-20.0	3.5	3-4	0.04	0.02-0.05
Crystal Lake	Micropterus salmoides	1992	Ind	F	3	32.03	23.5-42.6	4.3	2-7	0.17	0.09-0.28
Crystal Lake	Pomoxis nigromaculatus	1992	Ind	F	2	19.90	19.1-20.7	4.5	3-6	0.11	0.04-0.18
Woodstown Memorial Lake	Micropterus salmoides	1992	Ind	F	5	32.86	24.5-45.1	5.0	2-9	0.28	0.11-0.50
Woodstown Memorial Lake	Pomoxis nigromaculatus	1992	Ind	F	3	24.77	17.5-37.3	4.0	3-5	0.13	0.08-0.22
Coastal Plain Lake - pH 8 (CPL8)											
Shadow Lake	Micropterus salmoides	1992	Ind	F	4	31.85	29.1-36.7	3.3	2-5	0.18	0.12-0.26
Spring Lake	Micropterus salmoides	1992	Ind	F	3	44.93	37.1-49.9	-	-	0.58	0.21-0.80
Coastal Plain River (CPR)											
Assunpink Creek - Lower	Micropterus salmoides	1992	Ind	F	6	25.85	24.7-27.1	3.2	1-9	0.13	0.07-0.18
Little Timber Creek	Ameiurus nebulosus	1992	Ind	F	2	31.50	29.5-33.5	4.5	4-5	0.04	0.04-0.04
Rancocas Creek	Ictalurus punctatus	1992	Ind	F	1	45.60	45.6	9.0	9	0.11	0.11
Cold-water Stream (CWS)											
Merrill Creek	Oncorhynchus mykiss	1992	Ind	F	2	25.00	24.7-25.3	3.5	2-5	0.06	0.04-0.08
Delaware River - below Camden (DRBC)											
Delaware River - Below Camden	Ictalurus punctatus	1992	Ind	F	1	42.50	42.5	10.0	10	0.28	0.28
Delaware River-Below Camden	Morone saxatilis x chrysops	1992	Ind	F	1	31.20	31.2	3.0	3	0.13	0.13
Delaware River - from Camden to Trenton (DRTS)											
Delaware River - Above Camden	Ameiurus catus	1992	Ind	F	4	39.00	31.3-43.1	10.5	4-16	0.14	0.05-0.27
Delaware River - Above Camden	Ictalurus punctatus	1992	Ind	F	1	51.50	51.5	10.0	10	0.26	0.26
Delaware River - Above Camden	Micropterus salmoides	1992	Ind	F	5	32.08	24.9-42.3	3.4	2-8	0.15	0.07-0.37
Delaware River - from Trenton to Easton (DRET)											
Delaware River - Trenton to Easton	Ictalurus punctatus	1992	Ind	F	3	42.23	37.6-49.7	10.3	8-12	0.22	0.07-0.33
Delaware River - Trenton to Easton	Micropterus dolomieu	1992	Ind	F	7	32.26	24.5-38.7	3.7	2-5	0.13	0.07-0.22
Delaware River - Trenton to Easton	Micropterus salmoides	1992	Ind	F	1	38.20	38.2	5.0	5	0.20	0.20
Delaware River - from Easton to the Water Gap (DRWE)											
Delaware River - above Easton	Ameiurus catus	1992	Ind	F	1	49.50	49.5	17.0	17	0.58	0.58
Delaware River - above Easton	Ictalurus punctatus	1992	Ind	F	2	48.25	45.0-51.5	9.5	8-11	0.18	0.11-0.24

Appendix A Table 1 (continued). Average and range of mercury concentrations in fish from ANSP studies, 1992-1994. Type indicates sample type (individual or composite), Sa is the tissue used (fillet or whole body), and N is the number of samples analyzed.

Water body	Species	Year	Type	Sa	N	Total Length (cm)		$\begin{gathered} \text { Age } \\ \text { (years) } \end{gathered}$		Hg Concentration (mg/kg wet weight)	
						Avg.	Range	Avg.	Range	Avg.	Range
Delaware River - above Easton	Micropterus dolomieu	1992	Ind	F	5	32.70	25.4-41.9	4.4	2-7	0.25	0.14-0.44
Delaware River - above Easton	Stizostedion vitreum	1992	Ind	F	1	30.00	30.0	1.0	1	0.17	0.17
Delaware River - above the Water Gap (DRAG)											
Delaware River - above Water Gap	Esox masquinongy	1992	Ind	F	1	51.40	51.4		-	0.19	0.19
Delaware River - above Water Gap	Ictalurus punctatus	1992	Ind	F	2	59.35	58.1-60.6	10.0	10-10	0.26	0.20-0.32
Delaware River - above Water Gap	Micropterus dolomieu	1992	Ind	F	4	33.35	27.0-39.8	5.3	4-9	0.37	0.29-0.45
Northern Carbonaceous Lake (NCARB)											
Carnegie Lake	Micropterus salmoides	1992	Ind	F	6	39.60	32.3-51.3	6.8	4-11	0.49	0.20-1.07
Cranberry Lake	Esox niger	1992	Ind	F	3	51.60	42.4-56.9	3.0	2-4	0.34	0.27-0.37
Cranberry Lake	Morone saxatilis x chrysops	1992	Ind	F	3	42.40	37.0-52.0	5.0	2-8	0.34	0.29-0.43
Mountain Lake	Micropterus salmoides	1992	Ind	F	3	38.73	31.8-47.0	5.3	3-8	0.50	0.22-0.90
Swartswood Lake	Esox niger	1992	Ind	F	3	41.73	39.6-43.3	2.0	2-2	0.10	0.09-0.12
Swartswood Lake	Micropterus dolomieu	1992	Ind	F	3	34.60	30.8-37.5	4.3	3-6	0.20	0.12-0.29
Northern Carbonaceous Lake - Unique Lake (NCARB-UL)											
Merrill Creek Reservoir	Micropterus salmoides	1992	Ind	F	3	38.60	30.9-43.9	6.3	4-9	0.82	0.29-1.21
Merrill Creek Reservoir	Oncorhynchus mykiss	1992	Ind	F	3	36.07	32.1-38.6	3.0	1-5	0.17	0.14-0.24
Merrill Creek Reservoir	Salvelinus namaycush	1992	Ind	F	4	53.13	51.3-56.4	2.5	2-3	0.67	0.44-0.79
Round Valley Reservoir	Micropterus salmoides	1992	Ind	F	3	32.47	25.2-37.1	5.0	3-6	0.21	0.16-0.24
Round Valley Reservoir	Salvelinus namaycush	1992	Ind	F	3	56.63	40.0-75.5	4.7	3-7	0.11	0.06-0.14
Spruce Run Reservoir	Esox lucius	1992	Ind	F	2	63.70	63.2-64.2	4.0	4-4	0.40	0.39-0.41
Spruce Run Reservoir	Micropterus salmoides	1992	Ind	F	4	34.65	25.2-43.8	2.5	1-5	0.34	0.10-0.64
Spruce Run Reservoir	Morone saxatilis x chrysops	1992	Ind	F	3	36.13	33.1-38.2	2.0	2-2	0.19	0.17-0.21
Wanaque Reservoir	Esox niger	1992	Ind	F	2	47.10	38.7-55.5	4.0	4-4	0.63	0.33-0.93
Wanaque Reservoir	Micropterus dolomieu	1992	Ind	F	2	32.70	27.5-37.9	4.0	4-4	0.43	0.34-0.51
Wanaque Reservoir	Micropterus salmoides	1992	Ind	F	6	39.65	32.8-46.4	5.0	3-7	0.85	0.40-1.18
Northern Industrial Lake (NINDL)											
Pompton Lake	Micropterus salmoides	1992	Ind	F	9	35.62	30.1-45.8	4.8	2-9	0.45	0.22-0.94
Northern Industrial River (NINDR)											

Appendix A Table 1 (continued). Average and range of mercury concentrations in fish from ANSP studies, 1992-1994. Type indicates sample type (individual or composite), Sa is the tissue used (fillet or whole body), and N is the number of samples analyzed.

Water body	Species	Year	Type	Sa	N	Total Length (cm)		$\begin{gathered} \text { Age } \\ \text { (years) } \end{gathered}$		Hg Concentration (mg/kg wet weight)	
						Avg.	Range	Avg.	Range	Avg.	Range
Delaware Raritan Canal	Ictalurus punctatus	1992	Ind	F	1	83.00	83.0	-	-	0.72	0.72
Dundee Lake	Ameiurus nebulosus	1992	Ind	F	2	28.20	27.1-29.3	7.0	7-7	0.20	0.19-0.20
Dundee Lake	Micropterus salmoides	1992	Ind	F	5	34.08	31.1-36.0	4.0	2-6	0.44	0.27-0.62
Passaic River at Great Piece	Micropterus salmoides	1992	Ind	F	6	32.90	29.4-34.5	4.0	3-5	0.52	0.19-0.66
Northern Midlands Lake (NML)											
Budd Lake	Ameiurus catus	1992	Ind	F	1	33.80	33.8	10.0	10	0.17	0.17
Budd Lake	Esox lucius	1992	Ind	F	3	62.43	54.8-68.5	2.7	2-3	0.12	0.11-0.14
Canistear Reservoir	Micropterus salmoides	1992	Ind	F	7	40.76	36.0-45.7	5.7	2-8	0.60	0.41-0.74
Clinton Reservoir	Micropterus salmoides	1992	Ind	F	6	35.72	28.2-44.1	4.7	2-8	0.71	0.39-0.85
Monksville Reservoir	Esox niger	1992	Ind	F	3	48.57	39.3-64.0	2.0	1-4	0.57	0.21-1.14
Monksville Reservoir	Micropterus salmoides	1992	Ind	F	3	33.67	28.7-38.4	3.7	3-4	0.66	0.45-1.00
Oradell Reservoir	Ameiurus natalis	1994	Ind	F	3	21.27	16.0-27.4	-	-	0.03	0.03-0.04
Oradell Reservoir	Cyprinus carpio	1994	Ind	F	3	59.93	54.9-64.0	-	-	0.06	0.04-0.07
Oradell Reservoir	Micropterus salmoides	1994	Ind	F	9	40.82	28.9-51.0	-	-	0.21	0.03-0.46
Oradell Reservoir	Morone americana	1994	Ind	F	3	19.70	17.3-24.3	-	-	0.12	0.08-0.19
Oradell Reservoir	Perca flavescens	1994	Ind	F	3	20.70	19.5-22.1	-	-	0.11	0.06-0.19
Tappan Lake	Ameiurus natalis	1994	Ind	F	3	23.83	20.3-29.3	-	-	0.07	0.04-0.14
Tappan Lake	Cyprinus carpio	1994	Ind	F	3	53.93	52.5-55.3	-	-	0.10	0.09-0.12
Tappan Lake	Micropterus dolomieu	1994	Ind	F	4	30.68	24.4-35.4	-	-	0.07	0.04-0.10
Tappan Lake	Micropterus salmoides	1994	Ind	F	9	41.09	25.8-50.5	-	-	0.36	0.02-0.72
Tappan Lake	Morone americana	1994	Ind	F	3	16.40	16.0-17.1	-	-	0.09	0.04-0.13
Tappan Lake	Perca flavescens	1994	Ind	F	3	22.43	18.5-26.3		-	0.04	0.02-0.07
Northern Midlands Lake - Shawangunk Formation (NMLSSG)											
Saw Mill Lake	Ameiurus nebulosus	1992	Ind	F	4	36.75	33.1-39.5	8.5	6-10	0.06	0.04-0.07
Saw Mill Lake	Esox lucius	1992	Ind	F	1	53.40	53.4		-	0.27	0.27
Northern Warm-water River (NWWR)											
Rockaway River	Ameiurus natalis	1992	Ind	F	1	21.20	21.2	3.0	3	0.15	0.15
Rockaway River	Ameiurus nebulosus	1992	Ind	F	1	31.00	31.0	8.0	8	0.12	0.12

Appendix A Table 1 (continued). Average and range of mercury concentrations in fish from ANSP studies, 1992-1994. Type indicates sample type (individual or composite), Sa is the tissue used (fillet or whole body), and N is the number of samples analyzed.

Water body	Species	Year	Type	Sa	N	Total Length (cm)		$\begin{gathered} \text { Age } \\ \text { (years) } \end{gathered}$		Hg Concentration (mg/kg wet weight)	
						Avg.	Range	Avg.	Range	Avg.	Range
Rockaway River	Esox niger	1992	Ind	F	5	37.76	30.6-44.7	2.3	1-3	0.23	0.15-0.31
Rockaway River	Micropterus salmoides	1992	Ind	F	3	28.93	26.4-31.5	3.3	3-4	0.56	0.36-0.73
Rockaway River	Oncorhynchus mykiss	1992	Ind	F	1	53.60	53.6	-	-	0.04	0.04
Pine Barrens Lake (PBL)											
Atsion Lake	Ameiurus natalis	1992	Ind	F	1	26.50	26.5	6.0	6	0.91	0.91
Batsto Lake	Ameiurus natalis	1992	Ind	F	1	23.70	23.7	4.0	4	0.23	0.23
Batsto Lake	Ameiurus nebulosus	1992	Ind	F	1	26.50	26.5	4.0	4	0.18	0.18
Batsto Lake	Esox niger	1992	Ind	F	1	57.30	57.3	4.0	4	1.06	1.06
Batsto Lake	Micropterus salmoides	1992	Ind	F	3	33.33	27.1-37.5	6.3	3-8	1.08	0.76-1.28
East Creek Lake	Ameiurus natalis	1992	Ind	F	2	27.10	26.8-27.4	2.5	1-4	1.38	1.29-1.47
East Creek Lake	Esox niger	1992	Ind	F	9	42.90	31.5-52.5	3.1	1-5	1.71	0.79-2.81
Harrisville Lake	Ameiurus natalis	1992	Ind	F	1	27.50	27.5	8.0	8	1.36	1.36
Harrisville Lake	Esox niger	1992	Ind	F	5	39.78	28.3-51.4	3.6	2-6	1.55	0.99-2.10
Lake Nummy	Ameiurus natalis	1992	Ind	F	3	27.53	26.7-28.1	2.0	1-3	0.32	0.32-0.32
Lake Nummy	Esox niger	1992	Ind	F	1	35.00	35.0	3.0	3	1.36	1.36
Lenape Lake	Esox niger	1992	Ind	F	3	43.33	35.5-49.7	2.7	1-5	0.56	0.25-0.89
Stafford Forge Main Line	Esox niger	1992	Ind	F	3	28.07	26.6-29.9	2.0	2-2	0.69	0.59-0.84
Pine Barrens River (PBR)											
Mullica River	Esox niger	1992	Ind	F	1	40.70	40.7	2.0	2	1.21	1.21
Wading River	Esox niger	1992	Ind	F	5	39.08	34.3-43.6	3.6	2-6	0.90	0.66-1.23
Southern Industrial Lake (SINDL)											
Atlantic City Reservoir	Micropterus salmoides	1992	Ind	F	6	36.65	34.0-41.4	2.8	2-3	4.47	3.05-8.94
Haddon Lake	Ameiurus nebulosus	1992	Ind	F	3	27.17	25.9-29.5	6.0	5-7	0.09	0.04-0.17
Haddon Lake	Esox niger	1992	Ind	F	1	25.30	25.3	-	-	0.10	0.10
Haddon Lake	Micropterus salmoides	1992	Ind	F	3	34.80	30.7-37.1	3.7	3-5	0.54	0.23-1.15
Newton Lake	Micropterus salmoides	1992	Ind	F	12	33.43	25.0-45.6	4.1	3-9	0.11	0.05-0.40
Newton Lake	Pomoxis nigromaculatus	1992	Ind	F	3	19.40	18.4-20.4	4.0	2-5	0.11	0.09-0.13

Appendix A Table 1 (continued). Average and range of mercury concentrations in fish from ANSP studies, 1992-1994. Type indicates sample type (individual or composite), Sa is the tissue used (fillet or whole body), and N is the number of samples analyzed.

Water body	Species	Year	Type	Sa	N	Total Length (cm)		$\begin{gathered} \text { Age } \\ \text { (years) } \end{gathered}$		Hg Concentration (mg/kg wet weight)	
						Avg.	Range	Avg.	Range	Avg.	Range
Big Timber Creek	Ameiurus catus	1992	Ind	F	2	31.50	29.6-33.4	5.0	5-5	0.09	0.08-0.09
Big Timber Creek	Ameiurus nebulosus	1992	Ind	F	2	30.20	29.4-31.0	4.5	4-5	0.06	0.05-0.06
Big Timber Creek	Ictalurus punctatus	1992	Ind	F	1	42.30	42.3	6.0	6	0.09	0.09
Big Timber Creek	Micropterus salmoides	1992	Ind	F	3	28.90	25.5-33.0	2.0	2-2	0.09	0.06-0.12
Big Timber Creek	Pomoxis nigromaculatus	1992	Ind	F	1	15.50	15.5	9.0	9	0.07	0.07
Cooper River Park Lake	Micropterus salmoides	1992	Ind	F	12	29.75	19.5-44.0	2.9	1-8	0.15	0.03-0.56
Cooper River Park Lake	Pomoxis nigromaculatus	1992	Ind	F	3	17.73	16.7-18.4	3.3	2-4	0.09	0.04-0.12
Crosswick Creek	Ameiurus catus	1992	Ind	F	3	31.83	28.4-34.1	6.3	5-9	0.08	0.07-0.09
Crosswick Creek	Ameiurus nebulosus	1992	Ind	F	1	30.20	30.2	6.0	6	0.07	0.07
Crosswick Creek	Micropterus salmoides	1992	Ind	F	2	27.25	26.9-27.6	1.0	1-1	0.14	0.13-0.15
Newton Creek, North Branch	Ameiurus nebulosus	1992	Ind	F	4	32.03	29.0-34.4	4.5	4-6	0.03	0.02-0.03
Newton Creek, North Branch	Ictalurus punctatus	1992	Ind	F	2	41.80	36.5-47.1	6.0	5-7	0.10	0.08-0.12
Unique Lake (UL)											
Lake Hopatcong	Esox niger	1992	Ind	F	5	45.68	35.1-53.0	4.0	2-5	0.35	0.19-0.64
Lake Hopatcong	Micropterus salmoides	1992	Ind	F	4	36.83	29.5-41.4	5.8	4-7	0.28	0.25-0.30
Manasquan Reservoir	Micropterus salmoides	1992	Ind	F	7	37.96	31.0-41.1	2.6	2-3	2.57	0.76-3.87
Union Lake	Esox niger	1992	Ind	F	1	46.60	46.6	3.0	3	1.08	1.08
Union Lake	Micropterus salmoides	1992	Ind	F	6	35.58	24.9-45.5	4.2	2-8	1.48	0.61-2.02

Appendix A. Table 2. Percentages of fish from ANSP 1992-1994 studies within concentration groupings used for consumption advisories by the state Toxics and Biota Committee. High Risk: Pregnant Women, Women Planning Pregnancy Within a Year and Young Children 1: < 0.08ppm; 2: 0.08-0.18 ppm; 0.19-0.54 ppm; > 0.54 ppm . Normal Risk: Other Adults and Adolescents 1: < 0.35ppm; 2: 0.35-0.93 ppm; 0.94-2.81 ppm; > 2.81 ppm .

Water body	Species	Yr.	N	High Risk				Normal Risk			
				1	2	3	4	1	2	3	4
Brackish Coastal Plain Lake (BCPL)											
Corbin City Impoundment \#3	Ameiurus nebulosus	92	1	100	-	-	-	100		-	
Coastal Plain Lake - pH 5 (CPL5)											
Maskells Mills Lake	Ameiurus nebulosus	92	3	-	-	100	-	67	33	-	
Maskells Mills Lake	Esox niger	92	1	-		100	-	-	100	-	
Maskells Mills Lake	Micropterus salmoides	92	2	-	-	100	-	-	100	-	-
Maskells Mills Lake	Pomoxis nigromaculatus	92	2	-	-	100	-	100	-	-	-
Mirror Lake	Esox niger	92	1	-	100	-	-	100	-	-	
Mirror Lake	Micropterus salmoides	92	2	-	-	100	-	100	-	-	-
New Brooklyn Lake	Esox niger	92	5	-	20	20	60	40	40	20	-
Wilson Lake	Esox niger	92	4	-	-	50	50	25	25	50	-

Coastal Plain Lake - pH 6 (CPL6)

Alcyon Lake	Esox niger	92	1	-	-	100	-	-	100		
Alcyon Lake	Micropterus salmoides	92	4	-	-	75	25	25	75	-	-
Alcyon Lake	Pomoxis nigromaculatus	92	2	-	-	100	-	100	-	-	
Clementon Lake	Esox niger	92	6	-	50	50	-	67	33	-	-
Clementon Lake	Micropterus salmoides	92	2	-	-	100	-	50	50	-	-
Evans Pond	Micropterus salmoides	92	2	-	50	50	-	100	-	-	
Lake Carasaljo	Esox niger	92	1	-	-	100	-	100	-	-	
Lake Carasaljo	Micropterus salmoides	92	3	-	-		100	-	100	-	
Marlton Lake	Micropterus salmoides	92	1	-	-		100	-	-	100	
Strawbridge Ponds	Micropterus salmoides	92	5	-	40	60	-	100	-	-	
Strawbridge Ponds	Pomoxis nigromaculatus	92	3	-	33	67	-	100	-	-	
Coastal Plain Lake - pH 7 (CPL7)											
Assunpink Lake	Esox niger	92	2	-	-	100	-	-	100	-	-
Assunpink Lake	Micropterus salmoides	92	3	-	-	100	-	-	100	-	
Crystal Lake	Ameiurus nebulosus	92	2	100	-		-	100	-	-	
Crystal Lake	Micropterus salmoides	92	3	$-$	67	33	$-$	100	-	$-$	

Appendix A. Table 2 (continued). Percentages of fish from ANSP 1992-1994 studies within concentration groupings used for consumption advisories by the state Toxics and Biota Committee. High Risk: Pregnant Women, Women Planning Pregnancy Within a Year and Young Children 1: < 0.08ppm; 2: 0.08-0.18 ppm; $0.19-0.54 \mathrm{ppm} ;>0.54 \mathrm{ppm}$. Normal Risk: Other Adults and Adolescents 1: < 0.35ppm; 2: 0.35-0.93 ppm; 0.94-2.81 ppm; > 2.81 ppm .

Water body	Species	Yr.	N	High Risk				Normal Risk			
				1	2	3	4	1	2	3	4
Crystal Lake	Pomoxis nigromaculatus	92	2	50	50	-		100	-		
Woodstown Memorial Lake	Micropterus salmoides	92	5	-	20	80		80	20		
Woodstown Memorial Lake	Pomoxis nigromaculatus	92	3		67	33		100			

Coastal Plain Lake - pH 8 (CPL8)

Shadow Lake	Micropterus salmoides	92	4	-	75	25	-	100	-	-	
Spring Lake	Micropterus salmoides	92	3	-	-	33	67	33	67	-	
Coastal Plain River (CPR)											
Assunpink Creek-lower	Micropterus salmoides	92	6	17	83	-	-	100	-	-	-
Little Timber Creek	Ameiurus nebulosus	92	2	100	-	-	-	100	-	-	-
Rancocas Creek	Ictalurus punctatus	92	1	-	100	-	-	100		-	

Cold-water Stream (CWS)

Merrill Creek	Oncorhynchus mykiss	92	2	50	50			100			
Delaware River - below Camden (DRBC)											
Delaware River - Below Camden	Ictalurus punctatus	92	1	-	-	100	-	100	-		
Delaware River - Below Camden	Morone saxatilis x chrysops	92	1	-	100		-	100			

Delaware River - from Camden to Trenton (DRTS)											
Delaware River - Above Camden	Ameiurus catus	92	4	25	50	25	-	100	-	--	-
Delaware River - Above Camden	Ictalurus punctatus	92	1	-	-	100	-	100	-	-	-
Delaware River - Above Camden	Micropterus salmoides	92	5	20	60	20	-	80	20	--	-

Delaware River - from Trenton to Easton (DRET)

Delaware River - Trenton to Easton	Ictalurus punctatus	92	3	33	-	67	-	100	-	-	-
Delaware River - Trenton to Easton	Micropterus dolomieu	92	7	14	71	14	-	100	-	-	-
Delaware River - Trenton to Easton	Micropterus salmoides	92	1	-	-	100	-	100	-	-	-

Delaware River - from Easton to the Water Gap (DRWE)

Delaware River - above Easton	Ameiurus catus	92	1	-	-	-	100	-	100	-	-1
Delaware River - above Easton	Ictalurus punctatus	92	2	-	50	50	-	100	-	-	-1
Delaware River - above Easton	Micropterus dolomieu	92	5	-	20	80	-	80	20	-	-1
Delaware River - above Easton	Stizostedion vitreum	92	1	-	100	--	-	100	-	--	

Appendix A. Table 2 (continued). Percentages of fish from ANSP 1992-1994 studies within concentration groupings used for consumption advisories by the state Toxics and Biota Committee. High Risk: Pregnant Women, Women Planning Pregnancy Within a Year and Young Children 1: < 0.08ppm; 2: 0.08-0.18 ppm; $0.19-0.54 \mathrm{ppm} ;>0.54 \mathrm{ppm}$. Normal Risk: Other Adults and Adolescents 1: < 0.35ppm; 2: 0.35-0.93 ppm; $0.94-2.81 \mathrm{ppm} ; ~>2.81 \mathrm{ppm}$.

Water body	Species	Yr.	N	High Risk				Normal Risk			
				1	2	3	4	1	2	3	4
Delaware River - above the Water Gap (DRAG)											

	Delaware River - above Water Gap	Esox masquinongy	92	1	-	-	100	-	100	-	-
Delaware River - above Water Gap	Ictalurus punctatus	92	2	-	-	100	-	100	-	-	-
Delaware River - above Water Gap	Micropterus dolomieu	92	4	-	-	100	-	25	75	-	-

Northern Carbonate Lake (NCARB)

Carnegie Lake	Micropterus salmoides	92	6	-	-	67	33	33	50	17	-
Cranberry Lake	Esox niger	92	3	-	-	100	-	33	67	-	-
Cranberry Lake	Morone saxatilis x chrysops	92	3	-	-	100	-	67	33	-	-
Mountain Lake	Micropterus salmoides	92	3	-	-	67	33	33	67	-	-
Swartswood Lake	Esox niger	92	3	-	100	-	-	100	-	-	-
Swartswood Lake	Micropterus dolomieu	92	3	-	67	33	-	100	-	--	-

Northern Carbonate Lake - Unique Lake (NCARB-UL)

Appendix A. Table 2 (continued). Percentages of fish from ANSP 1992-1994 studies within concentration groupings used for consumption advisories by the state Toxics and Biota Committee. High Risk: PregnantWomen, Women Planning Pregnancy Within a Year and Young Children 1: < 0.08ppm; 2: 0.08-0.18 ppm; 0.19-0.54 ppm; > 0.54 ppm . Normal Risk: Other Adults and Adolescents 1: < 0.35ppm; 2: 0.35-0.93 ppm; 0.94-2.81 ppm; > 2.81 ppm .

Water body	Species	Yr.	N	High Risk				Normal Risk			
				1	2	3	4	1	2	3	4
Dundee Lake	Micropterus salmoides	92	5			80	20	20	80		
Passaic River Great Piece	Micropterus salmoides	92	6			50	50	17	83		

Northern Midland Lake (NML)

Budd Lake	Ameiurus catus	92	1	-	100	-	-	100	-	-	-
Budd Lake	Esox lucius	92	3	-	100	-	-	100	-	-	-
Canistear Reservoir	Micropterus salmoides	92	7	-	-	29	71	-	100	-	
Clinton Reservoir	Micropterus salmoides	92	6	-	-	17	83	-	100	-	-
Monksville Reservoir	Esox niger	92	3	-	-	67	33	33	33	33	
Monksville Reservoir	Micropterus salmoides	92	3	-	-	67	33	-	67	33	
Oradell Reservoir	Ameiurus natalis	94	3	100	-	-	-	100	-	-	-
Oradell Reservoir	Cyprinus carpio	94	3	67	33	-	-	100	-	-	
Oradell Reservoir	Micropterus salmoides	94	9	11	44	44	-	78	22		
Oradell Reservoir	Morone americana	94	3	-	67	33	-	100	-	-	-
Oradell Reservoir	Perca flavescens	94	3	33	33	33	-	100	-	-	
Tappan Lake	Ameiurus natalis	94	3	67	33	-	-	100	-	-	-
Tappan Lake	Cyprinus carpio	94	3	-	100	-	-	100	-	-	-
Tappan Lake	Micropterus dolomieu	94	4	75	25	-	-	100	-	-	-
Tappan Lake	Micropterus salmoides	94	9	22	11	44	22	44	56	-	-
Tappan Lake	Morone americana	94	3	33	67	-	-	100		-	-
Tappan Lake	Perca flavescens	94	3	67	33	-	-	100	-	-	

Northern Midland Lake - Shawangunk Formation (NMLSSG)

Saw Mill Lake	Ameiurus nebulosus	92	4	100	-		-	100	-	-	-
Saw Mill Lake	Esox lucius	92	1	-	-	100	-	100		-	
Steenykill Lake	Micropterus salmoides	96	6	-	50	50	-	100	-	-	
Northern Warm-water River (NWWR)											
Rockaway River	Ameiurus natalis	92	1	-	100		-	100	-	-	
Rockaway River	Ameiurus nebulosus	92	1	-	100	-	-	100	-	-	-
Rockaway River	Esox niger	92	5	-	40	60	-	100	-	-	

Appendix A. Table 2 (continued). Percentages of fish from ANSP 1992-1994 studies within concentration groupings used for consumption advisories by the state Toxics and Biota Committee. High Risk: Pregnant Women, Women Planning Pregnancy Within a Year and Young Children 1: < 0.08ppm; 2: 0.08-0.18 ppm; $0.19-0.54 \mathrm{ppm} ;>0.54 \mathrm{ppm}$. Normal Risk: Other Adults and Adolescents 1: < 0.35ppm; 2: 0.35-0.93 ppm; $0.94-2.81 \mathrm{ppm} ; ~>2.81 \mathrm{ppm}$.

Water body	Species	Yr.	N	High Risk				Normal Risk			
				1	2	3	4	1	2	3	4
Rockaway River	Micropterus salmoides	92	3	-	-	33	67	-	100		-
Rockaway River	Oncorhynchus mykiss	92	1	100	-	-	-	100	-		-
Pine Barrens Lake (PBL)											
Atsion Lake	Ameiurus natalis	92	1	-	-	-	100	-	100		-
Batsto Lake	Ameiurus natalis	92	1	-	-	100	-	100	-	-	-
Batsto Lake	Ameiurus nebulosus	92	1	-	100		-	100			
Batsto Lake	Esox niger	92	1	-	-		100	-	-	100	
Batsto Lake	Micropterus salmoides	92	3	-	-	-	100	-	33	67	-
East Creek Lake	Ameiurus natalis	92	2	-	-		100	-	-	100	
East Creek Lake	Esox niger	92	9	-	-		100	-	11	89	
Harrisville Lake	Ameiurus natalis	92	1	-	-		100	-	-	100	
Harrisville Lake	Esox niger	92	5	-	-		100	-		100	
Lake Nummy	Ameiurus natalis	92	3	-	-	100	-	100			
Lake Nummy	Esox niger	92	1	-	-	-	100	-	-	100	-
Lenape Lake	Esox niger	92	3	-	-	67	33	33	67		
Stafford Forge Main Line	Esox niger	92	3	-	-		100	-	100		-
Pine Barrens River (PBR)											
Mullica River	Esox niger	92	1	-	-		100	-		100	-
Wading River	Esox niger	92	5	-	-		100	-	60	40	-

Southern Industrial Lake (SINDL)

Atlantic City Reservoir	Micropterus salmoides	92	6	-	-	-	100	-			100
Haddon Lake	Ameiurus nebulosus	92	3	67	33	-	-	100	-	-	-
Haddon Lake	Esox niger	92	1	-	100	-	-	100	-		
Haddon Lake	Micropterus salmoides	92	3	-	-	67	33	67	-	33	
Newton Lake	Micropterus salmoides	92	12	75	8	17	-	92	8		-
Newton Lake	Pomoxis nigromaculatus	92	3	-	100	-		100	-		
Southern Industrial River (SINDR)											
Big Timber Creek	Ameiurus catus	92	2	-	100	$-$	-	100	-	-	-

Appendix A. Table 2 (continued). Percentages of fish from ANSP 1992-1994 studies within concentration groupings used for consumption advisories by the state Toxics and Biota Committee. High Risk: Pregnant Women, Women Planning Pregnancy Within a Year and Young Children 1: < 0.08ppm; 2: 0.08-0.18 ppm; $0.19-0.54 \mathrm{ppm} ;>0.54 \mathrm{ppm}$. Normal Risk: Other Adults and Adolescents 1: < 0.35ppm; 2: 0.35-0.93 ppm; 0.94-2.81 ppm; > 2.81 ppm .

Water body	Species	Yr.	N	High Risk				Normal Risk			
				1	2	3	4	1	2	3	4
Big Timber Creek	Ameiurus nebulosus	92	2	100	-		-	100	-		-
Big Timber Creek	Ictalurus punctatus	92	1	-	100	-		100	-		
Big Timber Creek	Micropterus salmoides	92	3	33	67			100	-		
Big Timber Creek	Pomoxis nigromaculatus	92	1	100	-		-	100	-		-
Cooper River Park Lake	Micropterus salmoides	92	12	25	58	8	8	92	8		-
Cooper River Park Lake	Pomoxis nigromaculatus	92	3	33	67	-		100	-		
Crosswick Creek	Ameiurus catus	92	3	33	67		-	100	-		-
Crosswick Creek	Ameiurus nebulosus	92	1	100	-	-	-	100	-		-
Crosswick Creek	Micropterus salmoides	92	2	-	100	-	-	100	-		-
Newton Creek, North Branch	Ameiurus nebulosus	92	4	100	-		-	100	-		-
Newton Creek, North Branch	Ictalurus punctatus	92	2	-	100	-		100	-		-

Unique Lake (UL)

Lake Hopatcong	Esox niger	92	5	-	-	80	20	40	60	-	
Lake Hopatcong	Micropterus salmoides	92	4	-	-	100	-	100	-	-	
Manasquan Reservoir	Micropterus salmoides	92	7	-	-	-	100	-	14	43	43
Union Lake	Esox niger	92	1	-	-	-	100		-	100	
Union Lake	Micropterus salmoides	92	6				100		17	83	

APPENDIX B

Data on individual specimens analyzed as part of the 1992 ANSP screening level study, the 1993 Camden County study, the 1994 Hackensack Water Company study, and the 1995 mercury study.

Appendix B Table 1. Total lengths (cm) and mercury concentrations (ppm) of fish analyzed for the 1996 New Jersey Mercury survey. Filet types are L: left; B: both; and W: whole body. Carcass types are CWF: carcass with 1 filet and CARC: carcass with neither filet. N indicates the number of fish analyzed together. In cases where a composite sample is represented, TL indicates the range of lengths of individuals in the sample.

Station	Species	N	TL (cm)	Filet		Carcass	
				Hg conc. (ppm)	Type	Hg conc. (ppm)	Type
Boonton Reservoir	Ameiurus catus	1	40.0	0.54	L	-	-
Boonton Reservoir	Ameiurus nebulosus	1	30.5	0.01	L	-	-
Boonton Reservoir	Ameiurus nebulosus	1	32.8	0.02	L	-	-
Boonton Reservoir	Micropterus salmoides	1	35.0	0.33	L	-	-
Boonton Reservoir	Micropterus salmoides	1	41.6	0.81	L	-	-
Boonton Reservoir	Micropterus salmoides	1	45.1	0.60	L	-	-
Butterfly Bogs	Ameiurus nebulosus	1	30.6	0.08	L	-	-
Butterfly Bogs	Esox niger	1	33.9	0.78	L	-	-
Cedar Lake	Ameiurus nebulosus	1	31.5	0.06	L	-	-
Cedar Lake	Esox niger	1	47.9	0.24	L	-	-
Cedar Lake	Esox niger	1	49.6	0.31	L	-	-
Cedar Lake	Esox niger	1	64.7	0.76	L	-	-
Cedar Lake	Micropterus salmoides	1	39.0	0.25	L	-	-
Cedar Lake	Micropterus salmoides	1	41.5	0.59	L	-	-
Cedar Lake	Micropterus salmoides	1	43.8	0.61	L	-	-
Crater Lake	Ameiurus nebulosus	1	30.0	0.39	L	-	-
Crater Lake	Perca flavescens	1	19.9	0.43	L	-	-
Crater Lake	Perca flavescens	1	21.6	0.29	L	-	-
Crater Lake	Perca flavescens	1	27.9	0.58	L	-	-
De Voe Lake	Ameiurus nebulosus	1	27.0	0.09	L	-	-
De Voe Lake	Esox niger	1	41.5	0.14	L	-	-
De Voe Lake	Esox niger	1	43.0	0.25	L	-	-
De Voe Lake	Esox niger	1	48.5	0.27	L	-	-
De Voe Lake	Micropterus salmoides	1	31.7	0.07	L	-	-
De Voe Lake	Micropterus salmoides	1	34.1	0.21	L	-	-
De Voe Lake	Micropterus salmoides	1	36.5	0.26	L	-	-
Delaware River, Above Camden	Ictalurus punctatus	1	44.5	0.21	L	-	-
Delaware River, Above Camden	Ictalurus punctatus	1	48.2	0.12	L	-	-

Appendix B Table 1 (continued). Total lengths (cm) and mercury concentrations (ppm) of fish analyzed for the 1996 New Jersey Mercury survey. Filet types are L: left; B: both; and W: whole body. Carcass types are CWF: carcass with 1 filet and CARC: carcass with neither filet. N indicates the number of fish analyzed together. In cases where a composite sample is represented, TL indicates the range of lengths of individuals in the sample.

Station	Species	N	TL (cm)	Filet		Carcass	
				Hg conc. (ppm)	Type	Hg conc. (ppm)	Type
Delaware River, Above Camden	Morone americana	1	18.9	0.15	B	-	-
Delaware River, Above Camden	Morone americana	1	19.1	0.12	B	-	-
Delaware River, Below Camden	Ictalurus punctatus	1	48.5	0.40	L	-	-
Delaware River, Below Camden	Ictalurus punctatus	1	49.5	0.16	L	-	-
Delaware River, Below Camden	Morone americana	1	19.1	0.10	B	-	-
Delaware River, Below Camden	Morone americana	1	20.8	0.16	B	-	-
Delaware River, Below Camden	Ictalurus punctatus	1	43.5	0.02	L	-	-
Delaware River, Below Camden	Ictalurus punctatus	1	50.0	0.06	L	-	-
Delaware River, Below Camden	Morone americana	1	21.3	0.09	B	-	-
Delaware River, Below Camden	Morone americana	1	22.9	0.07	B	-	-
Double Trouble Lake	Ameiurus natalis	1	26.1	0.82	L	-	-
Double Trouble Lake	Ameiurus natalis	1	26.6	1.18	L	-	-
Double Trouble Lake	Ameiurus natalis	1	28.3	1.09	L	-	-
Double Trouble Lake	Corixidae	-	-	0.16	W	-	-
Double Trouble Lake	Enneacanthus chaetodon	3	5.9-6.2	0.16	W	-	-
Double Trouble Lake	Enneacanthus chaetodon	3	5.9-6.7	0.20	W	-	-
Double Trouble Lake	Enneacanthus chaetodon	3	5.9-6.4	0.18	W	-	-
Double Trouble Lake	Enneacanthus chaetodon	12	3.4-4.5	0.11	W	-	-
Double Trouble Lake	Enneacanthus chaetodon	15	3.0-4.4	0.10	W	-	-
Double Trouble Lake	Erimyzon oblongus	1	22.3	0.25	L	0.17	CWF
Double Trouble Lake	Erimyzon oblongus	1	28.0	0.52	L	0.35	CWF
Double Trouble Lake	Esox niger	1	11.2	0.28	W	-	-
Double Trouble Lake	Esox niger	1	18.1	0.74	L	0.47	CWF
Double Trouble Lake	Esox niger	1	37.7	1.24	L	-	-
Double Trouble Lake	Esox niger	1	46.7	1.60	L	-	-
Double Trouble Lake	Esox niger	1	52.4	2.24	L	-	-
Double Trouble Lake	Esox niger	1	57.6	2.30	L	-	-
Echo Lake	Micropterus salmoides	1	29.0	0.16	L	-	-

Appendix B Table 1 (continued). Total lengths (cm) and mercury concentrations (ppm) of fish analyzed for the 1996 New Jersey Mercury survey. Filet types are L: left; B: both; and W: whole body. Carcass types are CWF: carcass with 1 filet and CARC: carcass with neither filet. N indicates the number of fish analyzed together. In cases where a composite sample is represented, TL indicates the range of lengths of individuals in the sample.

Station	Species	N	TL (cm)	Filet		Carcass	
				Hg conc. (ppm)	Type	Hg conc. (ppm)	Type
Echo Lake	Micropterus salmoides	1	30.4	0.12	L	-	-
Echo Lake	Micropterus salmoides	1	34.4	0.15	L	-	-
Echo Lake	Micropterus salmoides	1	35.0	0.17	L	-	-
Green Turtle Lake	Esox niger	1	28.1	0.11	L	-	-
Green Turtle Lake	Esox niger	1	44.7	0.14	L	-	-
Green Turtle Lake	Esox niger	1	46.6	0.15	L	-	-
Green Turtle Lake	Micropterus salmoides	1	23.6	0.17	L	-	-
Green Turtle Lake	Micropterus salmoides	1	26.1	0.22	L	-	-
Green Turtle Lake	Micropterus salmoides	1	34.7	0.32	L	-	-
Green Turtle Lake	Perca flavescens	1	20.8	0.09	L	-	-
Green Turtle Lake	Perca flavescens	1	24.6	0.10	L	-	-
Greenwood Lake	Alosa pseudoharengus	1	15.0	0.07	W	-	-
Greenwood Lake	Alosa pseudoharengus	1	15.3	0.05	W	-	-
Greenwood Lake	Alosa pseudoharengus	1	15.7	0.05	W	-	-
Greenwood Lake	Alosa pseudoharengus	1	16.8	0.05	W	-	-
Greenwood Lake	Lepomis macrochirus	1	13.0	0.01	W	-	-
Greenwood Lake	Lepomis macrochirus	1	13.1	0.02	W	-	-
Greenwood Lake	Lepomis macrochirus	1	13.3	0.02	W	-	-
Greenwood Lake	Lepomis macrochirus	1	13.6	0.03	W	-	-
Greenwood Lake	Micropterus salmoides	1	31.4	0.21	L	0.10	CWF
Greenwood Lake	Micropterus salmoides	1	34.3	0.18	L	0.10	CWF
Greenwood Lake	Micropterus salmoides	1	36.2	0.15	L	0.07	CWF
Greenwood Lake	Micropterus salmoides	1	36.3	0.24	L	0.11	CWF
Greenwood Lake	Micropterus salmoides	1	40.0	0.40	L	0.23	CWF
Greenwood Lake	Morone americana	1	17.2	0.00	W	-	-
Greenwood Lake	Morone americana	1	18.2	-0.01	W	-	-
Greenwood Lake	Morone americana	1	18.3	0.00	L	-0.01	CWF
Greenwood Lake	Morone americana	1	19.2	0.02	L	-0.01	CWF

Appendix B Table 1 (continued). Total lengths (cm) and mercury concentrations (ppm) of fish analyzed for the 1996 New Jersey Mercury survey. Filet types are L: left; B: both; and W: whole body. Carcass types are CWF: carcass with 1 filet and CARC: carcass with neither filet. N indicates the number of fish analyzed together. In cases where a composite sample is represented, TL indicates the range of lengths of individuals in the sample.

Station	Species	N	TL (cm)	Filet		Carcass	
				Hg conc. (ppm)	Type	Hg conc. (ppm)	Type
Grovers Mill Pond	Ameiurus nebulosus	1	32.2	0.40	L	0.22	CWF
Grovers Mill Pond	Ameiurus nebulosus	1	33.0	0.08	L	0.03	CWF
Grovers Mill Pond	Enneacanthus gloriosus	6	5.6-6.5	0.05	W	-	-
Grovers Mill Pond	Enneacanthus gloriosus	3	6.1-6.9	0.03	W	-	-
Grovers Mill Pond	Enneacanthus gloriosus	8	4.5-5.3	0.02	W	-	-
Grovers Mill Pond	Esox niger	1	35.2	0.16	L	0.10	CWF
Grovers Mill Pond	Esox niger	1	35.3	0.12	L	0.08	CWF
Grovers Mill Pond	Esox niger	1	36.5	0.18	L	0.11	CWF
Grovers Mill Pond	Esox niger	1	37.2	0.16	L	0.13	CWF
Grovers Mill Pond	Lepomis gibbosus	1		0.01	W	-	-
Grovers Mill Pond	Lepomis gibbosus	1	8.7	0.02	W	-	-
Grovers Mill Pond	Lepomis gibbosus	1	9.3	0.02	W	-	-
Grovers Mill Pond	Lepomis gibbosus	1	9.5	0.02	W	-	-
Grovers Mill Pond	Lepomis gibbosus	1	10.1	0.01	W	-	-
Grovers Mill Pond	Lepomis gibbosus	1	10.4	0.01	W	-	-
Grovers Mill Pond	Lepomis gibbosus	1	10.8	0.02	W	-	-
Grovers Mill Pond	Micropterus salmoides	1	28.0	0.47	L	0.28	CWF
Grovers Mill Pond	Micropterus salmoides	1	31.3	0.25	L	0.09	CWF
Grovers Mill Pond	Micropterus salmoides	1	35.0	0.36	L	0.20	CWF
Grovers Mill Pond	Micropterus salmoides	1	35.8	0.30	L	0.15	CWF
Grovers Mill Pond	Micropterus salmoides	1	41.5	0.39	L	0.32	CWF
Grovers Mill Pond	Notemigonus crysoleucas	1	17.0	0.04	W	-	-
Grovers Mill Pond	Notemigonus crysoleucas	1	19.0	-0.01	W	-	-
Grovers Mill Pond	Notemigonus crysoleucas	1	19.0	0.01	W	-	-
Grovers Mill Pond	Notemigonus crysoleucas	1	19.8	0.01	W	-	-
Grovers Mill Pond	Notemigonus crysoleucas	1	21.1	-0.01	W	-	-
Hainesville Pond	Esox niger	1	36.5	0.15	L	-	-
Hainesville Pond	Esox niger	1	36.6	0.14	L	-	-

Appendix B Table 1 (continued). Total lengths (cm) and mercury concentrations (ppm) of fish analyzed for the 1996 New Jersey Mercury survey. Filet types are L: left; B: both; and W: whole body. Carcass types are CWF: carcass with 1 filet and CARC: carcass with neither filet. N indicates the number of fish analyzed together. In cases where a composite sample is represented, TL indicates the range of lengths of individuals in the sample.

Station	Species	N	TL (cm)	Filet		Carcass	
				Hg conc. (ppm)	Type	Hg conc. (ppm)	Type
Hainesville Pond	Esox niger	1	39.3	0.14	L	-	-
Hainesville Pond	Micropterus salmoides	1	30.3	0.13	L	-	-
Hainesville Pond	Micropterus salmoides	1	31.0	0.21	L	-	-
Hainesville Pond	Micropterus salmoides	1	31.3	0.23	L	-	-
Malaga Lake	Esox niger	1	29.3	0.88	L	-	-
Malaga Lake	Esox niger	1	31.0	0.99	L	-	-
Malaga Lake	Esox niger	1	32.0	0.73	L	-	-
Malaga Lake	Esox niger	1	34.0	1.38	L	-	-
Malaga Lake	Esox niger	1	36.2	0.97	L	-	-
Malaga Lake	Micropterus salmoides	1	32.4	0.95	L	-	-
Oak Ridge Reservoir	Ameiurus natalis	1	24.5	0.25	L	-	-
Oak Ridge Reservoir	Ameiurus nebulosus	1	33.0	0.02	L	-	-
Oak Ridge Reservoir	Ameiurus nebulosus	1	34.5	0.02	L	-	-
Oak Ridge Reservoir	Esox niger	1	25.0	0.24	L	-	-
Oak Ridge Reservoir	Esox niger	1	28.0	0.29	L	-	-
Oak Ridge Reservoir	Esox niger	1	30.6	0.30	L	-	-
Oak Ridge Reservoir	Esox niger	1	58.0	0.30	L	-	-
Oak Ridge Reservoir	Lepomis auritus	1	10.6	0.05	W	-	-
Oak Ridge Reservoir	Lepomis auritus	1	10.8	0.05	W	-	-
Oak Ridge Reservoir	Lepomis auritus	1	11.1	0.03	W	-	-
Oak Ridge Reservoir	Lepomis gibbosus	1	9.3	0.05	W	-	-
Oak Ridge Reservoir	Lepomis gibbosus	1	9.8	0.03	W	-	-
Oak Ridge Reservoir	Lepomis gibbosus	1	9.9	0.02	W	-	-
Oak Ridge Reservoir	Lepomis macrochirus	1	9.0	0.04	W	-	-
Oak Ridge Reservoir	Lepomis macrochirus	1	9.2	0.05	W	-	-
Oak Ridge Reservoir	Lepomis macrochirus	1	9.4	0.05	W	-	-
Oak Ridge Reservoir	Lepomis macrochirus	1	10.4	0.03	W	-	-
Oak Ridge Reservoir	Micropterus dolomieu	1	40.2	0.49	L	-	-

Appendix B Table 1 (continued). Total lengths (cm) and mercury concentrations (ppm) of fish analyzed for the 1996 New Jersey Mercury survey. Filet types are L: left; B: both; and W: whole body. Carcass types are CWF: carcass with 1 filet and CARC: carcass with neither filet. N indicates the number of fish analyzed together. In cases where a composite sample is represented, TL indicates the range of lengths of individuals in the sample.

Station	Species	N	TL (cm)	Filet		Carcass	
				Hg conc. (ppm)	Type	Hg conc. (ppm)	Type
Oak Ridge Reservoir	Micropterus salmoides	1	36.8	0.38	L	-	-
Oak Ridge Reservoir	Micropterus salmoides	1	42.5	0.64	L	-	-
Oak Ridge Reservoir	Micropterus salmoides	1	48.0	0.89	L	-	-
Oak Ridge Reservoir	Micropterus salmoides	1	48.0	0.71	L	-	-
Oak Ridge Reservoir	Notemigonus crysoleucas	1	9.6	-0.03	W	-	-
Oak Ridge Reservoir	Notemigonus crysoleucas	1	18.1	0.06	W	-	-
Oak Ridge Reservoir	Perca flavescens	1	16.7	0.04	W	-	-
Oak Ridge Reservoir	Perca flavescens	1	18.3	0.04	W	-	-
Passaic River at Hatfield Swamp	Ameiurus natalis	1	21.4	0.11	L	-	-
Passaic River at Hatfield Swamp	Lepomis gibbosus	1	12.4	0.08	L	0.04	CWF
Passaic River at Hatfield Swamp	Lepomis gibbosus	1	12.6	0.09	L	0.05	CWF
Passaic River at Hatfield Swamp	Lepomis macrochirus	1	18.9	0.19	L	-	-
Passaic River at Hatfield Swamp	Micropterus salmoides	1	23.0	0.17	L	-	-
Passaic River at Hatfield Swamp	Micropterus salmoides	1	23.5	0.21	L	-	-
Passaic River at Hatfield Swamp	Micropterus salmoides	1	36.0	0.53	L	-	-
Passaic River at Hatfield Swamp	Pomoxis nigromaculatus	1	18.1	0.30	L	0.18	CWF
Passaic River at Hatfield Swamp	Pomoxis nigromaculatus	1	18.9	0.32	L	0.19	CWF
Passaic River at Hatfield Swamp	Pomoxis nigromaculatus	1	20.0	0.21	L	-	-
Passaic River at Hatfield Swamp	Pomoxis nigromaculatus	1	20.0	0.22	L	-	-
Pompton River at Lincoln Park	Esox lucius	1	27.8	0.17	L	-	-
Pompton River at Lincoln Park	Esox lucius	1	42.0	0.41	L	-	-
Pompton River at Lincoln Park	Esox lucius	1	66.6	0.59	L	-	-
Pompton River at Lincoln Park	Esox niger	1	22.7	0.23	B	-	-
Pompton River at Lincoln Park	Micropterus salmoides	1	35.4	0.50	L	-	-
Pompton River at Lincoln Park	Micropterus salmoides	1	35.5	0.68	L	-	-
Pompton River at Lincoln Park	Perca flavescens	1	21.0	0.21	L	-	-
Pompton River at Lincoln Park	Perca flavescens	1	24.0	0.26	L	-	-
Pompton River at Pequannock River	Ambloplites rupestris	1	19.2	0.54	L	0.32	CWF

Appendix B Table 1 (continued). Total lengths (cm) and mercury concentrations (ppm) of fish analyzed for the 1996 New Jersey Mercury survey. Filet types are L: left; B: both; and W: whole body. Carcass types are CWF: carcass with 1 filet and CARC: carcass with neither filet. N indicates the number of fish analyzed together. In cases where a composite sample is represented, TL indicates the range of lengths of individuals in the sample.

Station	Species	N	TL (cm)	Filet		Carcass	
				Hg conc. (ppm)	Type	Hg conc. (ppm)	Type
Pompton River at Pequannock River	Ambloplites rupestris	1	21.1	0.54	L	0.34	CWF
Pompton River at Pequannock River	Ambloplites rupestris	1	22.0	0.68	L	0.46	CWF
Pompton River at Pequannock River	Ameiurus natalis	1	26.2	0.80	L	-	-
Pompton River at Pequannock River	Erimyzon oblongus	1	8.2	0.07	W	-	-
Pompton River at Pequannock River	Erimyzon oblongus	1	9.8	0.06	W	-	-
Pompton River at Pequannock River	Erimyzon oblongus	1	9.8	0.05	W	-	-
Pompton River at Pequannock River	Lepomis auritus	1	13.7	0.32	L	-	-
Pompton River at Pequannock River	Lepomis auritus	1	15.8	0.41	L	-	-
Pompton River at Pequannock River	Lepomis gibbosus	3	4.9-5.6	0.11	W	-	-
Pompton River at Pequannock River	Lepomis gibbosus	1	9.1	0.14	W	-	-
Pompton River at Pequannock River	Lepomis gibbosus	1	9.6	0.16	W	-	-
Pompton River at Pequannock River	Lepomis gibbosus	1	9.7	0.12	W	-	-
Pompton River at Pequannock River	Lepomis gibbosus	1	14.1	0.78	L	-	-
Pompton River at Pequannock River	Lepomis gibbosus	1	14.5	0.35	L	-	-
Pompton River at Pequannock River	Micropterus dolomieu	1	25.4	1.10	L	-	-
Pompton River at Pequannock River	Micropterus dolomieu	1	27.8	1.14	L	-	-
Pompton River at Pequannock River	Micropterus dolomieu	1	29.6	0.57	L	-	-
Pompton River at Pequannock River	Micropterus dolomieu	1	36.8	1.02	L	-	-
Pompton River at Pequannock River	Micropterus salmoides	1	39.0	0.99	L	-	-
Pompton River at Pequannock River	Micropterus salmoides	1	39.8	1.36	L	-	-
Pompton River at Pequannock River	Pomoxis nigromaculatus	1	19.3	0.24	L	-	-
Raritan River at Millstone Creek	Ameiurus nebulosus	1	25.4	0.06	L	-	-
Raritan River at Millstone Creek	Ameiurus nebulosus	1	27.5	0.07	L	-	-
Raritan River at Millstone Creek	Ictalurus punctatus	1	39.8	0.15	L	-	-
Raritan River at Millstone Creek	Micropterus salmoides	1	32.5	0.33	L	-	-
Raritan River at Millstone Creek	Micropterus salmoides	1	36.3	0.33	L	-	-
Raritan River at Millstone Creek	Micropterus salmoides	1	37.0	0.46	L	-	-
Raritan River at Millstone Creek	Micropterus salmoides	1	44.9	0.37	L	-	-

Appendix B Table 1 (continued). Total lengths (cm) and mercury concentrations (ppm) of fish analyzed for the 1996 New Jersey Mercury survey. Filet types are L: left; B: both; and W: whole body. Carcass types are CWF: carcass with 1 filet and CARC: carcass with neither filet. N indicates the number of fish analyzed together. In cases where a composite sample is represented, TL indicates the range of lengths of individuals in the sample.

Station	Species	N	TL (cm)	Filet		Carcass	
				Hg conc. (ppm)	Type	Hg conc. (ppm)	Type
Raritan River at Neshanic Station	Ambloplites rupestris	1	15.0	0.09	L	-	-
Raritan River at Neshanic Station	Ameiurus natalis	1	16.3	0.06	B	-	-
Raritan River at Neshanic Station	Ameiurus natalis	1	17.2	0.08	L	-	-
Raritan River at Neshanic Station	Lepomis auritus	1	15.7	0.15	L	-	-
Raritan River at Neshanic Station	Lepomis auritus	1	15.9	0.09	L	-	-
Raritan River at Neshanic Station	Micropterus dolomieu	1	20.7	0.18	L	-	-
Raritan River at Neshanic Station	Micropterus salmoides	1	18.2	0.11	L	-	-
Raritan River, South branch, Clairemont stretch	Salmo trutta	1	16.6	0.00	B	-	-
Raritan River, South branch, Clairemont stretch	Salmo trutta	1	17.0	0.01	B	-	-
Raritan River, South branch, Clairemont stretch	Salmo trutta	1	19.6	0.01	L	-	-
Raritan River, South branch, Clairemont stretch	Salvelinus fontinalis	1	16.2	0.02	B	-	-
Ridgeway Branch of Tom's River	Ameiurus nebulosus	1	22.8	1.15	L	-	-
Ridgeway Branch of Tom's River	Ameiurus nebulosus	1	25.6	1.57	L	-	-
Ridgeway Branch of Tom's River	Ameiurus nebulosus	1	26.4	0.17	L	-	-
Ridgeway Branch of Tom's River	Ameiurus nebulosus	1	27.0	0.44	L	-	-
Ridgeway Branch of Tom's River	Esox niger	1	36.0	1.22	L	-	-
Rockaway River near Whippany	Lepomis macrochirus	1	14.5	0.12	L	-	-
Rockaway River near Whippany	Micropterus salmoides	1	39.8	0.92	L	-	-
Rockaway River near Whippany	Pomoxis nigromaculatus	1	17.9	0.21	L	-	-
Speedwell Lake	Ameiurus nebulosus	1	21.0	0.01	L	-	-
Speedwell Lake	Lepomis macrochirus	1	18.3	0.12	L	-	-
Speedwell Lake	Lepomis macrochirus	1	19.7	0.13	L	-	-
Speedwell Lake	Micropterus salmoides	1	27.5	0.10	L	-	-
Speedwell Lake	Micropterus salmoides	1	32.5	0.34	L	-	-
Speedwell Lake	Micropterus salmoides	1	36.1	0.38	L	-	-
Steenykill Lake	Micropterus salmoides	1	26.5	0.16	L	-	-
Steenykill Lake	Micropterus salmoides	1	27.5	0.19	L	-	-
Steenykill Lake	Micropterus salmoides	1	27.7	0.19	L	-	-

Appendix B Table 1 (continued). Total lengths (cm) and mercury concentrations (ppm) of fish analyzed for the 1996 New Jersey Mercury survey. Filet types are L: left; B: both; and W: whole body. Carcass types are CWF: carcass with 1 filet and CARC: carcass with neither filet. N indicates the number of fish analyzed together. In cases where a composite sample is represented, TL indicates the range of lengths of individuals in the sample.

Station	Species	N	TL (cm)	Filet		Carcass	
				Hg conc. (ppm)	Type	Hg conc. (ppm)	Type
Steenykill Lake	Micropterus salmoides	1	27.8	0.15	L	-	-
Steenykill Lake	Micropterus salmoides	1	28.3	0.22	L	-	-
Steenykill Lake	Micropterus salmoides	1	29.6	0.15	L	-	-
Success Lake	Esox niger	1	27.5	0.76	L	-	-
Success Lake	Esox niger	1	30.2	0.65	L	-	-
Success Lake	Esox niger	1	30.5	0.63	L	-	-
Success Lake	Esox niger	1	31.7	1.01	L	-	-
Success Lake	Esox niger	1	34.4	0.78	L	-	-
Success Lake	Esox niger	1	34.6	0.82	L	-	-
Success Lake	Esox niger	1	37.5	1.17	L	-	-
Success Lake	Esox niger	1	40.0	1.64	L	-	-
Sunset Lake	Dorosoma cepedianum	1	31.8	0.04	L	-	-
Sunset Lake	Esox niger	1	30.7	0.09	L	-	-
Sunset Lake	Lepomis gibbosus	2	5.6-6.5	0.03	W	-	-
Sunset Lake	Lepomis gibbosus	1	9.4	0.04	B	0.02	CARC
Sunset Lake	Lepomis macrochirus	30	2.4-3.5	0.01	W	-	-
Sunset Lake	Lepomis macrochirus	35	2.2-3.4	0.03	W	-	-
Sunset Lake	Lepomis macrochirus	37	2.3-3.3	0.02	W	-	-
Sunset Lake	Lepomis macrochirus	1	8.8	0.03	B	0.01	CARC
Sunset Lake	Lepomis macrochirus	1	11.2	0.05	L	0.02	CWF
Sunset Lake	Micropterus salmoides	1	22.5	0.10	L	-	-
Sunset Lake	Micropterus salmoides	1	33.8	0.17	L	-	-
Sunset Lake	Micropterus salmoides	1	38.2	0.21	L	-	-
Sunset Lake	Micropterus salmoides	1	38.5	0.35	L	-	-
Sunset Lake	Micropterus salmoides	1	53.0	0.69	L	-	-
Sunset Lake	Morone americana	3	5.4-5.5	0.04	W	-	-
Sunset Lake	Morone americana	3	5.0-5.5	0.05	W	-	-
Sunset Lake	Notemigonus crysoleucas	14	3.0-5.7	0.01	W	-	-

Appendix B Table 1 (continued). Total lengths (cm) and mercury concentrations (ppm) of fish analyzed for the 1996 New Jersey Mercury survey. Filet types are L: left; B: both; and W: whole body. Carcass types are CWF: carcass with 1 filet and CARC: carcass with neither filet. N indicates the number of fish analyzed together. In cases where a composite sample is represented, TL indicates the range of lengths of individuals in the sample.

Station	Species	N	TL (cm)	Filet		Carcass	
				Hg conc. (ppm)	Type	Hg conc. (ppm)	Type
Sunset Lake	Notemigonus crysoleucas	11	4.3-5.8	0.01	W	-	-
Sunset Lake	Pomoxis nigromaculatus	2	4.8-5.3	0.02	W	-	-
Sunset Lake	Pomoxis nigromaculatus	4	4.1-4.2	0.02	W	-	-
Wawayanda Lake	Esox niger	1	35.0	0.25	L	-	-
Wawayanda Lake	Esox niger	1	37.9	0.31	L	-	-
Wawayanda Lake	Esox niger	1	39.5	0.28	L	-	-
Wawayanda Lake	Esox niger	1	40.5	0.29	L	-	-
Wawayanda Lake	Esox niger	1	42.0	0.34	L	-	-
Wawayanda Lake	Esox niger	1	42.4	0.44	L	-	-
Whitesbog Pond	Esox niger	1	23.0	0.43	L	0.31	CWF
Whitesbog Pond	Esox niger	1	31.5	0.58	L	-	-
Whitesbog Pond	Esox niger	1	32.5	0.76	L	0.62	CWF
Whitesbog Pond	Esox niger	1	34.3	0.74	L	0.55	CWF
Whitesbog Pond	Esox niger	1	39.6	1.02	L	-	-
Willow Grove Lake	Ameiurus catus	1	43.0	0.17	L	-	-
Willow Grove Lake	Ameiurus natalis	1	28.0	0.82	L	-	-
Willow Grove Lake	Ameiurus natalis	1	30.5	0.91	L	-	-
Willow Grove Lake	Ameiurus nebulosus	1	32.4	0.28	L	-	-
Willow Grove Lake	Ameiurus nebulosus	1	33.0	0.23	L	-	-
Willow Grove Lake	Esox niger	1	31.0	0.76	L	-	-
Willow Grove Lake	Esox niger	1	36.5	1.13	L	-	-
Willow Grove Lake	Esox niger	1	45.2	1.26	L	-	-
Willow Grove Lake	Esox niger	1	48.1	1.03	L	-	-
Willow Grove Lake	Esox niger	1	53.0	1.29	L	-	-
Willow Grove Lake	Micropterus salmoides	1	33.2	1.68	L	-	-

Appendix B Table 2. Data for all fish used in the results of the report of 1992 studies. Abbreviations are as follows:

Serial \#: individual code assigned to fish in the field.
Date: date the fish was caught.

Location: site where the fish was caught.
TW (g): total weight of the fish in grams.
TL (cm): total length of the fish in centimeters.
Anal \#: individual code assigned to fish fillet for chemistry.
Conc: Hg concentration in $\mathrm{mg} / \mathrm{kg}$ wet weight.
Sex: sex of the fish. $M=$ male $F=$ female $U=$ undetermined $I=$ immature
Source: group who caught the fish.

ANG=ANGLER
ANS=ACADEMY OF NATURAL SCIENCES
ADS=ANS WITH NEW JERSEY DIVISION OF SCIENTIFIC RESEARCH LLO=THOMAS LLOYD AND ASSOC.
NJD=NEW JERSEY DIVISION OF FISH GAME WILDLIFE
NJR=NEW JERSEY DIVISION OF SCIENTIFIC RESEARCH
RMC=RMC
COMM=COMMERCIAL (ONLY TRIP BLANKS)

Serial \#	Date	Location	TW (g)	TL (cm)	Anal \#	Conc	Sex	Source
Brown Bullhead								
NJ92-BAT012	11/12/92	Batsto Lake	248.4	26.5	2800	0.18	U	ANS
NJ92-COR001	4/21/93	Corbin City Impoundment \#3	298.2	26.7	3265	0.07	F	ANS
NJ92-CWC008	5/21/93	Crosswicks Creek	445	30.2	3303	0.07	U	NJR
NJ92-CRY001	9/16/92	Crystal Lake	82.8	20	3207	0.05	I	ANS
NJ92-CRY002	9/16/92	Crystal Lake	101.5	19.8	3208	0.02	I	ANS
NJ92-LDD007	8/20/92	Dundee Lake	295.5	27.1	3535	0.19	M	ADS
NJ92-LDD008	8/20/92	Dundee Lake	331.78	29.3	3536	0.20	F	ADS
NJ92-MASA001	5/01/93	Maskells Mill Lake	335.5	28.9	3258	0.47	U	ANG
NJ92-MASA002	5/01/93	Maskells Mill Lake	209.6	25.4	3259	0.23	U	ANG
NJ92-MASA010	5/24/93	Maskells Mill Lake	322.7	28.9	3292	0.31	F	ANS
NJ92-ROC001	8/19/92	Rockaway River	428	31	3274	0.12	U	ADS
NJ92-SML006	9/22/92	Saw Mill Lake	728.5	39.5	2713	0.07	U	ANS
NJ92-SML007	9/22/92	Saw Mill Lake	823	37.9	2714	0.07	F	ANS
NJ92-SML008	9/22/92	Saw Mill Lake	683	36.5	2716	0.05	U	ANS
NJ92-SML009	9/22/92	Saw Mill Lake	417	33.1	2715	0.06	U	ANS
Black Crappie								
NJ92-ALC008	11/09/92	Alcyon Lake	66.9	17.1	3290	0.29	IM	ANS
NJ92-ALC009	11/09/92	Alcyon Lake	63.7	16.9	3291	0.19	IM	ANS
NJ92-CRY012	5/28/93	Crystal Lake	96.9	19.1	3300	0.04	F	ANS
NJ92-CRY013	5/28/93	Crystal Lake	123.3	20.7	3301	0.18	F	ANS

Serial \#	Date	Location	TW (g)	TL (cm)	Anal \#	Conc	Sex	Source
NJ92-MASA003	5/24/93	Maskells Mill Lake	117.9	20.8	3287	0.20	F	ANS
NJ92-MASA016	5/24/93	Maskells Mill Lake	281.6	26.3	3286	0.29	M	ANG
NJ92-WDT007	10/27/92	Woodstown Memorial Lake	810.2	37.3	2722	0.22	M	ADS
NJ92-WDT008	10/27/92	Woodstown Memorial Lake	93.4	19.5	2724	0.10	M	ADS
NJ92-WDT009	10/27/92	Woodstown Memorial Lake	78.1	17.5	2723	0.08	F	ADS
Channel Catfish								
NJ92-BTC011	8/19/92	Big Timber Creek	610.3	42.3	2787	0.09	F	NJD
NJ92-DRC001	4/07/93	Delaware a Raritan Canal	n / a	83	3253	0.72	F	ANG
NJ92-DRTC009	10/08/92	Delaware River Abv Camden	1272.4	51.5	3260	0.26	U	ADS
NJ92-SE002	8/10/92	Delaware River Abv Easton	1190.6	51.5	3076	0.11	M	ANS
NJ92-SE008	8/10/92	Delaware River Abv Easton	814.9	45	3074	0.24	F	ANS
NJ92-BYR010	8/24/92	Delaware River Abv Trenton	1291.1	49.7	3099	0.33	F	ADS
NJ92-BYR011	8/24/92	Delaware River Abv Trenton	648	39.4	3098	0.26	F	ADS
NJ92-BYR012	8/24/92	Delaware River Abv Trenton	556.6	37.6	3097	0.07	F	ADS
NJ92-SMB008	8/25/92	Delaware River Abv Watergap	2044.3	58.1	3100	0.20	F	ADS
NJ92-DELSAL002	10/29/92	Delaware River Bel Camden	733.8	42.5	3534	0.28	F	LLO
NJ92-RAN001	11/24/92	Rancocas Creek	874.3	45.6	3257	0.11	U	ANS
Chain Pickerel								
NJ92-ALC001	11/09/92	Alcyon Lake	547.6	44.9	2791	0.40	M	ANS
NJ92-ALO013	10/28/92	Assunpink Lake	868.7	47.7	3066	0.43	F	NJF
NJ92-ALO014	10/28/92	Assunpink Lake	1495.4	58.5	3067	0.47	F	NJF

Serial \#	Date	Location	TW (g)	TL (cm)	Anal \#	Conc	Sex	Source
NJ92-BAT007	11/11/92	Batsto Lake	1515.1	57.3	2799	1.06	F	ANS
NJ92-CBL004	10/21/92	Cranberry Lake	1245.7	56.9	2788	0.37	F	NJD
NJ92-CBL005	10/21/92	Cranberry Lake	1175.9	55.5	2789	0.37	F	NJD
NJ92-CBL006	10/21/92	Cranberry Lake	513.5	42.4	2790	0.27	M	NJD
NJ92-ECL004	10/29/92	East Creek Lake	720.6	50	2730	2.3	M	ADS
NJ92-ECL006	10/29/92	East Creek Lake	1089.7	52.5	2729	2.82	F	ADS
NJ92-ECL007	10/29/92	East Creek Lake	271.3	40	2732	1.76	M	ADS
NJ92-ECL008	10/29/92	East Creek Lake	386.5	41.4	2734	1.33	M	ADS
NJ92-ECL010	10/29/92	East Creek Lake	175.5	31.5	2736	0.79	M	ADS
NJ92-ECL011	10/29/92	East Creek Lake	338.1	39	2733	1.33	M	ADS
NJ92-ECL013	10/29/92	East Creek Lake	230.2	34.5	2735	1.03	M	ADS
NJ92-ECL014	10/29/92	East Creek Lake	556.9	46.2	2731	2.44	M	ADS
NJ92-ECL016	10/29/92	East Creek Lake	831.1	51	2728	1.59	M	ADS
NJ92-HAR001	9/02/92	Harrisville Lake	759	45.7	3110	1.74	F	ADS
NJ92-HAR002	9/02/92	Harrisville Lake	432.2	40	3111	0.99	M	ADS
NJ92-HAR003	9/02/92	Harrisville Lake	137.4	28.3	3112	1.71	M	ADS
NJ92-HAR009	4/08/93	Harrisville Lake	221.3	33.5	3217	1.21	M	ANS
NJ92-HAR010	4/08/93	Harrisville Lake	1046.4	51.4	3218	2.10	F	ANS
NJ92-CJO004	8/28/92	Lake Carasaljo	287.2	34.9	2699	0.28	M	ANS
NJ92-HOP001	8/18/92	Lake Hopatcong	601.1	53	2813	0.64	F	ADS
NJ92-HOP002	8/18/92	Lake Hopatcong	817.2	48	2814	0.22	F	ADS

Serial \#	Date	Location	TW (g)	TL (cm)	Anal \#	Conc	Sex	Source
NJ92-HOP003	8/18/92	Lake Hopatcong	530	47.3	2815	0.35	M	ADS
NJ92-HOP004	8/18/92	Lake Hopatcong	451.1	45	2816	0.37	M	ADS
NJ92-HOP005	8/18/92	Lake Hopatcong	256.3	35.1	2817	0.19	F	ADS
NJ92-NUM001	10/29/92	Lake Nummy	193.7	35	2743	1.36	M	ADS
NJ92-LEN001	10/01/92	Lenape Lake	863	49.7	2808	0.89	M	NJD
NJ92-LEN002	10/01/92	Lenape Lake	657.3	44.8	2809	0.54	F	NJD
NJ92-LEN003	10/01/92	Lenape Lake	270	35.5	2812	0.25	F	NJD
NJ92-MASA004	5/24/93	Maskells Mill Lake	141.8	28	3288	0.37	M	ANS
NJ92-MIR002	8/26/92	Mirror Lake	255.1	34.2	2755	0.17	F	ANS
NJ92-MKR001	9/30/92	Monksville Reservoir	1770.5	64	2770	1.14	F	NJD
NJ92-MKR002	9/30/92	Monksville Reservoir	451.5	42.4	2771	0.36	F	NJD
NJ92-MKR003	9/30/92	Monksville Reservoir	431.2	39.3	2772	0.21	F	NJD
NJ92-MUL001	5/22/93	Mullica River	487.1	40.7	3289	1.21	M	ANS
NJCAM92-NBL021	4/04/93	New Brooklyn Lake	632.2	46.2	3187	0.82	F	ANS
NJCAM92-NBL022	4/04/93	New Brooklyn Lake	1507.4	59.7	3188	1.30	F	ANS
NJ92-ROC004	8/19/92	Rockaway River	631.9	44.7	3105	0.31	F	ADS
NJ92-ROC005	8/19/92	Rockaway River	507.7	40.7	3106	0.29	M	ADS
NJ92-ROC006	8/19/92	Rockaway River	422.4	38.8	3107	0.25	IF	ADS
NJ92-ROC007	8/19/92	Rockaway River	246.6	34	3108	0.15	F	ADS
NJ92-ROC008	8/19/92	Rockaway River	170	30.6	3109	0.15	IF	ADS
NJ92-STF001	10/25/92	Stafford Forge Main Line	100.6	26.6	3221	0.59	F	ANS

Serial \#	Date	Location	TW (g)	TL (cm)	Anal \#	Conc	Sex	Source
NJ92-STF002	4/08/93	Stafford Forge Main Line	115.4	29.9	3215	0.85	F	ANS
NJ92-STF003	4/08/93	Stafford Forge Main Line	99.1	27.7	3216	0.63	IM	ANS
NJ92-SWL001	9/11/92	Swartswood Lake	547.6	43.3	2777	0.10	M	NJD
NJ92-SWL002	9/11/92	Swartswood Lake	540.5	42.3	2776	0.12	M	NJD
NJ92-SWL003	9/11/92	Swartswood Lake	455.1	39.6	2778	0.09	F	NJD
NJ92-UL003	7/16/93	Union Lake	620.9	46.6	3538	1.08	F	NJR
NJ92-WAD001	9/02/92	Wading River	605	43.6	2707	1.23	M	ANS
NJ92-WAD002	9/02/92	Wading River	404.4	40.8	2708	0.68	F	ANS
NJ92-WAD003	9/02/92	Wading River	361.6	39.4	2709	0.66	M	ANS
NJ92-WAD004	9/02/92	Wading River	343.8	37.3	2710	1.09	M	ANS
NJ92-WAD005	9/02/92	Wading River	254.7	34.3	2711	0.82	F	ANS
NJ92-WAN001	8/19/92	Wanaque Reservoir	1244.4	55.5	3114	0.93	F	ADS
NJ92-WAN002	8/19/92	Wanaque Reservoir	421.2	38.7	3115	0.33	M	ADS
NJ92-WIL001	10/28/92	Wilson Lake	1056.1	50.6	2703	1.06	M	ADS
NJ92-WIL002	10/28/92	Wilson Lake	339.4	37.8	2704	0.24	M	ADS
NJ92-WIL003	10/28/92	Wilson Lake	287.9	36.3	2705	0.38	M	ADS
NJ92-WIL004	10/28/92	Wilson Lake	245.3	34.4	2706	1.53	F	ADS
Hybrid Striped Bass								
NJ92-CBL001	10/21/92	Cranberry Lake	2504.4	52	2796	0.43	F	NJD
NJ92-CBL002	10/21/92	Cranberry Lake	807.7	37	2797	0.31	F	NJD
NJ92-CBL003	10/21/92	Cranberry Lake	753.6	38.2	2798	0.29	F	NJD

Serial \#	Date	Location	TW (g)	TL (cm)	Anal \#	Conc	Sex
Source							
NJ92-DELSAL001	$10 / 29 / 92$	Delaware River Bel Camden	345.6	31.2	3533	0.13	F
LJ92-SRR001	$9 / 22 / 92$	Spruce Run Reservoir	736.5	38.2	3063	0.22	M
NJ92-SRR002	$9 / 22 / 92$	Spruce Run Reservoir	760.5	37.1	3064	0.19	MJD
NJ92-SRR003	$9 / 22 / 92$	Spruce Run Reservoir	542.2	33.1	3065	0.17	NJD

Largemouth Bass								
NJ92-ALC011	$11 / 09 / 92$	Alcyon Lake	559.2	33.7	2792	0.41	F	ANS
NJ92-ALC012	$11 / 09 / 92$	Alcyon Lake	270.2	28.6	2793	0.67	F	ANS
NJ92-ALC013	$11 / 09 / 92$	Alcyon Lake	308.5	28	2794	0.33	F	ANS
NJ92-ALC015	$11 / 09 / 92$	Alcyon Lake	294.3	27.8	2795	0.51	F	ANS
NJ92-ASC001	$11 / 04 / 92$	Assunpink Creek	272.5	27.1	2686	0.07	F	ANS
NJ92-ASC002	$11 / 04 / 92$	Assunpink Creek	251.3	26.3	2687	0.10	F	ANS
NJ92-ASC003	$11 / 04 / 92$	Assunpink Creek	244.4	26.5	2688	0.18	M	ANS
NJ92-ASC004	$11 / 04 / 92$	Assunpink Creek	230.5	25.5	2689	0.17	F	ANS
NJ92-ASC005	$11 / 04 / 92$	Assunpink Creek	198.6	24.7	2690	0.10	I	ANS
NJ92-ASC006	$11 / 04 / 92$	Assunpink Creek	205.2	25	2691	0.17	F	ANS
NJ92-AL001	$8 / 07 / 92$	Assunpink Lake	1084.8	41.5	2752	0.39	F	NJF
NJ92-AL002	$8 / 07 / 92$	Assunpink Lake	1018	40	2753	0.45	M	NJF
NJ92-AL003	$8 / 07 / 92$	Assunpink Lake	819.3	37.3	2754	0.36	M	NJF
NJ92-ACR001	$6 / 18 / 93$	Atlantic City Reservoir	707.4	36.5	3504	3.58	F	NJR
NJ92-ACR002	$6 / 18 / 93$	Atlantic City Reservoir	662.7	35.6	3505	3.45	F	NJR
NJ92-ACR003	$6 / 18 / 93$	Atlantic City Reservoir	644.5	36.1	3506	4.11	M	NJR

Serial \#	Date	Location	TW (g)	TL (cm)	Anal \#	Conc	Sex	Source
NJ92-ACR004	6/18/93	Atlantic City Reservoir	622.8	34	3507	3.05	M	NJR
NJ92-ACR005	6/18/93	Atlantic City Reservoir	696.7	36.3	3508	3.69	M	NJR
NJ92-ACR006	6/18/93	Atlantic City Reservoir	795.4	41.4	3509	8.94	M	NJR
NJ92-BAT008	11/11/92	Batsto Lake	855	37.5	2801	1.28	F	ANS
NJ92-BAT009	11/11/92	Batsto Lake	626.4	35.4	2803	1.20	M	ANS
NJ92-BAT010	11/11/92	Batsto Lake	277.3	27.1	2804	0.76	F	ANS
NJ92-BTC008	8/19/92	Big Timber Creek	599.4	33	2784	0.10	M	NJD
NJ92-BTC009	8/19/92	Big Timber Creek	323.4	28.2	2785	0.12	F	NJD
NJ92-BTC010	8/19/92	Big Timber Creek	286.7	25.5	2786	0.06	U	NJD
NJ92-CAN001	6/11/93	Canistear Reservoir	668.1	39.1	3510	0.69	M	NJR
NJ92-CAN002	6/11/93	Canistear Reservoir	670.7	36	3511	0.41	F	NJR
NJ92-CAN003	6/11/93	Canistear Reservoir	762.3	38.8	3512	0.74	M	NJR
NJ92-CAN004	6/11/93	Canistear Reservoir	924.2	40	3513	0.55	M	NJR
NJ92-CAN005	6/11/93	Canistear Reservoir	1037.6	42.2	3514	0.52	M	NJR
NJ92-CAN006	6/11/93	Canistear Reservoir	1192.5	43.5	3515	0.68	F	NJR
NJ92-CAN007	6/11/93	Canistear Reservoir	1384.7	45.7	3516	0.61	F	NJR
NJ92-CAR001	5/03/93	Carnegie Lake	423.7	32.3	3302	0.29	F	NJR
NJ92-CAR002	5/03/93	Carnegie Lake	685.5	35.12	3304	0.37	M	NJR
NJ92-CAR003	5/03/93	Carnegie Lake	2738.3	51.3	3305	1.07	F	NJR
NJ92-CAR004	5/03/93	Carnegie Lake	975.4	39.1	3306	0.20	F	NJR
NJ92-CAR005	5/03/93	Carnegie Lake	1623.8	44.7	3307	0.45	F	NJR

Serial \#	Date	Location	TW (g)	TL (cm)	Anal \#	Conc	Sex	Source
NJ92-CAR006	5/03/93	Carnegie Lake	731.8	35.1	3308	0.58	M	NJR
NJ92-CLI001	6/11/92	Clinton Reservoir	638.5	36	3526	0.84	F	NJR
NJ92-CLI002	6/11/92	Clinton Reservoir	388.4	28.2	3527	0.39	F	NJR
NJ92-CLI003	6/11/92	Clinton Reservoir	570.7	34.3	3528	0.60	M	NJR
NJ92-CLI004	6/11/92	Clinton Reservoir	626	34.6	3529	0.73	F	NJR
NJ92-CLI005	6/11/92	Clinton Reservoir	1196.9	44.1	3530	0.83	F	NJR
NJ92-CLI006	6/11/92	Clinton Reservoir	729.1	37.1	3531	0.85	M	NJR
NJ92-CRP002	9/07/92	Cooper River Park Lake	257.8	28	3113	0.07	F	ANS
NJ92-CRP010	11/11/92	Cooper River Park Lake	1564	43.5	3102	0.31	F	ANS
NJCAM92-CRP002	11/11/92	Cooper River Park Lake	498.1	30.8	2998	0.09	M	ANS
NJCAM92-CRP004	11/11/92	Cooper River Park Lake	750	35.5	2999	0.14	M	ANS
NJCAM92-CRP006	11/11/92	Cooper River Park Lake	270.2	25.5	2997	0.08	F	ANS
NJ92-CWC001	5/21/93	Crosswicks Creek	346	27.6	3293	0.15	F	NJR
NJ92-CWC002	5/21/93	Crosswicks Creek	291	26.9	3294	0.13	F	NJR
NJ92-CRY008	4/18/93	Crystal Lake	174.7	23.5	3246	0.09	f	ANS
NJ92-CRY009	5/28/93	Crystal Lake	1223.5	42.6	3299	0.28	F	ANS
NJ92-CRY010	5/28/93	Crystal Lake	396.9	30	3298	0.14	F	ANS
NJ92-DRTC001	10/08/92	Delaware River Abv Camden	1478.5	42.3	2749	0.37	F	ADS
NJ92-DRTC002	10/08/92	Delaware River Abv Camden	669.9	34.2	2750	0.13	M	ADS
NJ92-DRTC003	10/08/92	Delaware River Abv Camden	389.1	30.5	2751	0.12	M	ADS
NJ92-DRTC004	10/08/92	Delaware River Abv Camden	388.4	28.5	3255	0.08	F	ADS

Serial \#	Date	Location	TW (g)	TL (cm)	Anal \#	Conc	Sex	Source
NJ92-DRTC005	10/08/92	Delaware River Abv Camden	222.9	24.9	3256	0.07	F	ADS
NJ92-BYR009	8/24/92	Delaware River Abv Trenton	945.2	38.2	3088	0.20	F	ADS
NJ92-LDD001	8/20/92	Dundee Lake	902	36	3169	0.43	F	ADS
NJ92-LDD002	8/20/92	Dundee Lake	690.5	35.3	3170	0.62	M	ADS
NJ92-LDD003	8/20/92	Dundee Lake	721.8	34.4	3171	0.52	M	ADS
NJ92-LDD004	8/20/92	Dundee Lake	562.7	33.6	3172	0.36	M	ADS
NJ92-LDD005	8/20/92	Dundee Lake	501.5	31.1	3173	0.27	F	ADS
NJ92-CJO001	8/28/92	Lake Carasaljo	1059.9	41.5	2696	0.81	F	ANS
NJ92-CJO002	8/28/92	Lake Carasaljo	853	40	2697	0.90	M	ANS
NJ92-CJO003	8/28/92	Lake Carasaljo	726.8	38.5	2698	0.57	M	ANS
NJ92-HOP007	8/18/92	Lake Hopatcong	1081.3	41.4	2818	0.28	F	ADS
NJ92-HOP008	8/18/92	Lake Hopatcong	1007.1	39.9	2819	0.27	M	ADS
NJ92-HOP009	8/18/92	Lake Hopatcong	824.2	36.5	2820	0.25	M	ADS
NJ92-HOP011	8/18/92	Lake Hopatcong	398	29.5	2821	0.30	F	ADS
NJ92-MR001	7/15/93	Manasquan Reservoir	1097.1	38.9	3543	2.35	F	NJR
NJ92-MR002	7/15/93	Manasquan Reservoir	1329.3	40.3	3544	3.87	F	NJR
NJ92-MR003	7/15/93	Manasquan Reservoir	1137.6	41.1	3545	3.16	F	NJR
NJ92-MR004	7/15/93	Manasquan Reservoir	1020.4	38	3546	2.89	F	NJR
NJ92-MR005	7/15/93	Manasquan Reservoir	463.3	31	3547	0.76	M	NJR
NJ92-MR006	7/15/93	Manasquan Reservoir	1199.5	40	3548	2.49	M	NJR
NJ92-MR007	7/15/93	Manasquan Reservoir	830.7	36.4	3549	2.45	M	NJR

Serial \#	Date	Location	TW (g)	TL (cm)	Anal \#	Conc	Sex	Source
NJ92-MASA013	5/24/93	Maskells Mill Lake	419.9	32.4	3284	0.48	F	ANG
NJ92-MASA014	5/24/93	Maskells Mill Lake	231.1	25.9	3285	0.36	M	ANG
NJ92-MER005	11/17/92	Merrill Creek Reservoir	1349.6	43.9	3148	0.96	F	RMC
NJ92-MER006	11/17/92	Merrill Creek Reservoir	1040.2	41	3147	1.21	F	RMC
NJ92-MER007	11/17/92	Merrill Creek Reservoir	404.7	30.9	3146	0.29	U	RMC
NJ92-MIR003	10/11/92	Mirror Lake	266.6	28.2	3149	0.26	M	NJD
NJ92-MIR004	10/11/92	Mirror Lake	223.3	26.6	3154	0.28	M	NJD
NJ92-MKR004	9/30/92	Monksville Reservoir	794.8	38.4	2773	1.00	F	NJD
NJ92-MKR005	9/30/92	Monksville Reservoir	601.4	33.9	2774	0.52	M	NJD
NJ92-MKR006	9/30/92	Monksville Reservoir	324.8	28.7	2775	0.45	F	NJD
NJ92-MTL004	8/25/92	Mountain Lake	1892.2	47	3143	0.90	F	ADS
NJ92-MTL005	8/25/92	Mountain Lake	776.9	37.4	3144	0.37	M	ADS
NJ92-MTL006	8/25/92	Mountain Lake	471.4	31.8	3145	0.22	F	ADS
NJCAM92-NEW003	11/10/92	Newton Lake	483.1	30.6	3201	0.05	F	ANS
NJCAM92-NEW008	11/10/92	Newton Lake	213.9	25.8	3200	0.06	M	ANS
NJCAM92-NEW009	11/10/92	Newton Lake	636.1	33.6	3212	0.06	M	ANS
NJCAM92-NEW012	11/10/92	Newton Lake	1707.33	45.2	3214	0.18	F	ANS
NJ92-GPC001	8/20/92	Passaic River Great Piece	763.6	34.3	2737	0.66	M	ADS
NJ92-GPC002	8/20/92	Passaic River Great Piece	699.3	34.5	2738	0.53	F	ADS
NJ92-GPC003	8/20/92	Passaic River Great Piece	609.2	33.3	2739	0.65	M	ADS
NJ92-GPC004	8/20/92	Passaic River Great Piece	620.5	33.6	2740	0.50	M	ADS

Serial \#	Date	Location	TW (g)	TL (cm)	Anal \#	Conc	Sex	Source
NJ92-GPC005	8/20/92	Passaic River Great Piece	520.3	32.3	2741	0.19	M	ADS
NJ92-GPC006	8/20/92	Passaic River Great Piece	383.5	29.4	2742	0.56	F	ADS
NJ92-POM001	7/01/93	Pompton Lake	474.7	30.4	3517	0.35	F	NJR
NJ92-POM002	7/01/93	Pompton Lake	484.5	30.1	3518	0.28	F	NJR
NJ92-POM003	7/01/93	Pompton Lake	668.9	33.5	3519	0.47	F	NJR
NJ92-POM004	7/01/93	Pompton Lake	541.2	31.1	3520	0.22	F	NJR
NJ92-POM005	7/01/93	Pompton Lake	766.3	36.1	3521	0.39	F	NJR
NJ92-POM006	7/01/93	Pompton Lake	783.6	36.5	3522	0.46	F	NJR
NJ92-POM007	7/01/93	Pompton Lake	1092.7	39.5	3523	0.51	F	NJR
NJ92-POM008	7/01/93	Pompton Lake	1050.7	37.6	3524	0.40	F	NJR
NJ92-POM009	7/01/93	Pompton Lake	1692.3	45.8	3525	0.94	F	NJR
NJ92-ROC009	8/19/92	Rockaway River	466	31.5	2746	0.73	M	ADS
NJ92-ROC010	8/19/92	Rockaway River	401.1	28.9	2747	0.59	F	ADS
NJ92-ROC011	8/19/92	Rockaway River	262.5	26.4	2748	0.36	F	ADS
NJ92-RVR004	6/14/93	Round Valley Reservoir	632.8	35.1	3501	0.24	F	NJD
NJ92-RVR005	6/14/93	Round Valley Reservoir	687.8	37.1	3502	0.24	M	NJD
NJ92-RVR006	6/14/93	Round Valley Reservoir	191.2	25.2	3503	0.16	M	NJD
NJ92-SHA007	8/27/92	Shadow Lake	655.2	36.7	2692	0.18	F	ADS
NJ92-SHA012	9/03/92	Shadow Lake	396	31.2	2693	0.26	F	ANG
NJ92-SHA013	9/03/92	Shadow Lake	341.9	30.4	2694	0.15	U	ANG
NJ92-SHA014	9/03/92	Shadow Lake	288.9	29.1	2695	0.12	F	ANG

Serial \#	Date	Location	TW (g)	TL (cm)	Anal \#	Conc	Sex	Source
NJ92-SPG001	8/27/92	Spring Lake	1713.8	47.8	2700	0.80	F	ANS
NJ92-SPG002	8/27/92	Spring Lake	939.5	49.9	2701	0.75	F	ANS
NJ92-SPG003	8/27/92	Spring Lake	688.8	37.1	2702	0.21	M	ANS
NJ92-SRR004	9/22/92	Spruce Run Reservoir	194.1	25.2	2995	0.10	M	NJD
NJ92-SRR005	9/22/92	Spruce Run Reservoir	326.5	28.4	2996	0.19	F	NJD
NJ92-SRR008	4/06/93	Spruce Run Reservoir	1162.2	41.2	3269	0.41	F	NJD
NJ92-SRR009	4/06/93	Spruce Run Reservoir	1240.7	43.8	3270	0.64	F	NJD
NJ92-UL001	7/04/93	Union Lake	441.7	31.6	3532	1.25	F	ANS
NJ92-UL002	7/16/93	Union Lake	1342.9	42	3537	1.9	F	NJR
NJ92-UL004	7/22/93	Union Lake	1600.8	45.5	3539	1.6	F	NJR
NJ92-UL005	7/22/93	Union Lake	661.3	34.6	3540	1.48	F	NJR
NJ92-UL006	7/22/93	Union Lake	564.2	34.9	3541	2.02	U	NJR
NJ92-UL007	7/22/93	Union Lake	246.4	24.9	3542	0.61	F	NJR
NJ92-WAN003	8/19/92	Wanaque Reservoir	1770.7	46.4	2764	1.18	F	ADS
NJ92-WAN004	8/19/92	Wanaque Reservoir	1562.6	43.8	2765	1.17	F	ADS
NJ92-WAN005	8/19/92	Wanaque Reservoir	1140.6	40.5	2766	1.01	M	ADS
NJ92-WAN006	8/19/92	Wanaque Reservoir	929.9	37.8	2767	0.61	M	ADS
NJ92-WAN007	8/19/92	Wanaque Reservoir	834.4	36.6	2768	0.75	F	ADS
NJ92-WAN008	8/19/92	Wanaque Reservoir	539.7	32.8	2769	0.40	F	ADS
NJ92-WDT002	10/27/92	Woodstown Memorial Lake	963.6	39.3	2718	0.34	F	ADS
NJ92-WDT003	10/27/92	Woodstown Memorial Lake	276.6	27.6	2720	0.23	M	ADS

Serial \#	Date	Location	TW (g)	TL (cm)	Anal \#	Conc	Sex	Source
NJ92-WDT004	10/27/92	Woodstown Memorial Lake	299.2	27.8	2719	0.20	M	ADS
NJ92-WDT005	10/27/92	Woodstown Memorial Lake	1779.5	45.1	2717	0.50	F	ADS
NJ92-WDT006	10/27/92	Woodstown Memorial Lake	184.9	24.5	2721	0.11	M	ADS
Lake Trout								
NJ92-MER009	11/17/92	Merrill Creek Reservoir	1421.2	56.4	3158	0.69	U	RMC
NJ92-MER010	11/17/92	Merrill Creek Reservoir	1427.2	53.2	3159	0.79	U	RMC
NJ92-MER011	11/17/92	Merrill Creek Reservoir	1114	51.6	3160	0.77	F	RMC
NJ92-MER012	11/17/92	Merrill Creek Reservoir	1207.2	51.3	3161	0.44	F	RMC
NJ92-RVR001	11/06/92	Round Valley Reservoir	4800	75.5	2823	0.14	M	NJD
NJ92-RVR002	11/06/92	Round Valley Reservoir	1590.1	54.4	2824	0.14	M	NJD
NJ92-RVR003	11/06/92	Round Valley Reservoir	594.5	40	2825	0.06	I	NJD
Muskellunge								
NJ92-SMB010	8/25/92	Delaware River Abv Watergap	962.6	51.4	3096	0.19	IF	ADS
Northern Pike								
NJ92-BUD002	4/07/93	Budd Lake	2220.3	68.5	3266	0.14	F	NJD
NJ92-BUD003	4/07/93	Budd Lake	1135.7	54.8	3267	0.11	M	NJD
NJ92-BUD004	4/07/93	Budd Lake	1648.7	64	3268	0.11	F	NJD
NJ92-SML001	9/22/92	Saw Mill Lake	1058.8	53.4	2712	0.27	M	ANS
NJ92-SRR004	4/06/93	Spruce Run Reservoir	1775.9	64.2	3271	0.39	M	NJD
NJ92-SRR005	4/06/93	Spruce Run Reservoir	1729	63.2	3272	0.41	M	NJD

Serial \#	Date	Location	TW (g)	TL (cm)	Anal \#	Conc	Sex	Source
Rainbow Trout								
NJ92-MC001	10/21/92	Merrill Creek	175	25.3	2744	0.04	M	ANS
NJ92-MC002	10/21/92	Merrill Creek	175.5	24.7	2745	0.08	M	ANS
NJ92-MER001	11/17/92	Merrill Creek Reservoir	503.9	38.6	3155	0.24	U	RMC
NJ92-MER002	11/17/92	Merrill Creek Reservoir	599.9	37.5	3156	0.14	U	RMC
NJ92-MER004	11/17/92	Merrill Creek Reservoir	307.5	32.1	3157	0.14	U	RMC
NJ92-ROC003	8/19/92	Rockaway River	1745	53.6	2759	0.04	F	ADS
Smallmouth Bass								
NJ92-SE005	8/10/92	Delaware River Abv Easton	199.9	25.4	3070	0.15	IF	ANS
NJ92-SE012	8/10/92	Delaware River Abv Easton	329.5	30	3071	0.21	F	ANS
NJ92-SE013	8/10/92	Delaware River Abv Easton	585	35.5	3072	0.25	F	ANS
NJ92-SE014	8/10/92	Delaware River Abv Easton	1060.5	41.9	3073	0.44	F	ANS
NJ92-SE015	8/10/92	Delaware River Abv Easton	412.3	30.7	3069	0.24	F	ANS
NJ92-BYR001	8/24/92	Delaware River Abv Trenton	823.3	38.7	3090	0.22	M	ADS
NJ92-BYR002	8/24/92	Delaware River Abv Trenton	842.4	37.4	3089	0.15	F	ADS
NJ92-BYR003	8/24/92	Delaware River Abv Trenton	570.9	35.4	3091	0.16	F	ADS
NJ92-BYR004	8/24/92	Delaware River Abv Trenton	453.6	32	3092	0.12	M	ADS
NJ92-BYR006	8/24/92	Delaware River Abv Trenton	318.5	29.8	3093	0.13	F	ADS
NJ92-BYR007	8/24/92	Delaware River Abv Trenton	316	28	3094	0.08	F	ADS
NJ92-BYR008	8/24/92	Delaware River Abv Trenton	196.7	24.5	3095	0.09	F	ADS
NJ92-SMB001	8/25/92	Delaware River Abv Watergap	800.9	39.8	2760	0.39	F	ADS

Serial \#	Date	Location	TW (g)	TL (cm)	Anal \#	Conc	Sex	Source
NJ92-SMB002	8/25/92	Delaware River Abv Watergap	660.4	35.6	2761	0.36	M	ADS
NJ92-SMB003	8/25/92	Delaware River Abv Watergap	372	31	2762	0.45	M	ADS
NJ92-SMB004	8/25/92	Delaware River Abv Watergap	227	27	2763	0.29	F	ADS
NJ92-SWL004	9/11/92	Swartswood Lake	702.7	37.5	2779	0.29	F	NJD
NJ92-SWL005	9/11/92	Swartswood Lake	611.2	35.5	2780	0.18	F	NJD
NJ92-SWL006	9/11/92	Swartswood Lake	366.5	30.8	2781	0.12	M	NJD
NJ92-WAN009	8/19/92	Wanaque Reservoir	778.9	37.9	2805	0.51	F	ADS
NJ92-WAN010	8/19/92	Wanaque Reservoir	275.8	27.5	2806	0.34	M	ADS
Walleye								
NJ92-SE016	8/10/92	Delaware River Abv Easton	221.8	30	3068	0.18	IF	ANS
White Catfish								
NJ92-BTC005	8/19/92	Big Timber Creek	539.4	33.4	2782	0.08	M	NJD
NJ92-BTC006	8/19/92	Big Timber Creek	398.5	29.6	2783	0.09	F	NJD
NJ92-BUD001	4/18/93	Budd Lake	510.4	33.8	3245	0.17	n / a	ANS
NJ92-CWC005	5/21/93	Crosswicks Creek	551.1	34.1	3295	0.09	U	NJR
NJ92-CWC006	5/21/93	Crosswicks Creek	549.5	33	3296	0.07	M	NJR
NJ92-CWC007	5/21/93	Crosswicks Creek	352.6	28.4	3297	0.09	M	NJR
NJ92-DRTC010	10/08/92	Delaware River Abv Camden	1207.9	43.1	3261	0.27	F	ADS
NJ92-DRTC011	10/08/92	Delaware River Abv Camden	938.5	40.8	3262	0.09	F	ADS
NJ92-DRTC012	10/08/92	Delaware River Abv Camden	885.2	40.8	3263	0.13	F	ADS
NJ92-DRTC013	10/08/92	Delaware River Abv Camden	434.7	31.3	3264	0.05	U	ADS

Serial \#	Date	Location	TW (g)	TL (cm)	Anal \#	Conc	Sex	Source
NJ92-SE003	8/10/92	Delaware River Abv Easton	850	49.5	3075	0.58	F	ANS
Yellow Bullhead								
NJ92-ATS013	11/11/92	Atsion Lake	235	26.5	2822	0.91	U	ANS
NJ92-BAT011	11/12/92	Batsto Lake	164.6	23.7	2807	0.23	U	ANS
NJ92-ECL002	10/29/92	East Creek Lake	260.5	27.4	3103	1.47	F	ADS
NJ92-ECL003	10/29/92	East Creek Lake	252.6	26.8	3104	1.29	F	ADS
NJ92-HAR011	11/11/92	Harrisville Lake	315.2	27.5	3254	1.36	U	ANS
NJ92-NUM005	10/30/92	Lake Nummy	301.9	26.7	2758	0.32	U	ADS
NJ92-NUM006	10/30/92	Lake Nummy	332.9	27.8	2756	0.32	U	ADS
NJ92-NUM007	10/30/92	Lake Nummy	322.8	28.1	2757	0.32	F	ADS
NJ92-ROC002	8/19/92	Rockaway River	143.2	21.2	3273	0.15	I	ADS

Boston Mackerel								
NJ92-TB2003	8/25/92	Trip Blank	393.3	36	3086	0.05	U	COMM
NJ92-TB2004	8/25/92	Trip Blank	233.5	31.4	3087	0.03	U	COMM

Porgy								
NJ92-TBL1A	8/20/92	Trip Blank	195.9	22.4	3079	0.10	F	COMM
NJ92-TBL1B	8/20/92	Trip Blank	163.8	21.8	3080	0.14	U	COMM
NJ92-TBL1C	8/20/92	Trip Blank	159.5	21	3081	0.08	U	COMM
RAINBOW TROUT								
NJ92-TBL1	8/20/92	Trip Blank	370.2	30.9	3083	0.03	U	COMM
NJ92-TBL1D	8/20/92	Trip Blank	343.2	29	3082	0.03	U	COMM

Serial \#	Date	Location	TW (g)	TL (cm)	Anal \#	Conc	Sex	Source
NJ92-TB2001	8/25/92	Trip Blank	234.1	26.7	3084	0.07	U	COMM
NJ92-TB2002	8/25/92	Trip Blank	237.8	26.2	3085	0.06	U	COMM
Spot								
NJ92-TB3001	8/28/92	Trip Blank	211.1	23	2727	0.04	M	COMM
NJ92-TB3002	8/28/92	Trip Blank	219.2	23	2726	0.03	M	COMM
NJ92-TB3003	8/28/92	Trip Blank	241.3	23.5	2725	0.06	U	COMM
NJ92-TB4001	10/08/92	Trip Blank	192.3	23.5	3077	0.04	IF	COMM
NJ92-TB4002	10/08/92	Trip Blank	177.5	22.1	3078	0.02	F	COMM

Appendix B Table 3. Total mass, laboratory total length and total mercury concentrations in fish collected from freshwater sites in Camden and Burlington counties, NJ in 1992.

Site	pH Range	Km from Incinerator*	Species	Total Mass (g)	Total Length (cm)	Total Mercury ($\mu \mathrm{g} / \mathrm{g}$)
"Newton Creek, North"	7-8	1	Brown Bullhead	580	32.4	0.026^{+}
			Brown Bullhead	590.7	32.3	0.034^{+}
			Brown Bullhead	648.9	34.4	0.026^{+}
			Brown Bullhead	430.6	29	0.017^{+}
			Channel Catfish	853.7	47.1	0.121
			Channel Catfish	374.6	36.5	0.080
"Newton Creek, South"	7-8	2	Brown Bullhead	347.3	29.5	0.175
			Brown Bullhead	201.6	26.1	0.055
			Brown Bullhead	189.2	25.9	0.040
			Chain Pickerel	106.9	25.3	0.100
			Largemouth Bass	677.1	37.1	0.229
			Largemouth Bass	809.1	36.6	0.239
			Largemouth Bass	378.6	30.7	1.15**
Little Timber Creek	7-8	2.5	Brown Bullhead	484.2	33.5	0.040
			Brown Bullhead	382.2	29.5	0.037^{+}
Newton Lake	>8	2.75	Largemouth Bass	213.9	25.8	0.063
			Largemouth Bass	483.1	30.6	0.053
			Largemouth Bass	486.4	31	0.067
			Largemouth Bass	477.3	31	0.071
			Largemouth Bass	1231.4	41.1	0.215
			Largemouth Bass	1532.2	45.6	0.403
			Largemouth Bass	210.4	25	0.063

Appendix B Table 3 (continued). Total mass, laboratory total length and total mercury concentrations in fish collected from freshwater sites in Camden and Burlington counties, NJ in 1992.

Site	$\begin{gathered} \text { pH } \\ \text { Range } \end{gathered}$	Km from Incinerator*	Species	Total Mass (g)	Total Length (cm)	Total Mercury ($\mu \mathrm{g} / \mathbf{g}$)
			Largemouth Bass	329	29.1	0.074
			Largemouth Bass	419.2	30	0.048
			Largemouth Bass	636.1	33.6	0.061
			Largemouth Bass	556.3	33.1	0.061
			Largemouth Bass	1707.3	45.2	0.181
			Black Crappie	82.7	18.4	0.088
			Black Crappie	101.6	19.4	0.111
			Black Crappie	115.7	20.4	0.130
Big Timber Creek	7-8	3.5	Black Crappie	77.8	15.5	0.072
			Brown Bullhead	417	31	0.060
			Brown Bullhead	372.6	29.4	0.049
			Channel Catfish	610.3	42.3	0.090
			Largemouth Bass	599.4	33	0.097
			Largemouth Bass	323.4	28.2	0.123
			White Catfish	539.4	33.4	0.083
			White Catfish	398.5	29.6	0.086
Cooper River (Hwy. 130)	6-7	4	Largemouth Bass	270.2	25.5	0.084
			Largemouth Bass	498.1	30.8	0.094
			Largemouth Bass	750	35.5	0.144
			Largemouth Bass	153	21.7	0.042
			Largemouth Bass	526.1	32.2	0.096
			Largemouth Bass	1419	44	0.558**

Appendix B Table 3 (continued). Total mass, laboratory total length and total mercury concentrations in fish collected from freshwater sites in Camden and Burlington counties, NJ in 1992.

Site	$\underset{\text { Range }}{\mathbf{p H}}$	Km from Incinerator*	Species	Total Mass (g)	Total Length (cm)	Total Mercury ($\mu \mathrm{g} / \mathbf{g}$)
			Largemouth Bass	257.8	28	0.067
			Largemouth Bass	1564	43.5	0.309
			Largemouth Bass	105.1	19.5	0.117
			Largemouth Bass	459.7	32.8	0.127
			Largemouth Bass	118.7	21.4	0.027
Cooper River Park	6-7	4	Largemouth Bass	155.9	22.1	0.086
			Black Crappie	68.4	18.4	0.116
			Black Crappie	63.7	18.1	0.096
			Black Crappie	64.4	16.7	0.037^{+}
Evans Lake	6-7	6.75	Largemouth Bass	321.8	27.8	0.150
			Largemouth Bass	137.4	21.5	0.329
Strawbridge Lake	6-7	12.5	Largemouth Bass	528.2	33.5	0.199
			Largemouth Bass	418.8	30.5	0.189
			Largemouth Bass	257.7	26.8	0.215
			Largemouth Bass	137.8	22.6	0.090
			Largemouth Bass	132.8	21.3	0.079
			Black Crappie	46.8	15.3	0.128
			Black Crappie	40.8	14.8	0.241
			Black Crappie	39.4	14.3	0.235
Clementon Lake	6-7	14.25	Chain Pickerel	229.7	35.5	0.137
			Chain Pickerel	179.3	33	0.159
			Chain Pickerel	352.8	40	0.159

Appendix B Table 3 (continued). Total mass, laboratory total length and total mercury concentrations in fish collected from freshwater sites in Camden and Burlington counties, NJ in 1992.

Site	$\underset{\text { Range }}{\text { pH }}$	Km from Incinerator*	Species	Total Mass (g)	Total Length (cm)	Total Mercury ($\mu \mathrm{g} / \mathrm{g}$)
			Chain Pickerel	501.1	47.6	0.379
			Chain Pickerel	679.5	48.6	0.370
			Chain Pickerel	646.6	50.5	0.322
			Largemouth Bass	634.8	35.9	0.280
			Largemouth Bass	419.6	38.7	0.491**
Marlton Lake	6-7	19.5	Largemouth Bass	672.2	38	1.360**
New Brooklyn Lake	5-6	25	Chain Pickerel	330.5	37.7	0.230
			Chain Pickerel	750.1	46.6	0.790**
			Chain Pickerel	36.9	18.7	0.096
			Chain Pickerel	1507.4	59.7	1.300**
			Chain Pickerel	632.2	46.2	0.820**

*Approximate distance.
+Below detection limit ($0.038 \mu \mathrm{~g} / \mathrm{g}$).
${ }^{* *}$ Exceeds lowest threshold ($0.41 \mu \mathrm{~g} / \mathrm{g}$), the USEPA Risk Assessment Level.

Appendix B Table 4. Data for all fish analyzed for the Hackensack Water Company. Hg ADJ is the actual mercury concentration adjusted to a $329-\mathrm{mm}$ Largemouth Bass or a $282-\mathrm{mm}$ Smallmouth Bass.

					Hg Conc	Hg ADJ				
ANAL \#	DATE	LOCATION	COMMON NAME	FILLET	mg/kg	mg/kg	FISH TW g	LAB TL mm	FILET WT g	SEX
3687	5/24/94	Lake Deforest	Yellow bullhead	L	0.07	-	115.3	210	15.47	U
3688	5/24/94	Lake Deforest	Yellow bullhead	L	0.17	-	189.6	227	23	F
3689	5/24/94	Lake Deforest	Yellow bullhead	L	0.21	-	330.3	270	31.03	F
3686	5/22/94	Oradell Reservoir	Yellow bullhead	L	0.04	-	115.2	204	14.25	F
3685	5/22/94	Oradell Reservoir	Yellow bullhead	L	0.03	-	51.1	160	6.55	U
3705	5/23/94	Lake Tappan	Yellow bullhead	L	0.04	-	113.4	203	11.96	F
3706	5/23/94	Lake Tappan	Yellow bullhead	L	0.04	-	136.4	219	19.52	U
3707	5/23/94	Lake Tappan	Yellow bullhead	L	0.14	-	340.3	293	36.96	U
3690	5/22/94	Oradell Reservoir	Brown bullhead	L	0.03	-	286	274	41.42	F
3427	5/24/94	Lake Deforest	Common carp	L	0.11	-	2883.2	595	343.9	F
3426	5/24/94	Lake Deforest	Common carp	L	0.43	-	1687.8	492	171.5	F
3425	5/24/94	Lake Deforest	Common carp	L	0.07	-	1253.4	458	163.8	F
3428	5/22/94	Oradell Reservoir	Common carp	L	0.05	-	2326.7	549	250.1	F
3430	5/22/94	Oradell Reservoir	Common carp	L	0.07	-	-1	640	562	M
3429	5/22/94	Oradell Reservoir	Common carp	L	0.04	-	3214.5	609	529.7	M
3743	5/23/94	Lake Tappan	Common carp	L	0.10	-	2197.2	540	272.5	F
3745	5/23/94	Lake Tappan	Common carp	L	0.09	-	2036.6	553	305.2	F
3744	5/23/94	Lake Tappan	Common carp	L	0.12	-	2087.2	525	228.7	F
3714	5/23/94	Lake Tappan	Smallmouth bass	L	0.10	0.07	582.6	336	105.57	M
3713	5/23/94	Lake Tappan	Smallmouth bass	L	0.06	0.04	685	354	112.9	F

Appendix B Table 4		(continued). Data for All Fish Analyzed for the Hackensack Water Company. Hg Adj Is the actual mercury concentration adjusted to a 329-mm Largemouth Bass or a 282-mm Smallmouth Bass.								
					Hg Cone	Hg ADJ				
ANAL\#	DATE	LOCATION	COMMON NAME	FILLET	mg/kg	$\mathrm{mg} / \mathrm{kg}$	FISH TW g	LAB TL mm	FILET WT g	SEX
3712	5/23/94	Lake Tappan	Smallmouth bass	L	0.04	0.04	401.2	293	76.5	M
3725	5/24/94	Lake Deforest	Largemouth bass	L	0.17	0.15	691.4	344	122.6	F
3726	5/24/94	Lake Deforest	Largemouth bass	L	0.16	0.10	996	382	172.11	M
3727	5/24/94	Lake Deforest	Largemouth bass	L	0.23	0.10	1374.3	443	222.2	F
3731	5/24/94	Lake Deforest	Largemouth bass	L	0.25	0.10	1243.8	447	183.8	F
3730	5/24/94	Lake Deforest	Largemouth bass	L	0.31	0.13	1453.3	446	242.3	F
3732	5/24/94	Lake Deforest	Largemouth bass	L	0.78	0.24	1976.7	500	463.1	M
3728	5/24/94	Lake Deforest	Largemouth bass	L	0.07	0.07	500.5	327	92.91	M
3729	5/24/94	Lake Deforest	Largemouth bass	L	0.17	0.13	641.9	368	115.36	M
3733	5/24/94	Lake Deforest	Largemouth bass	L	0.82	0.24	2626.6	505	393.9	F
3720	5/22/94	Oradell Reservoir	Largemouth bass	L	0.33	0.15	1088.8	440	179.5	M
3718	5/22/94	Oradell Reservoir	Largemouth bass	L	0.03	0.04	374.4	289	69.38	F
3719	5/22/94	Oradell Reservoir	Largemouth bass	L	0.10	0.05	1319	425	205.9	F
3721	5/22/94	Oradell Reservoir	Largemouth bass	L	0.44	0.13	2009.1	510	321.2	F
3691	5/22/94	Oradell Reservoir	Largemouth bass	L	0.13	0.10	759.7	356	126.91	F
3694	5/22/94	Oradell Reservoir	Largemouth bass	L	0.24	0.12	1443.4	420	268	M
3692	5/22/94	Oradell Reservoir	Largemouth bass	L	0.09	0.06	800.4	375	140.84	M
3695	5/22/94	Oradell Reservoir	Largemouth bass	L	0.46	0.19	1751.7	452	271.3	F
3693	5/22/94	Oradell Reservoir	Largemouth bass	R	0.10	0.06	1062.7	407	142.18	F

APPENDIX C

Summary of mercury concentrations in fishes from other studies in New Jersey and nearby areas.

Appendix C. Summary of existing data on mercury concentrations in fish from New Jersey and nearby locations. Data include strata, waterbody, location, state, year of sampling, species, number of fish in sample, average mercury concentration ($\mathrm{mg} / \mathrm{kg}$ wet weight; detection limit inferred from minimal values in some cases), minimum and maximum mercury concentration, minimum and maximum total length (cm) and reference (JACA=Jacangelo, 1977; ELLI=Ellis et al., 1980; ANSP=ANSP 1985, 1974; NYDC=NYDEC 1981, 1987; USFW=USFWS, 1983; Spot+ Spotswood. Strata are defined as in Table 1 of ANSP (1994a), with the following additions (Hudson River HUD; Southeastern Pennsylvania Piedmont rivers and lakes, PR and PL; Pennsylvania northern lakes PANL).

Strat	Waterbody	Location	Stat	Year	Species	Nu	Avehg	Mnhg	Mxhg	Mntl	Mxtl	Ref
DRAG	Delaware River	Knight's Eddy	NYPA	79	American Shad	25	0.10	0.10	0.10	40.0	59.0	NYDC
DRAG	Delaware River	Port Jervis	NJPA	71-75	American Shad	15	0.04			7.6	7.6	JACA
DRAG	Delaware River	Knight's Eddy	NYPA	79	American Shad Roe	5	0.04					NYDC
DRAG	Delaware River	Port Jervis	NJPA	71-75	Black Crappie	1	0.03			15.6	15.6	JACA
DRAG	Delaware River	Port Jervis	NJPA	71-75	Black Crappie	1	0.04			16.5	16.5	JACA
DRAG	Delaware River	Port Jervis	NJPA	71-75	Black Crappie	2	0.03	0.03	0.03	16.9	19.6	JACA
DRAG	Delaware River	Port Jervis	NJPA	71-75	Black Crappie	1	0.03					JACA
DRAG	Delaware River	Watergap	NJPA	71-75	Black Crappie	2	0.10	0.06	0.14	14.9	15.8	JACA
DRAG	Delaware River	Port Jervis	NJPA	71-75	Pumpkinseed	1	0.07		0.07			JACA
DRAG	Delaware River	Port Jervis	NJPA	71-75	Rock Bass	2	0.18	0.03	0.33	13.0	14.0	JACA
DRAG	Delaware River	Watergap	NJPA	71-75	Rock Bass	1	0.05			13.4	13.4	JACA
DRAG	Delaware River	Knight's Eddy	NYPA	79	White Sucker	11	0.34			37.3	45.7	NYDC
DRAG	Delaware River	Port Jervis	NJPA	71-75	White Sucker	1	0.03		0.03			JACA
DRAG	Delaware River	Port Jervis	NJPA	71-75	White Sucker	1	0.12					JACA
DRAG	Delaware River	Port Jervis	NJPA	71-75	White Sucker	1	0.12					JACA
DRAG	Delaware River	Port Jervis	NJPA	71-75	Yellow Perch	2	0.04	0.04	0.04			JACA

Appendix C (continued). Summary of existing data on mercury concentrations in fish from New Jersey and nearby locations. Data include strata, waterbody, location, state, year of sampling, species, number of fish in sample, average mercury concentration ($\mathrm{mg} / \mathrm{kg}$ wet weight; detection limit inferred from minimal values in some cases), minimum and maximum mercury concentration, minimum and maximum total length (cm) and reference (JACA=Jacangelo, 1977; ELLI=Ellis et al., 1980; ANSP=ANSP 1985, 1974; NYDC=NYDEC 1981, 1987; USFW=USFWS, 1983; Spot+ Spotswood. Strata are defined as in Table 1 of ANSP (1994a), with the following additions (Hudson River HUD; Southeastern Pennsylvania Piedmont rivers and lakes, PR and PL; Pennsylvania northern lakes PANL).

Strat	Waterbody	Location	Stat	Year	Species	Nu	Avehg	Mnhg	Mxhg	Mntl	Mxtl	Ref
DRWE	Upper Delaware Region		NJPA	78-79	Catfish	3	0.11	0.02	0.16			ELLI
DRWE	Upper Delaware Region		NJPA	78-79	Sunfish	10	0.15	0.01	0.37			ELLI
DRET	Delaware River	Phillipsburg	NJPA	71-75	Black Crappie	1	0.06			20.7	20.7	JACA
DRET	Delaware River	Phillipsburg	NJPA	71-75	Brown Bullhead	1	0.10			20.0	20.0	JACA
DRET	Delaware River	Abv Upper Black Edd	NJPA	82	Smallmouth Bass	10	<0.05					USFW
DRET	Delaware River	Phillipsburg	NJPA	71-75	White Catfish	1	0.16					JACA
DRTC	Delaware River	Edgewater	NJPA	71-75	Alewife	3	0.41			10.2		JACA
DRTC	Delaware River	Edgewater	NJPA	71-75	Alewife	1	0.03			7.6		JACA
DRTC	Delaware River	Edgewater	NJPA	71-75	Alewife	1	0.12			7.6		JACA
DRTC	Delaware River	Roebling	NJPA	71-75	American Shad	6	0.03					JACA
DRTC	Delaware River	Bristol	NJPA	84	Black Crappie	3	0.07					ANSP
DRTC	Delaware River	Edgewater	NJPA	71-75	Blueback	6	0.27			7.6		JACA
DRTC	Delaware River	Edgewater	NJPA	71-75	Blueback	14	0.22			5.1		JACA
DRTC	Delaware River	Edgewater	NJPA	71-75	Blueback	7	0.06			7.6		JACA
DRTC	Delaware River	Florence	NJPA	71-75	Blueback	9	0.32			5.1		JACA
DRTC	Delaware River	Bristol	NJPA	84	Brown Bullhead	3	0.02					ANSP
DRTC	Delaware River	Bristol	NJPA	84	Pumpkinseed	8	0.05					ANSP

Appendix C (continued). Summary of existing data on mercury concentrations in fish from New Jersey and nearby locations. Data include strata, waterbody, location, state, year of sampling, species, number of fish in sample, average mercury concentration ($\mathrm{mg} / \mathrm{kg}$ wet weight; detection limit inferred from minimal values in some cases), minimum and maximum mercury concentration, minimum and maximum total length (cm) and reference (JACA=Jacangelo, 1977; ELLI=Ellis et al., 1980; ANSP=ANSP 1985, 1974; NYDC=NYDEC 1981, 1987; USFW=USFWS, 1983; Spot+ Spotswood. Strata are defined as in Table 1 of ANSP (1994a), with the following additions (Hudson River HUD; Southeastern Pennsylvania Piedmont rivers and lakes, PR and PL; Pennsylvania northern lakes PANL).

Strat	Waterbody	Location	Stat	Year	Species	Nu	Avehg	Mnhg	Mxhg	Mntl	Mxtl	Ref
DRTC	Delaware River	Edgewater	NJPA	71-75	White Perch	2	0.12			*10.2		JACA
DRTC	Delaware River	0-1 Mi Bel Neshamin	NJPA	82	White Sucker	10	<0.05					USFW
DRBC	Delaware River	Del Mem Bridge	NJPA	71-75	Alewife	20	0.03			12.7		JACA
DRBC	Delaware River	Del Mem Bridge	NJPA	71-75	Blueback	2	0.07			7.6		JACA
DRBC	Delaware River	Kelly Point	NJPA	73	Brown Bullhead	10	<0.01					ANSP
DRBC	Delaware River	Helm's Cove	NJPA	73	E Silvery Minnow	10	<0.01					ANSP
DRBC	Delaware River	Oldmans Point	NJPA	73	E Silvery Minnow	10	<0.01					ANSP
DRBC	Delaware River	Chambers Works	NJPA	73	Mummichogs	10	<0.01					ANSP
DRBC	Delaware River	Del Mem Bridge	NJPA	71-75	Pumpkinseed	2	0.04	0.04	0.04	11.5	12.5	JACA
DRBC	Delaware River	At Schuylkill River	NJPA	82	Spot	10	<0.05					USFW
DRBC	Lower Delaware Region		NJPA	78-79	American Eel	7	0.30	0.01	1.59			ELLI
DRBC	Lower Delaware Region		NJPA	78-79	Catfish	1	0.21	0.21	0.21			ELLI
DRBC	Lower Delaware Region		NJPA	78-79	Striped Bass	3	0.30	0.06	0.49			ELLI
DRBC	Lower Delaware Region		NJPA	78-79	Sunfish	1	0.01	0.01	0.01			ELLI
DRBC	Lower Delaware Region		NJPA	78-79	White Perch	6	0.15	0.01	0.50			ELLI
HUD	Arthur Kill		NY	83	Eel	2	0.42	0.34	0.50	52.5	57.0	NYDC
HUD	Governor's Island		NY	83	Eel	3	0.82	0.54	1.37	40.3	42.3	NYDC

Appendix C (continued). Summary of existing data on mercury concentrations in fish from New Jersey and nearby locations. Data include strata, waterbody, location, state, year of sampling, species, number of fish in sample, average mercury concentration ($\mathrm{mg} / \mathrm{kg}$ wet weight; detection limit inferred from minimal values in some cases), minimum and maximum mercury concentration, minimum and maximum total length (cm) and reference (JACA=Jacangelo, 1977; ELLI=Ellis et al., 1980; ANSP=ANSP 1985, 1974; NYDC=NYDEC 1981, 1987; USFW=USFWS, 1983; Spot+ Spotswood. Strata are defined as in Table 1 of ANSP (1994a), with the following additions (Hudson River HUD; Southeastern Pennsylvania Piedmont rivers and lakes, PR and PL; Pennsylvania northern lakes PANL).

Strat	Waterbody	Location	Stat	Year	Species	Nu	Avehg	Mnhg	Mxhg	Mntl	Mxtl	Ref
HUD	Hackensack River Region		NJ	78-79	American Eel	3	0.24	0.13	0.33			ELLI
HUD	Hackensack River Region		NJ	78-79	Catfish	2	0.16	0.13	0.18			ELLI
HUD	Hackensack River Region		NJ	78-79	Striped Bass	1	0.93	0.93	0.93			ELLI
HUD	Hackensack River Region		NJ	78-79	Sunfish	9	0.20	0.05	0.34			ELLI
HUD	Hackensack River Region		NJ	78-79	White Perch	14		0.05	0.65			ELLI
HUD	Lower Hudson Region		NJ	78-79	American Eel	16	0.25	0.01	0.88			ELLI
HUD	Lower Hudson Region		NJ	78-79	Bluefish	20	0.37	0.01	0.78			ELLI
HUD	Lower Hudson Region		NJ	78-79	Catfish	3	0.41	0.01	0.65			ELLI
HUD	Lower Hudson Region		NJ	78-79	Striped Bass	30	0.36	0.01	0.86			ELLI
HUD	Lower Hudson Region		NJ	78-79	White Perch	17	0.56	0.01	1.09			ELLI
MIXCP	Toms River	Pleasant Mills	NJ	71-75	Creek Chubsucker	2	0.01			25.4	35.4	JACA
MWWR	Robinson's Branch	Clark	NJ	71-75	Brown Bullhead	2	0.10			20.3	30.5	JACA
MWWR	Robinson's Branch	Clark	NJ	71-75	Goldfish	2	0.40			20.3	30.5	JACA
MWWR	Robinson's Branch	Clark	NJ	71-75	White Sucker	2	0.27			25.4	30.5	JACA
NCWR	Roundout Creek	Abv Eddyville Dam	NY	79	Smallmouth Bass	2	0.75	0.54	1.61	23.9	47.0	NYDC
NCWR	Roundout Creek	Abv Eddyville Dam	NY	79	White Sucker	2	0.49	0.16	0.56	29.2	47.2	NYDC

Appendix C (continued). Summary of existing data on mercury concentrations in fish from New Jersey and nearby locations. Data include strata, waterbody, location, state, year of sampling, species, number of fish in sample, average mercury concentration ($\mathrm{mg} / \mathrm{kg}$ wet weight; detection limit inferred from minimal values in some cases), minimum and maximum mercury concentration, minimum and maximum total length (cm) and reference (JACA=Jacangelo, 1977; ELLI=Ellis et al., 1980; ANSP=ANSP 1985, 1974; NYDC=NYDEC 1981, 1987; USFW=USFWS, 1983; Spot+ Spotswood. Strata are defined as in Table 1 of ANSP (1994a), with the following additions (Hudson River HUD; Southeastern Pennsylvania Piedmont rivers and lakes, PR and PL; Pennsylvania northern lakes PANL).

Strat	Waterbody	Location	Stat	Year	Species	Nu	Avehg	Mnhg	Mxhg	Mntl	Mxtl	Ref
NECPL	Lake Duhernal	Old Bridge	NJ	71-75	Chain Pickerel	2	0.25			15.2	20.3	JACA
NECPL	Lake Duhernal	Old Bridge	NJ	71-75	Largemouth Bass	1	0.42			20.3		JACA
NECPL	Lake Duhernal	Old Bridge	NJ	71-75	Pumpkinseed	2	0.22			12.7	17.8	JACA

NML	Cannonsville Res		NY	79	Brown Trout	8	0.52	0.42	0.84	33.0	65.0	NYDC
NML	Cannonsville Res		NY	79	White Sucker	15	0.38			31.2	37.1	NYDC
NML	Cedar Lake	Danville	NJ	71-75	Carp	1	0.10				50.8	JACA
NML	Cedar Lake	Danville	NJ	71-75	Largemouth Bass		0.02					JACA
NML	Cedar Lake	Danville	NJ	71-75	Largemouth Bass	3	0.08			7.6	12.7	JACA
NML	Cedar Lake	Danville	NJ	71-75	Pumpkinseed		0.02					JACA
NML	Cedar Lake	Danville	NJ	71-75	Pumpkinseed	4	0.07			7.6	12.7	JACA
NML	Liberty Pond	Peapack	NJ	71-75	Largemouth Bass	2	0.30			22.9	25.4	JACA
NML	Mcgilvray's Pond	Linden	NJ	71-75	Carp	9	0.03			15.2	20.3	JACA
NML	Pepacton Res		NY	79	Brown Trout	28	0.42	0.28	0.52	22.9	51.3	NYDC
NML	Pepacton Res		NY	79	White Sucker	15	0.38			35.8	46.0	NYDC

NWWR	Crooked Brook	Montville	NJ	$71-75$	Redfin Pickerel	2	0.22			20.3	25.4
NWWR	Crooked Brook Trib	Montville	NJ	$71-75$	Misc	8		0.02	0.10	7.6	20.3
NWWR	Hockhocksen Creek	Tinton Falls	NJ	$71-75$	White Sucker	3	0.09			20.3	22.9

Appendix C (continued). Summary of existing data on mercury concentrations in fish from New Jersey and nearby locations. Data include strata, waterbody, location, state, year of sampling, species, number of fish in sample, average mercury concentration ($\mathrm{mg} / \mathrm{kg}$ wet weight; detection limit inferred from minimal values in some cases), minimum and maximum mercury concentration, minimum and maximum total length (cm) and reference (JACA=Jacangelo, 1977; ELLI=Ellis et al., 1980; ANSP=ANSP 1985, 1974; NYDC=NYDEC 1981, 1987; USFW=USFWS, 1983; Spot+ Spotswood. Strata are defined as in Table 1 of ANSP (1994a), with the following additions (Hudson River HUD; Southeastern Pennsylvania Piedmont rivers and lakes, PR and PL; Pennsylvania northern lakes PANL).

Strat	Waterbody	Location	Stat	Year	Species	Nu	Avehg	Mnhg	Mxhg	Mntl	Mxtl	Ref
NWWR	Manasquan River	West Farms	NJ	71-75	White Sucker	2	0.02			25.4	30.5	JACA
NWWR	Millstone River	Hillborough	NJ	71-75	Bluegill	6	0.60			7.6	15.2	JACA
NWWR	Millstone River	Hillborough	NJ	71-75	Golden Shiner	2	0.80			15.2		JACA
NWWR	Millstone River	Hillborough	NJ	71-75	Largemouth Bass	1	0.70			17.8		JACA
NWWR	Millstone River	Hillborough	NJ	71-75	Pumpkinseed	3	0.45			7.6	12.7	JACA
NWWR	Mingmahunc Brook	Farmingdale	NJ	71-75	White Sucker	2	0.11			30.5	35.4	JACA
NWWR	N Br Metedeconk	Lakewood	NJ	71-75	Creek Chubsucker	3	0.12			22.9	25.4	JACA
NWWR	N Br Raritan River	North Branch Park	NJ	71-75	Redbreast Sunfis	5	0.42			15.2	20.3	JACA
NWWR	N Br Raritan River	North Branch Park	NJ	71-75	Rock Bass	4	0.35			15.2	20.3	JACA
NWWR	N Br Raritan River	North Branch Park	NJ	71-75	Smallmouth Bass	7	0.10			15.2	20.3	JACA
NWWR	Neshanic River	Neshanic Station	NJ	71-75	Redbreast Sunfis	1	0.32			17.8		JACA
NWWR	Neshanic River	Neshanic Station	NJ	71-75	Rock Bass	1	0.71			17.8		JACA
NWWR	Neshanic River	Neshanic Station	NJ	71-75	Smallmouth Bass	1	0.38			22.9		JACA
NWWR	Pacack Brook		NJ	71-75	Largemouth Bass	2	0.40			15.2	22.9	JACA
NWWR	Pacack Brook		NJ	71-75	Redbreast	1	0.20				17.8	JACA
NWWR	Passaic River	Paterson	NJ	71-75	Black Crappie		0.36					JACA
NWWR	Passaic River	Chatham	NJ	71-75	Bluegill	2	0.95			7.6	10.2	JACA
NWWR	Passaic River	Roseland	NJ	71-75	Brown Bullhead		0.12					JACA
NWWR	Passaic River	Chatham	NJ	71-75	Carp	1	1.00			24.1		JACA

Appendix C (continued). Summary of existing data on mercury concentrations in fish from New Jersey and nearby locations. Data include strata, waterbody, location, state, year of sampling, species, number of fish in sample, average mercury concentration ($\mathrm{mg} / \mathrm{kg}$ wet weight; detection limit inferred from minimal values in some cases), minimum and maximum mercury concentration, minimum and maximum total length (cm) and reference (JACA=Jacangelo, 1977; ELLI=Ellis et al., 1980; ANSP=ANSP 1985, 1974; NYDC=NYDEC 1981, 1987; USFW=USFWS, 1983; Spot+ Spotswood. Strata are defined as in Table 1 of ANSP (1994a), with the following additions (Hudson River HUD; Southeastern Pennsylvania Piedmont rivers and lakes, PR and PL; Pennsylvania northern lakes PANL).

Strat	Waterbody	Location	Stat	Year	Species	Nu	Avehg	Mnhg	Mxhg	Mntl	Mxtl	Ref
NWWR	Passaic River	Paterson	NJ	71-75	Largemouth Bass		0.36					JACA
NWWR	Passaic River	Chatham	NJ	71-75	Pumpkinseed	2	0.25			7.6	10.2	JACA
NWWR	Passaic River	Paterson	NJ	71-75	Pumpkinseed		0.95					JACA
NWWR	Passaic River	Chatham	NJ	71-75	Redfin Pickerel	1	0.55			25.4		JACA
NWWR	Passaic River	Chatham	NJ	71-75	White Sucker	1	0.57			33.0		JACA
NWWR	Passaic River	Paterson	NJ	71-75	Yellow Perch		0.35					JACA
NWWR	Passaic River Region		NJ	78-79	American Eel	6	0.90	0.24	2.10			ELLI
NWWR	Passaic River Region		NJ	78-79	Catfish	4	0.33	0.15	0.79			ELLI
NWWR	Passaic River Region		NJ	78-79	Sunfish	19	0.43	0.08	1.25			ELLI
NWWR	Passaic River Region		NJ	78-79	White Perch	3	0.36	0.15	0.78			ELLI
NWWR	Pequannock r	W Milford	NJ	71-75	Common Shiner	3	0.17			5.1	10.4	JACA
NWWR	Pequannock r	W Milford	NJ	71-75	Fallfish	1	0.19				27.9	JACA
NWWR	Pequannock r	W Milford	NJ	71-75	Redbreast	2	0.30			12.7	17.8	JACA
NWWR	Pequannock r	W Milford	NJ	71-75	Smallmouth Bass	4	0.70			20.3	30.5	JACA
NWWR	Pequannock r	W Milford	NJ	71-75	Yellow Perch	2	0.30			15.2	17.8	JACA
NWWR	Pequannock River Trib	Rockaway Twnship	NJ	71-75	Brown Brook Trou	2	0.20			12.7	17.8	JACA
NWWR	Pompton River	Butler	NJ	71-75	Fallfish	1	0.45			24.1		JACA
NWWR	Pompton River	Butler	NJ	71-75	Pumpkinseed	7	0.45			12.7	15.2	JACA
NWWR	Pompton River	Butler	NJ	71-75	Redbreast Sunfis	5	0.33			12.7	15.2	JACA

Appendix C (continued). Summary of existing data on mercury concentrations in fish from New Jersey and nearby locations. Data include strata, waterbody, location, state, year of sampling, species, number of fish in sample, average mercury concentration ($\mathrm{mg} / \mathrm{kg}$ wet weight; detection limit inferred from minimal values in some cases), minimum and maximum mercury concentration, minimum and maximum total length (cm) and reference (JACA=Jacangelo, 1977; ELLI=Ellis et al., 1980; ANSP=ANSP 1985, 1974; NYDC=NYDEC 1981, 1987; USFW=USFWS, 1983; Spot+ Spotswood. Strata are defined as in Table 1 of ANSP (1994a), with the following additions (Hudson River HUD; Southeastern Pennsylvania Piedmont rivers and lakes, PR and PL; Pennsylvania northern lakes PANL).

Strat	Waterbody	Location	Stat	Year	Species	Nu	Avehg	Mnhg	Mxhg	Mntl	Mxtl	Ref
NWWR	Pompton River	Butler	NJ	71-75	Rock Bass	1	0.44			20.3		JACA
NWWR	Pompton River	Butler	NJ	71-75	Smallmouth Bass	3	0.46			15.2	21.6	JACA
NWWR	Pompton River	Butler	NJ	71-75	White Sucker	2	0.75			27.9		JACA
NWWR	Ramapo River	Sloatsburg	NY	83	Rock Bass	25	0.46	0.40	0.50	13.6	22.2	NYDC
NWWR	Ramapo River	Sloatsburg	NY	83	Smallmouth Bass	21	0.48	0.45	0.50	17.4	26.1	NYDC
NWWR	Raritan River	Raritan	NJ	71-75	Pumpkinseed	1	0.25			17.8		JACA
NWWR	Raritan River Region		NJ	78-79	American Eel	3	0.17	0.11	0.25			ELLI
NWWR	Raritan River Region		NJ	78-79	Bluefish	5	0.51	0.06	1.40			ELLI
NWWR	Raritan River Region		NJ	78-79	Striped Bass	3	0.12	0.05	0.21			ELLI
NWWR	Raritan River Region		NJ	78-79	Sunfish	18	0.24	0.01	1.04			ELLI
NWWR	Raritan River Region		NJ	78-79	White Perch	4	0.14	0.11	0.18			ELLI
NWWR	Rockaway River	Parsippany-troy Hil	NJ	71-75	Black Crappie	1	0.50			17.8		JACA
NWWR	Rockaway River	Parsippany-troy Hil	NJ	71-75	Chain Pickerel	1	0.46			25.4		JACA
NWWR	Rockaway River	Parsippany-troy Hil	NJ	71-75	Pumpkinseed	4	0.25			12.7	15.2	JACA
NWWR	Rockaway River	Parsippany-troy Hil	NJ	71-75	Redbreast	2	0.20			10.2	12.7	JACA
NWWR	Rockaway River	Parsippany-troy Hil	NJ	71-75	Redfin Pickere	2	0.62			25.4	33.0	JACA
NWWR	Rockaway River	Parsippany-troy Hil	NJ	71-75	Smallmouth Bass	1	0.50			20.3		JACA
NWWR	Rockaway River	Parsippany-troy Hil	NJ	71-75	White Sucker	1	0.99			38.1		JACA
NWWR	S Br Metedeconk	Lakewood	NJ	71-75	White Sucker	2	0.02			33.0	35.4	JACA

Appendix C (continued). Summary of existing data on mercury concentrations in fish from New Jersey and nearby locations. Data include strata, waterbody, location, state, year of sampling, species, number of fish in sample, average mercury concentration ($\mathrm{mg} / \mathrm{kg}$ wet weight; detection limit inferred from minimal values in some cases), minimum and maximum mercury concentration, minimum and maximum total length (cm) and reference (JACA=Jacangelo, 1977; ELLI=Ellis et al., 1980; ANSP=ANSP 1985, 1974; NYDC=NYDEC 1981, 1987; USFW=USFWS, 1983; Spot+ Spotswood. Strata are defined as in Table 1 of ANSP (1994a), with the following additions (Hudson River HUD; Southeastern Pennsylvania Piedmont rivers and lakes, PR and PL; Pennsylvania northern lakes PANL).

Strat	Waterbody	Location	Stat	Year	Species	Nu	Avehg	Mnhg	Mxhg	Mntl	Mxtl	Ref
NWWR	S Br Raritan r	Neshanic Station	NJ	71-75	Bluegill	2	1.70				12.7	JACA
NWWR	S Br Raritan r	Neshanic Station	NJ	71-75	Pumpkinseed	3	1.40				12.7	JACA
NWWR	S Br Raritan r	Neshanic Station	NJ	71-75	Redbreast	5	0.15			7.6	0.2	JACA
NWWR	S Br Raritan r	Neshanic Station	NJ	71-75	Rock Bass	2	0.81				20.3	JACA
NWWR	Saddle River	Upper Saddle River	NJ	71-75	White Sucker	3	0.08			25.4	27.9	JACA
NWWR	Swimming River	Red Bank	NJ	71-75	Blueback	1	0.02			22.9		JACA
NWWR	Swimming River	Red Bank	NJ	71-75	Chain Pickerel	1	0.35			27.9		JACA
NWWR	Swimming River	Red Bank	NJ	71-75	Pumpkinseed	1	0.20				15.2	JACA
NWWR	Swimming River	Red Bank	NJ	71-75	Redbreast	1	0.09				15.2	JACA
NWWR	Swimming River	Red Bank	NJ	71-75	Striped Bass	1	0.30			30.5		JACA
NWWR	Swimming River	Red Bank	NJ	71-75	Striped Bass	2	0.22			15.2	22.9	JACA
NWWR	Swimming River	Red Bank	NJ	71-75	White Catfish	1	0.42			33.0		JACA
NWWR	Swimming River	Red Bank	NJ	71-75	White Perch	1	0.11				25.4	JACA
NWWR	Swimming River	Red Bank	NJ	71-75	White Perch	2	0.60			15.2	22.9	JACA
NWWR	Swimming River	Red Bank	NJ	71-75	White Sucker	2	0.75			40.6	61.0	JACA
NWWR	Swimming River	Red Bank	NJ	71-75	Yellow Perch	1	0.20				20.3	JACA
NWWR	Whippany River	E Hanover	NJ	71-75	Carp	2	0.26			12.7	15.2	JACA
NWWR	Whippany River	E Hanover	NJ	71-75	Goldfish	1	1.00			16.5	1.0	JACA
NWWR	Whippany River	E Hanover	NJ	71-75	Largemouth Bass		0.65					JACA

Appendix C (continued). Summary of existing data on mercury concentrations in fish from New Jersey and nearby locations. Data include strata, waterbody, location, state, year of sampling, species, number of fish in sample, average mercury concentration ($\mathrm{mg} / \mathrm{kg}$ wet weight; detection limit inferred from minimal values in some cases), minimum and maximum mercury concentration, minimum and maximum total length (cm) and reference (JACA=Jacangelo, 1977; ELLI=Ellis et al., 1980; ANSP=ANSP 1985, 1974; NYDC=NYDEC 1981, 1987; USFW=USFWS, 1983; Spot+ Spotswood. Strata are defined as in Table 1 of ANSP (1994a), with the following additions (Hudson River HUD; Southeastern Pennsylvania Piedmont rivers and lakes, PR and PL; Pennsylvania northern lakes PANL).

Strat	Waterbody	Location	Stat	Year	Species	Nu	Avehg	Mnhg	Mxhg	Mntl	Mxtl	Ref
NWWR	Whippany River	E Hanover	NJ	71-75	Pumpkinseed	4	1.00			10.2	12.7	JACA
NWWR	Whippany River	E Hanover	NJ	71-75	Redfin Pickerel	3	0.25			12.7	19.1	JACA
NWWR	Yellow Brook	Colts Neck	NJ	71-75	White Sucker	2	0.11			30.5	33.0	JACA
SECPL	Clint Mill Pond	Cape May	NJ	71-75	Chain Pickerel	2	0.19			30.5	43.2	JACA
SECPL	Clint Mill Pond	Cape May	NJ	71-75	Redfin Pickerel	2	0.13			17.8	22.9	JACA
ULGL	Greenwood Lake		NJNY	79	Chain Pickerel	1	0.22			51.0		NYDC
ULGL	Greenwood Lake		NJNY	79	Largemouth Bass	12	0.40	0.32	0.43	30.0	38.1	NYDC
ULGL	Greenwood Lake		NJNY	79	Rainbow Trout	1	0.09			22.1		NYDC
ULGL	Greenwood Lake		NJNY	79	Smallmouth Bass	6	0.26			30.7	33.8	NYDC
ULRV	Round Valley Res		NJ	71-75	Bluegill	3	0.03			12.7	17.8	JACA
ULRV	Round Valley Res		NJ	71-75	Brown Bullhead	84	0.19			17.8	22.9	JACA
ULRV	Round Valley Res		NJ	71-75	Brown Bullhead	3	0.01			17.8	30.5	JACA
ULRV	Round Valley Res		NJ	71-75	Largemouth Bass	4	0.04			22.9	33.0	JACA
ULRV	Round Valley Res		NJ	71-75	Misc	19		0.01	0.06	7.6	14.0	JACA
ULRV	Round Valley Res		NJ	71-75	Pumpkinseed	3	<0.01			15.2	17.8	JACA
ULRV	Round Valley Res		NJ	71-75	White Perch	3	0.13			17.8	30.5	JACA

Appendix C (continued). Summary of existing data on mercury concentrations in fish from New Jersey and nearby locations. Data include strata, waterbody, location, state, year of sampling, species, number of fish in sample, average mercury concentration ($\mathrm{mg} / \mathrm{kg}$ wet weight; detection limit inferred from minimal values in some cases), minimum and maximum mercury concentration, minimum and maximum total length (cm) and reference (JACA=Jacangelo, 1977; ELLI=Ellis et al., 1980; ANSP=ANSP 1985, 1974; NYDC=NYDEC 1981, 1987; USFW=USFWS, 1983; Spot+ Spotswood. Strata are defined as in Table 1 of ANSP (1994a), with the following additions (Hudson River HUD; Southeastern Pennsylvania Piedmont rivers and lakes, PR and PL; Pennsylvania northern lakes PANL).

Strat	Waterbody	Location	Stat	Year	Species	Nu	Avehg	Mnhg	Mxhg	Mntl	Mxtl	Ref
ULRV	Round Valley Res		NJ	71-75	White Perch	3	0.12			22.9		JACA
ULRV	Round Valley Res		NJ	71-75	White Sucker	3	0.17			30.5		JACA
WCPL	Del Raritan Canal	Lambertville	NJ	71-75	Chain Pickerel	1	0.02			33.0	33.0	JACA
WCPL	Del Raritan Canal	Lambertville	NJ	71-75	Largemouth Bass	1	0.12			17.8	17.8	JACA
WCPL	Idaline	Bristol	PA	84	Brown Bullhead	10	0.03					ANSP
WCPL	Idaline Pond	Bristol	PA	84	Black Crappie	7	0.03					ANSP
WCPL	Idaline Pond	Bristol	PA	84	Pumpkinseed	40	0.02					ANSP
WCPL	Prospertown Lake		NJ	71-75	Black Crappie	2	0.05	0.04	0.05	18.0	18.0	JACA
WCPL	Prospertown Lake		NJ	71-75	Brown Bullhead	1	0.02			19.8	19.8	JACA
WCPL	Prospertown Lake		NJ	71-75	Creek Chubsucker	2	0.25	0.22	0.27	28.4	28.4	JACA
WCPL	Prospertown Lake		NJ	71-75	Creek Chubsucker	1	0.02					JACA
WCPL	Prospertown Lake		NJ	71-75	Golden Shiner	2	0.15					JACA
WCPL	Prospertown Lake		NJ	71-75	Largemouth Bass	1	0.32	0.07	0.57	18.0	23.4	JACA
WCPL	Prospertown Lake		NJ	71-75	Pumpkinseed	2	0.13					JACA
WCPL	Schmidt's Pond	Bristol	PA	84	Black Crappie	12	0.02					ANSP
WCPL	Schmidt's Pond	Bristol	PA	84	Brown Bullhead	10	0.02					ANSP
WCPL	Schmidt's Pond	Bristol	PA	84	Pumpkinseed	22	0.05					ANSP
WCPL	Swedesboro Lake	Swedesboro	NJ	71-75	Black Crappie	3	0.04			12.7	17.8	JACA

Appendix C (continued). Summary of existing data on mercury concentrations in fish from New Jersey and nearby locations. Data include strata, waterbody, location, state, year of sampling, species, number of fish in sample, average mercury concentration ($\mathrm{mg} / \mathrm{kg}$ wet weight; detection limit inferred from minimal values in some cases), minimum and maximum mercury concentration, minimum and maximum total length (cm) and reference (JACA=Jacangelo, 1977; ELLI=Ellis et al., 1980; ANSP=ANSP 1985, 1974; NYDC=NYDEC 1981, 1987; USFW=USFWS, 1983; Spot+ Spotswood. Strata are defined as in Table 1 of ANSP (1994a), with the following additions (Hudson River HUD; Southeastern Pennsylvania Piedmont rivers and lakes, PR and PL; Pennsylvania northern lakes PANL).

Strat	Waterbody	Location	Stat	Year	Species	Nu	Avehg	Mnhg	Mxhg	Mntl	Mxtl	Ref
WCPL	Swedesboro Lake	Swedesboro	NJ	71-75	Bluegill	3	0.53			10.2	12.7	JACA
WCPL	Swedesboro Lake	Swedesboro	NJ	71-75	Brown Bullhead	3	0.04			25.4	33.0	JACA
WCPL	Swedesboro Lake	Swedesboro	NJ	71-75	White Perch	3	0.05			17.8	25.4	JACA
WCPL	Wampum Lake		NJ	71-75	Carp	5	0.06			7.6	12.7	JACA
WCPL	Wampum Lake		NJ	71-75	Pumpkinseed	5	0.40			7.6	12.7	JACA
WCPL	Woolman's Lake	Mount Holly	NJ	71-75	Pumpkinseed	4	0.02			7.6	12.7	JACA
WCPR	Alloway Creek		NJ	71-75	Black Crappie	3	0.30			10.2	15.2	JACA
WCPR	Alloway Creek		NJ	71-75	Bluegill	3	0.20			7.6	17.8	JACA
WCPR	Alloway Creek		NJ	71-75	Gizzard Shad	1	0.22			22.9	22.9	JACA
WCPR	Alloway Creek		NJ	71-75	Largemouth Bass	1	0.50			25.4	25.4	JACA
WCPR	Alloway Creek		NJ	71-75	White Perch	2	0.50			10.2	15.2	JACA
WCPR	Blacks Creek	Mansfield Sq, Burl	NJ	71-75	Misc Minnows	7		0.01	0.17			JACA
WCPR	Blacks Creek	Mansfield Sq, Burl	NJ	71-75	Redfin Pickerel	1	0.14			17.8	17.8	JACA
WCPR	Lahaway Creek		NJ	71-75	Brown Bullhead	1	0.17			21.6	21.6	JACA
WCPR	Rancocas Creek	Mount Holly	NJ	71-75	Bluegill	1	0.17			12.7		JACA
WCPR	Rancocas Creek	Mount Holly	NJ	71-75	Brown Bullhead	2	0.16			27.9		JACA
WCPR	Rancocas Creek	Mount Holly	NJ	71-75	Chain Pickerel	2	0.34			40.6		JACA
WCPR	Rancocas Creek	Mount Holly	NJ	71-75	Largemouth Bass	1	0.44			30.5		JACA

Appendix C (continued). Summary of existing data on mercury concentrations in fish from New Jersey and nearby locations. Data include strata, waterbody, location, state, year of sampling, species, number of fish in sample, average mercury concentration ($\mathrm{mg} / \mathrm{kg}$ wet weight; detection limit inferred from minimal values in some cases), minimum and maximum mercury concentration, minimum and maximum total length (cm) and reference (JACA=Jacangelo, 1977; ELLI=Ellis et al., 1980; ANSP=ANSP 1985, 1974; NYDC=NYDEC 1981, 1987; USFW=USFWS, 1983; Spot+ Spotswood. Strata are defined as in Table 1 of ANSP (1994a), with the following additions (Hudson River HUD; Southeastern Pennsylvania Piedmont rivers and lakes, PR and PL; Pennsylvania northern lakes PANL).

Strat	Waterbody	Location	Stat	Year	Species	Nu	Avehg	Mnhg	Mxhg	Mntl	Mxtl	Ref
WCPR	Rancocas Creek	Mount Holly	NJ	71-75	Pumpkinseed	1	0.17			10.2		JACA
WCPR	Rancocas Creek	Mount Holly	NJ	71-75	Redbreast	1	0.12			12.7		JACA
WCPR	Rancocas Creek	Mount Holly	NJ	71-75	White Perch	1	0.36			20.3		JACA
PANL	Black Moshannon		PA	90-91	Chain Pickerel		0.52			37.5	45.5	Spot
PANL	Cranberry Glade		PA	90-91	Largemouth Bass		0.12			27.5	33.0	Spot
PANL	East Branch		PA	90-91	Smallmouth Bass		0.33			28.5	33.0	Spot
PANL	East Branch		PA	90-91	Smallmouth Bass		0.33			29.0	32.5	Spot
PANL	Hunters Lake		PA	90-91	Largemouth Bass		0.32			35.5	39.0	Spot
PANL	Hunters Lake		PA	90-91	Largemouth Bass		0.34			26.0	36.0	Spot
PANL	Lake Jean		PA	90-91	Chain Pickerel		0.58			43.0	49.0	Spot
PANL	Lake Wallenpaupack		PA	90-91	Chain Pickerel		0.25			36.0	48.0	Spot
PANL	Locust Lake		PA	90-91	Largemouth Bass		0.20			27.5	34.0	Spot
PANL	Locust Lake		PA	90-91	Largemouth Bass		0.26			30.0	37.0	Spot
PANL	Mauch Chunk Lake		PA	90-91	Largemouth Bass		0.16			31.0	51.0	Spot
PANL	Mauch Chunk Lake		PA	90-91	Largemouth Bass		0.12			32.0	46.0	Spot
PANL	Sunfish Pond		PA	90-91	Largemouth Bass		0.49			39.5	41.5	Spot
PL	Greenlane Res		PA	82	Largemouth Bass	10	0.12					USFW

Appendix C (continued). Summary of existing data on mercury concentrations in fish from New Jersey and nearby locations. Data include strata, waterbody, location, state, year of sampling, species, number of fish in sample, average mercury concentration ($\mathrm{mg} / \mathrm{kg}$ wet weight; detection limit inferred from minimal values in some cases), minimum and maximum mercury concentration, minimum and maximum total length (cm) and reference (JACA=Jacangelo, 1977; ELLI=Ellis et al., 1980; ANSP=ANSP 1985, 1974; NYDC=NYDEC 1981, 1987; USFW=USFWS, 1983; Spot+ Spotswood. Strata are defined as in Table 1 of ANSP (1994a), with the following additions (Hudson River HUD; Southeastern Pennsylvania Piedmont rivers and lakes, PR and PL; Pennsylvania northern lakes PANL).

Strat	Waterbody	Location	Stat	Year	Species	Nu	Avehg	Mnhg	Mxhg	Mntl	Mxtl	Ref
PL	Manyunk Canal	Manyunk	PA	82	Largemouth Bass	10	<0.05					USFW
PL	Nockamixon Lake		PA	82	Walleye	9	0.10					USFW
PR	E Br Brandywine	S of Chadds Ford	PA	82	Smallmouth Bass	7	0.22					USFW
PR	Neshaminy Creek	S of Doylestown	PA	82	Smallmouth Bass	10	0.25					USFW
PR	Red Clay Creek	S of Kennett Square	PA	82	White Sucker	5	<0.05					USFW
PR	Schuylkill River	Bel 176 Reading	PA	82	Smallmouth Bass	5	0.18					USFW
PR	Schuylkill River	E of Pottstown	PA	82	Smallmouth Bass	10	0.17					USFW
PR	Schuylkill River	Phoenixville	PA	82	Smallmouth Bass	10	0.17					USFW
PR	Schuylkill River	Bel 176 Reading	PA	82	White Sucker	5	0.08					USFW
PR	Schuylkill River	E of Pottstown	PA	82	White Sucker	10	0.14					USFW
PR	Skippack Creek	S of Collegeville	PA	82	Redbreast	10	<0.05					USFW
PR	Valley Creek	Nr Valley Forge	PA	82	Brown Trout	6	<0.05					USFW
PR	W Br Brandywine	Nr Mortonville	PA	82	Smallmouth Bass	7	0.16					USFW
PR	White Clay Creek	E of Strickersville	PA	82	Brown Trout	5	<0.05					USFW
PR	White Clay Creek	E of Strickersville	PA	82	White Sucker	5	<0.05					USFW
	Onondaga Lake		NY	77	Smallmouth Bass	20	0.87	0.28	1.81	22.0	31.2	NYDC
	Onondaga Lake		NY	78	Smallmouth Bass	29	0.63	0.24	2.22	21.1	42.0	NYDC
	Onondaga Lake		NY	79	Smallmouth Bass	52	0.68	0.38	1.43	22.8	41.0	NYDC

Appendix C (continued). Summary of existing data on mercury concentrations in fish from New Jersey and nearby locations. Data include strata, waterbody, location, state, year of sampling, species, number of fish in sample, average mercury concentration ($\mathrm{mg} / \mathrm{kg}$ wet weight; detection limit inferred from minimal values in some cases), minimum and maximum mercury concentration, minimum and maximum total length (cm) and reference (JACA=Jacangelo, 1977; ELLI=Ellis et al., 1980; ANSP=ANSP 1985, 1974; NYDC=NYDEC 1981, 1987; USFW=USFWS, 1983; Spot+ Spotswood. Strata are defined as in Table 1 of ANSP (1994a), with the following additions (Hudson River HUD; Southeastern Pennsylvania Piedmont rivers and lakes, PR and PL; Pennsylvania northern lakes PANL).

Strat	Waterbody	Location	Stat	Year	Species	Nu	Avehg	Mnhg	Mxhg	Mntl	Mxtl	Ref
	Onondaga Lake		NY	81	Smallmouth Bass	50	1.23	0.45	1.78	20.6	43.4	NYDC
	Onondaga Lake		NY	83	Smallmouth Bass	50	1.08	0.38	1.86	21.5	45.0	NYDC
	Onondaga Lake		NY	84	Smallmouth Bass	50	1.03	0.38	1.85	23.0	43.0	NYDC

APPENDIX D

Results of followup study by the New Jersey Department of Environmental Protection and the New Jersey Department of Health on selected sites previous sampled in the 1992 ANSP screening study.

Appendix D. Total mercury concentrations ($\mathrm{mg} / \mathrm{kg}$ wet weight) in filets of fish collected by the New Jersey Department of Environmental Protection and analyzed by the New Jersey Department of Health.

	Species	Length (mm)	Weight (g)	$\mathbf{H g}(\mathbf{p p m})$	Arithmetic Mean

CARNEGIE LAKE

Largemouth bass	LMB	430	1140	0.237	
Largemouth bass	LMB	435	1060	0.446	
Largemouth bass	LMB	452	1300	0.368	
Largemouth bass	LMB	480	1830	0.676	
Largemouth bass	LMB	540	2450	0.812	$\mathbf{0 . 5 0 8}$
Channel catfish	CCF	562	2100	0.175	
Channel catfish	CCF	618	3105	0.164	
Channel catfish	CCF	566	2465	0.124	
Channel catfish	CCF	412	700	0.437	$\mathbf{0 . 2 2 5}$
Brown bullhead	BBH	311	480	0.05	
Brown bullhead	BBH	301	430	0.034	
Brown bullhead	BBH	282	330	0.056	
Brown bullhead	BBH	294	320	0.121	
Brown bullhead	BBH	285	300	0.098	$\mathbf{0 . 0 7 2}$
White perch	WP	205	130	0.191	
White perch	WP	211	125	0.106	
White perch	WP	200	105	0.132	
White perch	WP	212	135	0.203	
White perch	WP	214	150	0.19	$\mathbf{0 . 1 6 4}$
Bluegill sunfish	BGS	175	100	0.047	
Bluegill sunfish	BGS	168	60	0.017	
Bluegill sunfish	BGS	162	90	0.06	$\mathbf{0 . 0 4 1}$
White perch (juvenile)	ff-Jv.WP(5)	0	0	0.069	
White perch (juvenile)	ff-Jv.WP(5)	0	0	0.041	
White perch (juvenile)	ff-Jv.WP(5)	0	0	0.047	$\mathbf{0 . 0 5 2}$
\boldsymbol{Z} (0				

MANASQUAN RESERVOIR

Largemouth bass	LMB	395	1360	1.49	
Largemouth bass	LMB	445	1505	2.21	
Largemouth bass	LMB	395	1175	1.745	
Largemouth bass	LMB	270	340	0.286	
Largemouth bass	LMB	280	405	0.472	$\mathbf{1 . 2 4 1}$
Chain pickerel	CP	398	415	0.481	
Chain pickerel	CP	241	75	0.148	
Chain pickerel	CP	200	35	0.126	
Chain pickerel	CP	216	50	0.077	$\mathbf{0 . 2 0 8}$
Brown bullhead	BBH	260	210	0.154	
Brown bullhead	BBH	220	155	0.124	
Brown bullhead	BBH	215	145	0.109	

Appendix D (continued). Total mercury concentrations ($\mathrm{mg} / \mathrm{kg}$ wet weight) in filets of fish collected by the New Jersey Department of Environmental Protection and analyzed by the New Jersey Department of Health.

	Species	Length (mm)	Weight $\mathbf{(g)}$	Hg (ppm)	Arithmetic Mean
Brown bullhead	BBH	240	180	0.161	
Brown bullhead	BBH	240	195	0.058	$\mathbf{0 . 1 2 1}$
Yellow perch	YP	180	75	0.124	
Yellow perch	YP	195	85	0.11	
Yellow perch	YP	210	100	0.166	$\mathbf{0 . 1 3 3}$
Black crappie	BC	175	85	0.347	
Black crappie	BC	165	60	0.532	
Black crappie	BC	165	70	0.512	$\mathbf{0 . 4 6 4}$
Bluegill sunfish	BGS	165	90	0.309	
Bluegill sunfish	BGS	155	80	0.224	
Bluegill sunfish	BGS	165	85	0.374	
Bluegill sunfish	BGS	168	110	0.215	
Bluegill sunfish	BGS	150	65	0.158	$\mathbf{0 . 2 4 3}$
Alewife (forage)	ff-ALE(5)	$150-175$	0	0.494	
Alewife (forage)	ff-ALE(5)	$112-165$	0	0.344	
Alewife (forage)	ff-ALE(5)	$111.5-112$	0	0.209	$\mathbf{0 . 4 1 9}$
LARE NUMM					

LAKE NUMMY

Chain pickerel	CP	336	280	0.602	
Chain pickerel	CP	337	320	0.634	
Chain pickerel	CP	333	210	0.488	
Chain pickerel	CP	333	200	0.473	
Chain pickerel	CP	332	190	0.642	$\mathbf{0 . 5 6 8}$
Yellow perch	YP	223	180	0.522	
Yellow perch	YP	223	160	0.525	
Yellow perch	YP	223	160	0.542	
Yellow perch	YP	200	120	0.529	
Yellow perch	YP	221	110	0.587	$\mathbf{0 . 5 4 1}$
Yellow bullhead	YBH	251	280	0.341	
Yellow bullhead	YBH	257	290	0.205	
Yellow bullhead	YBH	255	290	0.312	
Yellow bullhead	YBH	110	30	0.226	$\mathbf{0 . 2 7 1}$
Juvenile Mud sunfish	ff-Jv.MUD(1)	118	140	0.751	
Juvenile Mud sunfish	ff-Jv.MUD(1)	117	110	0.623	
Juvenile Mud sunfish	ff-Jv.MUD(1)	93	30	0.255	$\mathbf{0 . 5 4 3}$

NEW BROOKLYN LAKE

Largemouth bass	LMB	317	410	0.413	
Largemouth bass	LMB	274	300	0.321	
Largemouth bass	LMB	233	175	0.249	$\mathbf{0 . 3 2 8}$
Chain pickerel	CP	340	280	0.252	

Appendix D (continued). Total mercury concentrations ($\mathrm{mg} / \mathrm{kg}$ wet weight) in filets of fish collected by the New Jersey Department of Environmental Protection and analyzed by the New Jersey Department of Health.

	Species	$\underset{(\mathrm{mm})}{\text { Length }}$	Weight (g)	Hg (ppm)	Arithmetic Mean
Chain pickerel	CP	439	200	0.477	
Chain pickerel	CP	325	195	0.641	
Chain pickerel	CP	297	50	0.199	
Chain pickerel	CP	205	500	0.134	0.341
Yellow bullhead	YBH	259	290	0.093	
Yellow bullhead	YBH	269	330	0.196	
Yellow bullhead	YBH	238	190	0.084	
Yellow bullhead	YBH	200	110	0.05	
Yellow bullhead	YBH	241	210	0.064	0.097
Black crappie	BC	218	200	0.16	
Black crappie	BC	210	185	0.082	
Black crappie	BC	215	190	0.192	0.145
Pumpkinseed sunfish	PSS	154	110	0.215	
Pumpkinseed sunfish	PSS	160	130	0.28	
Pumpkinseed sunfish	PSS	165	120	0.297	0.264
BATSTO LAKE					
Largemouth bass	LMB	325	445	0.924	
Largemouth bass	LMB	315	365	0.904	
Largemouth bass	LMB	340	505	1.15	
Largemouth bass	LMB	270	235	0.471	
Largemouth bass	LMB	265	225	0.597	0.809
Chain pickerel	CP	380	300	0.79	
Chain pickerel	CP	290	120	0.381	
Chain pickerel	CP	300	120	0.444	
Chain pickerel	CP	295	125	0.432	
Chain pickerel	CP	285	115	0.435	0.496
Brown bullhead	BBH	280	320	0.16	
Brown bullhead	BBH	300	370	0.155	
Brown bullhead	BBH	300	370	0.211	
Brown bullhead	BBH	300	440	0.246	
Brown bullhead	BBH	305	445	0.164	0.187
Bluegill sunfish	BGS	220	215	0.332	
Bluegill sunfish	BGS	185	115	0.309	
Bluegill sunfish	BGS	200	160	0.561	0.401

ATLANTIC CITY RESERVOIR -Upper Res.

Largemouth bass	LMB	400	920	2.59	
Largemouth bass	LMB	400	880	2.53	
Largemouth bass	LMB	311	400	1.61	
Largemouth bass	LMB	279	290	2.46	

Appendix D (continued). Total mercury concentrations (mg/kg wet weight) in filets of fish collected by the New Jersey Department of Environmental Protection and analyzed by the New Jersey Department of Health.

	Species	Length (mm)	Weight (g)	Hg (ppm)	Arithmetic Mean
Largemouth bass	LMB	281	280	2.1	2.258
Chain pickerel	CP	380	300	3.57	
Chain pickerel	CP	335	200	3.56	
Chain pickerel	CP	285	140	1.71	2.947
American eel (forage)	ff-EEL-(1)		0	1.51	
American eel (forage)	ff-EEL-(1)		0	1.32	
American eel (forage)	ff-EEL-(1)		0	1.28	
American eel (forage)	ff-EEL-(1)		0	2.26	
American eel (forage)	ff-EEL-(1)		0	1.11	1.496
HARRISVILLE LAKE					
Chain pickerel	CP	450	510	2.27	
Chain pickerel	CP	335	200	1.48	
Chain pickerel	CP	250	75	1.2	
Chain pickerel	CP	275	95	0.896	
Chain pickerel	CP	245	60	0.938	1.129
Yellow bullhead	YBH	280	325	2.52	
Yellow bullhead	YBH	212	155	0.963	1.742
mud sunfish	MUD	185	105	1.32	
mud sunfish	MUD	175	100	0.949	
mud sunfish	MUD	111	30	0.761	1.01
Creek chubsucker (forage)	ff-CCB-(5)	75-111	0	0.32	
Creek chubsucker (forage)	ff-CCB-(5)	80-112	0	0.29	
Creek chubsucker (forage)	$\mathrm{ff}-\mathrm{CCB}-(5)$	85-111	0	0.286	
Creek chubsucker (forage)	ff-CCB-(5)	85-105	0	0.27	0.292
WADING RIVER					
Chain pickerel	CP	425	455	0.462	
Chain pickerel	CP	351	260	0.492	
Chain pickerel	CP	320	200	0.711	
Chain pickerel	CP	285	165	0.549	
Chain pickerel	CP	223	85	0.554	0.554
White catfish	WCF	303	360	0.489	
White catfish	WCF	300	365	0.597	0.543
Yellow bullhead	YBH	303	380	1.59	
Yellow bullhead	YBH	202	125	1.01	1.3
Brown bullhead	BBH	315	445	0.624	0.624
American eel (forage)	ff-EEL-(5)	0	0	0.437	
American eel (forage)	ff-EEL-(5)	0	0	0.226	
American eel (forage)	ff-EEL-(5)	0	0	0.303	
American eel (forage)	ff-EEL-(5)	0	0	0.241	0.302

Appendix D (continued). Total mercury concentrations ($\mathrm{mg} / \mathrm{kg}$ wet weight) in filets of fish collected by the New Jersey Department of Environmental Protection and analyzed by the New Jersey Department of Health.

	Species	Length (mm)	Weight (g)	Hg (ppm)	Arithmetic Mean

EAST CREEK LAKE

Largemouth bass	LMB	331	430	1.07	
Largemouth bass	LMB	335	470	1.44	
Largemouth bass	LMB	340	510	1.95	
Largemouth bass	LMB	420	1100	2.21	
Largemouth bass	LMB	380	750	2.04	$\mathbf{1 . 7 4 2}$
Chain pickerel	CP	350	160	0.987	
Chain pickerel	CP	312	190	0.65	
Chain pickerel	CP	335	240	0.78	
Chain pickerel	CP	333	190	1.14	
Chain pickerel	CP	337	250	1.35	$\mathbf{0 . 9 8 1}$
Brown bullhead	BBH	332	590	2.62	$\mathbf{2 . 6 2}$
Yellow bullhead	YBH	223	180	0.73	
Yellow bullhead	YBH	117	75	0.303	$\mathbf{0 . 5 1 7}$
Yellow perch	YP	240	205	0.948	
Yellow perch	YP	220	140	0.901	
Yellow perch	YP	200	110	0.815	
Yellow perch	YP	201	105	1.01	
Yellow perch	YP	180	80	0.671	$\mathbf{0 . 8 6 9}$
Pumpkinseed sunfish	PSS	114	65	0.525	
Pumpkinseed sunfish	PSS	114	70	0.426	
Pumpkinseed sunfish	PSS	113	55	0.347	$\mathbf{0 . 4 3 3}$
Creek chubsucker (forage)	ff-CCB-(5)	$80-100$	0	0.191	
Creek chubsucker (forage)	ff-CCB-(5)	$77-100$	0	0.156	
Creek chubsucker (forage)	ff-CCB-(5)	$77-100$	0	0.183	
Creek chubsucker (forage)	ff-CCB-(5)	$77-100$	0	0.168	
Creek chubsucker (forage)	ff-CCB-(5)	$80-105$	0	0.191	$\mathbf{0 . 1 7 8}$
MULLICA RIVER					

MULLICA RIVER

Chain pickerel	CP	460	670	0.62	
Chain pickerel	CP	505	895	0.924	
Chain pickerel	CP	332	200	0.49	
Chain pickerel	CP	300	155	0.446	
Chain pickerel	CP	235	75	0.254	$\mathbf{0 . 5 4 5}$
White perch	WP	210	125	0.512	
White perch	WP	200	105	0.358	
White perch	WP	190	90	0.362	
White perch	WP	183	85	0.335	
White perch	WP	174	70	0.35	$\mathbf{0 . 3 8 3}$
Pumpkinseed sunfish	PSS	170	105	0.515	

Appendix D (continued). Total mercury concentrations ($\mathrm{mg} / \mathrm{kg}$ wet weight) in filets of fish collected by the New Jersey Department of Environmental Protection and analyzed by the New Jersey Department of Health.

	Species	Length $(\mathbf{m m})$	Weight (\mathbf{g})	$\mathbf{H g}(\mathbf{p p m})$	Arithmetic Mean
Pumpkinseed sunfish	PSS	145	65	0.212	
Pumpkinseed sunfish	PSS	130	35	0.124	$\mathbf{0 . 2 8 4}$
White catfish	WCF	290	295	0.348	
White catfish	WCF	290	305	0.254	
White catfish	WCF	296	325	0.234	$\mathbf{0 . 2 7 9}$
Brown bullhead	BBH	252	215	0.262	
Brown bullhead	BBH	245	190	0.275	
Brown bullhead	BBH	220	195	0.403	$\mathbf{0 . 3 1 3}$
Golden shiner (forage)	ff-GSH-(5)	$138-157$	0	0.148	
Golden shiner (forage)	ff-GSH-(5)	$128-167$	0	0.125	
Golden shiner (forage)	ff-GSH-(5)	$140-150$	0	0.129	$\mathbf{0 . 1 3 4}$

MONKSVILLE RESERVOIR

Largemouth bass	LMB	312	430	0.213	
Largemouth bass	LMB	313	415	0.2	
Largemouth bass	LMB	390	820	0.995	
Largemouth bass	LMB	412	1065	0.784	
Largemouth bass	LMB	285	285	0.513	$\mathbf{0 . 5 4 1}$
Walleye	WAL	459	1075	0.977	
Walleye	WAL	476	1155	0.798	
Walleye	WAL	522	1575	1.444	
Walleye	WAL	414	740	0.424	
Walleye	WAL	420	725	0.483	
Walleye	WAL	355	420	0.298	$\mathbf{0 . 7 3 7}$
Smallmouth bass	SMB	370	715	0.328	
Smallmouth bass	SMB	316	445	0.262	
Smallmouth bass	SMB	270	230	0.282	$\mathbf{0 . 2 9 1}$
Brown trout	BNT	450	1435	0.203	$\mathbf{0 . 2 0 3}$
White perch	WP	245	195	0.191	
White perch	WP	270	280	0.583	
White perch	WP	285	315	0.736	
White perch	WP	268	270	0.551	
White perch	WP	321	475	0.789	$\mathbf{0 . 5 7}$
Brown bullhead	BBH	318	415	0.042	
Brown bullhead	BBH	285	270	0.093	
Brown bullhead	BBH	310	325	0.062	
Brown bullhead	BBH	292	325	0.126	
Brown bullhead	BBH	290	320	0.055	$\mathbf{0 . 0 7 6}$
Pumpkinseed sunfish	PSS	181	130	0.135	
Pumpkinseed sunfish	PSS	180	110	0.249	

Appendix D (continued). Total mercury concentrations (mg/kg wet weight) in filets of fish collected by the New Jersey Department of Environmental Protection and analyzed by the New Jersey Department of Health.

	Species	Length (mm)	Weight (g)	Hg (ppm)	Arithmetic Mean
Pumpkinseed sunfish	PSS	192	150	0.093	0.159
Alewife (forage)	ff-ALE-(5)	0	0	0.105	
Alewife (forage)3/17/99	ff-ALE-(5)	0	0	0.087	
Alewife (forage)3/17/99	ff-ALE-(5)	0	0	0.085	
Alewife (forage)3/17/99	ff-ALE-(5)	0	0	0.064	0.085
WANAQUE RESERVOIR					
Largemouth bass	LMB	414	1160	0.853	
Largemouth bass	LMB	395	960	0.509	
Largemouth bass	LMB	346	620	0.448	
Largemouth bass	LMB	414	1005	0.714	
Largemouth bass	LMB	379	820	0.355	0.576
Chain pickerel	CP	560	1220	0.725	
Chain pickerel	CP	506	810	0.432	
Chain pickerel	CP	470	625	0.409	
Chain pickerel	CP	475	785	0.181	
Chain pickerel	CP	510	910	0.121	
Chain pickerel	CP	505	875	0.372	0.373
Smallmouth bass	SMB	462	1380	0.358	
Smallmouth bass	SMB	296	400	0.288	
Smallmouth bass	SMB	385	675	0.271	0.306
White perch	WP	321	500	0.749	
White perch	WP	272	280	0.351	
White perch	WP	307	440	0.625	
White perch	WP	339	560	1.183	
White perch	WP	368	820	0.646	0.711
Bluegill sunfish	BGS	172	100	0.07	0.07
White catfish	WCF	429	1340	0.332	
White catfish	WCF	405	1010	0.174	
White catfish	WCF	415	1070	0.12	
White catfish	WCF	377	740	0.283	
White catfish	WCF	371	680	0.171	0.216
Brown bullhead	BBH	358	660	0.01	
Brown bullhead	BBH	362	730	0.026	
Brown bullhead	BBH	340	600	0.071	0.036
Yellow bullhead	YBH	239	155	0.026	0.026
Alewife (forage)	ff-ALE-(5)	0	0	0.09	
Alewife (forage)	ff-ALE-(5)	0	0	0.097	
Alewife (forage)	ff-ALE-(5)	0	0	0.02	0.069

Appendix D (continued). Total mercury concentrations (mg/kg wet weight) in filets of fish collected by the New Jersey Department of Environmental Protection and analyzed by the New Jersey Department of Health.

	Species	Length (mm)	Weight (g)	Hg (ppm)	Arithmetic Mean
WILSON LAKE					
Largemouth bass	LMB	355	574	0.739	
Largemouth bass	LMB	470	830	1.75	
Largemouth bass	LMB	400	781	0.878	
Largemouth bass	LMB	345	509	0.9	
Largemouth bass	LMB	256	199	0.896	1.033
Chain pickerel	CP	470	628	1.14	
Chain pickerel	CP	305	135	0.883	
Chain pickerel	CP	470	620	1.3	
Chain pickerel	CP	295	172	0.659	
Chain pickerel	CP	257	94	0.912	0.979
Yellow perch	YP	261	270	0.717	
Yellow perch	YP	245	180	0.648	
Yellow perch	YP	295	294	1.23	
Yellow perch	YP	300	350	1.08	
Yellow perch	YP	220	129	0.477	0.83
Pumpkinseed sunfish	PSS	182	140	1.52	
Pumpkinseed sunfish	PSS	204	210	0.259	
Pumpkinseed sunfish	PSS	185	152	0.598	0.792
Golden shiner (forage)	ff-GSH-(5)	0	0	0.467	
Golden shiner (forage)	ff-GSH-(5)	0	0	0.288	
Golden shiner (forage)	ff-GSH-(5)	0	0	0.285	
Golden shiner (forage)	ff-GSH-(5)	0	0	0.395	
Golden shiner (forage)	ff-GSH-(5)	0	0	0.31	0.349

MERRILL CREEK RESERVOIR

Largemouth bass	LMB	395	854.9	0.926	
Largemouth bass	LMB	410	2000	0.666	
Largemouth bass	LMB	496	1645	1.12	
Largemouth bass	LMB	367	555	0.933	
Largemouth bass	LMB	410	880	1.1	$\mathbf{0 . 9 4 9}$
Lake trout	LT	640	2290	0.728	
Lake trout	LT	600	2060	0.46	
Lake trout	LT	567	1560	0.378	
Lake trout	LT	565	1630	0.441	
Lake trout	LT	586	2010	0.507	$\mathbf{0 . 5 0 3}$
Smallmouth bass	SMB	393	685	0.626	
Smallmouth bass	SMB	433	1105	0.679	
Smallmouth bass	SMB	425	950	0.488	
Smallmouth bass	SMB	401	815	0.442	

Appendix D (continued). Total mercury concentrations (mg/kg wet weight) in filets of fish collected by the New Jersey Department of Environmental Protection and analyzed by the New Jersey Department of Health.

	Species	Length (mm)	Weight (g)	$\mathbf{H g}$ (ppm)	Arithmetic Mean
Smallmouth bass	SMB	385	725	0.44	0.535
Black crappie	BC	261	270	0.12	
Black crappie	BC	253	230	0.089	0.105
Yellow perch	YP	340	480	0.324	
Yellow perch	YP	312	395	0.202	
Yellow perch	YP	301	290	0.221	0.249
Brown bullhead	BBH	279	172.5	0.137	
Brown bullhead	BBH	295	306.2	0.14	
Brown bullhead	BBH	254	219.5	0.16	
Brown bullhead	BBH	251	178.9	0.171	
Brown bullhead	BBH	260	195.8	0.115	0.145
Bluegill sunfish	BGS	215	227.3	0.157	
Bluegill sunfish	BGS	172	100	0.094	
Bluegill sunfish	BGS	146	60	0.048	0.099
Alewife (forage)	ff-ALE-(5)	0	0	0.045	
Alewife (forage)	ff-ALE-(5)	0	0	0.042	
Alewife (forage)	ff-ALE-(5)	0	0	0.036	0.041
UNION LAKE					
Largemouth bass	LMB	245	120	1.211	
Largemouth bass	LMB	405	850	2.22	
Largemouth bass	LMB	425	1000	1.704	
Largemouth bass	LMB	415	800	1.66	1.699
Chain pickerel	CP	500	888	0.673	
Chain pickerel	CP	500	864	0.661	
Chain pickerel	CP	275	84	******1.349	
Chain pickerel	CP	300	120	0.569	0.634
White perch	WP	164	70	0.621	
White perch	WP	150	56	0.195	0.408
Bluegill sunfish	BGS	195	142	0.177	
Bluegill sunfish	BGS	204	195	0.083	
Bluegill sunfish	BGS	175	150	0.537	0.266
Golden shiner (forage)	ff-GSH-(1)	0	0	0.123	
Golden shiner (forage)	ff-GSH-(1)	0	0	0.078	
Golden shiner (forage)	ff-GSH-(1)	0	0	0.076	
Golden shiner (forage)	ff-GSH-(1)	0	0	0.151	0.107

