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Summary deliverable BMEGUI: 

As described under contract SR08-037, our project consists of four objectives dedicated to 

upgrading the BMEGUI software, which are to (1) improve internal error handling, (2) add new 

soft data types, (3) implement automatic covariance fitting, and (4) implement the river metric. 

We were successful in finishing the implementation these entire objectives, we completed three 

cases studies that illustrate the use of the upgraded BMEGUI, version 3.0, and we produced the 

final report provided below. We are pleased to announce that we have completed the testing, 

debugging, and documentation of these four objectives, creating tutorials for each completed 

objectives and delived the BMEGUI software to NJDEP. 
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Final report: 

 

Version Upgrade, Expansion, and Improvement of Modern Bayesian Spatio-

Temporal Geostatistics Code for ArcGIS Users 

 

Abstract 

The upgraded BMEGUI, version 3.0, allows users to transparently run the BME programs 

without having to learn any additional programming language and complexities of tedious 

mathematical formulations. This upgraded BMEGUI provides an easy-to-use interface with 

improved internal error handling, with automatic covariance parameter selection, and with 

expanded types of data types supported, and with the incorporation of a river network distances 

that substantially improved the previous version of BMEGUI. The input to the upgraded 

BMEGUI includes environmental monitoring data and river networks that users can obtain from 

DEP databases. The output will be BME estimated maps showing the spatial distribution of 

environmental parameters for any time of interest. The upgraded BMEGUI has been delivered to 

NJDEP with a fully updated user’s manual.  
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1. Objective 1: Internal Error Handling of Input Datasets 

 

1.1 Implementation 

The BMEGUI currently provides basic functionality to automatically correct internal 

inconsistencies in the users’ dataset. These inconsistencies are categorized in the following three 

errors: 1) the same station ID is assigned to different geographic locations, 2) different station 

IDs are assigned to the same geographic location, and 3) there are conflicting duplicated 

measurements at a same location and time. The original BMEGUI only displays an error 

message when any of these errors are detected, but does not provide a reporting of where the 

errors occur in the data. An example of how the original BMEGUI handles error type 1 (i.e. the 

same station ID is assigned to different geographic locations) is shown in figure 1(a), which does 

not report all the stations where this error occurred. 

  (a)                                                                  (b) 

 

 
Figure 1(a): Original BMEGUI error handling dialog box. BMEGUI identified 5 monitoring station IDs where 

theses IDs were assigned to two or more different locations. (b): Newly developed user-friendly error handling 

dialog box. BMEGUI identified and reported that station “st46” has been assigned to two different locations which 

are shown in the textbox. To correct this error BMEGUI assigns a new location (-74.90, 40.86) to this station “st46” 

if the user accepts this data correction offered by BMEGUI. 

 

In order to improve quality control of the data used, it is very important to identify and 

remove all the stations where error 1 occurred before the BME analysis is carried out. If the user 

continues to run the BME analysis and doesn’t fix internal data errors, then there is an increased 

risk that the data analysis might be incorrect. To address this issue, an interface window has been 

developed that facilitates the inspection of the stations where the error occurred in the input 

dataset, and provides a rudimentary interface to facilitate the correction of these errors. A snap 

shot of this newly developed user-friendly interface is shown in figure 1(b). This newly added 
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feature tells users about the type of error encountered, the number error instances, and the places 

where these errors were identified in the dataset. A specific potential solution specific to the error 

detected is then provided, which the user can accept or reject. 

Similarly, a newly developed error handling dialog box also handles the second type of error, 

where two or more stations IDs are assigned to the same location as shown in figure 2. Figure 

2(a) shows the old error handling dialog box and figure 2(b) shows the newly improved error 

handling dialog box. This new error handling window lists all the stations IDs that are assigned 

to a same location. For example, four different stations IDs (st200, st201, st202, and st203) are 

all assigned to the same location (- 74.87, 40.955) as shown in figure 2(b). Additional occurrence 

of this type of error (where 2 or more station IDs are assigned to a same location) can be seen by 

pressing the NEXT button on the window.   

 

(a)                                                                           (b) 

 
Figure 2: (a) Original BMEGUI’s error handling dialog box. BMEGUI identified 3 instances of multiple stations 

assigned to the same location. (b) Newly developed BMEGUI’s error handling dialog box. BMEGUI identified 

4stations IDs that are assigned to a same location (-74.875, 40.955). There are three instances of this type of errors. 

Other instances of this error are viewed by pressing the next button.  

 

1.2 Testing/Simulation 

The testing of these newly developed dialog boxes for internal error handling has been done 

successfully using a small synthetic dataset. 

 

1.3 Quality assurance and quality control 

The newly added features for error handling internal data errors have been tested using the small 

synthetic data file described above. Further tests have been conducted successfully using large 

data sets for handling internal data errors. QA/QC is ensured as described in Quality Assurance 

Plan (QAP) along with this report. 
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1.4 Documentation (tutorial and user manual) 

The documentation of these newly added features of error handling has been completed. Details 

of these newly added features with good graphics have been added in the tutorials and user 

manual of the upgraded version of BMEGUI. 
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2. Objective 2: Additional Forms of Soft Data 

 

2.2 Implementation 

The old version of the BMEGUI supports only two types of statistical distribution describing 

the uncertainties associated with the soft data.  One is a uniform probability distribution function 

(PDF) which is defined by two parameters; the lower and upper bounds of the interval.  The 

other is the Gaussian PDF which is also defined by two parameters; the mean and standard 

deviation.  By knowing which data columns in the user’s data file contain these two parameters, 

the BMEGUI is able to automatically construct the PDF for each soft data point.  While these 

two types of PDF are often used in the data analysis of the environmental data, there exist other 

types of PDF that are useful to consider. This is particularly relevant when considering the 

emergence of data from multiple sources that were not available to the same extent in the past 

(increasing sophistication of measurement error models, new secondary information available at 

low marginal cost, emergence of the availability of remote sensing data, predictions from 

hydrologic or air quality models, biomarkers of exposure, health records, etc.). As a result, we 

expanded the types of PDF available in BMEGUI so as to include Truncated Gaussian, and 

Triangular distributions. Therefore, an interface window has been developed and implemented 

that accommodates the entry of the Truncated Gaussian, and Triangular types of PDFs. This 

provides a tool that will improve the user’s ability to merge data from multiple data sources. A 

snap shot of this newly developed user-friendly interface is shown in figure 3. This newly added 

functionality was implemented by expanding the file format acceptable as input to the BMEGUI, 

and by adding graphical functionality to display these new types of PDF used to characterize the 

uncertainty in the user’s soft data.  

 

Triangular distribution PDF: 

To define the triangular PDF we need three parameters; namely the lower limit, mode, and 

upper limit of the triangular distribution. This required writing new MATLAB programming 

functions, which have been implemented and tested in the upgraded version of BMEGUI. If we 

define the lower limit a, the mode c and the upper limit b as the three parameters of the triangular 

PDF, then we can write this triangular PDF as: 
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Truncated Gaussian PDF: 

The truncated normal distribution is the probability distribution of a normally distributed 

random variable whose value is either bounded below or above (or both). Thus, at most we need 

up to four values to define such a PDF. New MATLAB programming functions for the truncated 

Gaussian PDF have been implemented and tested successfully in BMEGUI. 

 

Figure 3: A newly added graphical user interface window developed to incorporate additional forms of soft data 

types in the upgraded version of BMEGUI.  

 

2.2 Testing /simulation 

Implementation and testing of this newly developed user friendly interface for expanded file 

format has been done successfully.  

 

2.3 Quality assurance and quality control 

Further tests have been conducted to assess the robustness and reliability of these newly 

added types of soft data using a large NJDEP data set on air quality.  

  

2.4 Documentation (tutorial and user manual) 

Documentation of this new capability has been completed. Details of this newly added 

feature with good graphics has been added in the tutorials and in the user manual.  
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3. Objective 3: Automatic Covariance Parameter Fitting 

 

3.1 Implementation 

BMEGUI users need to enter the parameters of a covariance function modeling the 

spatiotemporal autocorrelation between data points. This covariance function is essential to the 

subsequent mapping and estimation of environmental variables. The old version of BMEGUI 

asks users to provide lags at which to calculate experimental covariance values, as well as the 

parameters of a covariance model that best fit these experimental covariance values. Such 

parameter selection may be a difficult task for users lacking deep knowledge of geostatistical 

modeling. Therefore, we have added functionality in the BMEGUI that will provide automatic 

parameter selection for the covariance modeling. The updated version of BMEGUI now 

automatically selects optimal values for the covariance lags used to calculate the experimental 

covariance values, and automatically select covariance model parameters that best fit these 

experimental covariance values. Hence, the new version of BMEGUI provides a sort of 

“automatic mapping” procedure. This automatic parameter selection will be of great benefit to a 

wide range of BMEGUI users without advanced knowledge of spatiotemporal statistical theory. 

However, advanced BMEGUI users will still be able to override any input parameters of their 

choice instead of using parameter values suggested by BMEGUI.  

We implemented this automatic covariance parameters selection using the dataset on 

ammonia concentration ( Lg / ) described in case study later in this report. Figures 4(a) and (b) 

are screen shots of the spatial and temporal covariance components fitted in BMEGUI using the 

automatic covariance parameter selection feature of the new version of BMEGUI 
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 (a) 

 
 

 (b) 

 
Figure 4: (a) Automatic fitting of the spatial component of the covariance model. (b) Automatic fitting of the 

temporal component of the covariance model. 
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3.2 Testing/Simulation 

Testing of the newly added feature to automatic select covariance parameters has been 

performed using ammonia water quality data provided by a NJDEP staff member.  

 

3.3 Quality assurance and quality control 

Further testing and debugging have been performed to assess the robustness of this new 

procedure using both water and air quality data sets. The goodness of fit of the selected 

theoretical covariance model depends on the data set used. This feature will be of benefit  in 

simple case studies. 

  

3.4 Documentation (tutorial and manual) 

A full description this newly added feature has been added in the tutorials and in the user 

manual. 
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4. Objective 4: River Metric 

 

4.1 Implementation 

Over the first 7 months of this project we have made substantial progress with the conceptual 

development needed for the implementation of a new river metric feature in BMEGI, which has 

resulted in the publication of a joint paper (Money et al, 2009) between UNC and NJDEP 

scientists on the use of the river metric in spatiotemporal Geostatistics to map e-coli 

concentrations along a river basin in New Jersey. This publication fulfills deliverable 2c (joint 

paper between UNC and NJDEP) described in the attachment E of the contract, and it provides 

important theoretical concepts that are implemented in the BMEGUI computer program. 

We have successfully integrated the river metric in the BMEGUI, and developed a graphical 

user interface to allow users to select a river network for their analysis. This graphical user 

interface does not provide tools to manipulate the river network, but it will provide an error 

message in case the river network is incomplete. The added BMEGUI feature tests for three 

basic types of river network errors (1) outlet exists outside the river network, (2) outlet exists at 

location where multiple river stream meets, and (3) broken river network. BMEGUI checks for 

all these errors and provide a visual snapshot of the error, if the error is detected by BMEGUI. 

See tutorial for detail.  

 

4.2 Testing/Simulation 

The testing of the newly added feature to use a river metric has been performed in BMEGUI 

using the river network of Money et al, 2009. 

 

4.3 Quality assurance and quality control 

Substantial testing and debugging have been performed, however, the testing was limited to the 

river network data mentioned above. See tutorial for more details. 

 

4.4 Documentation (tutorial and manual) 

Documentation of this newly added feature to use river metric has been added to the user’s 

manual. Additionally a tutorial has been developed specifically for this new feature. 

 

References 

Money, E., G. Carter, M.L. Serre
† 

(2009) Modern Space/Time Geostatistics using River 

Distances:  Data Integration of Turbidity and E.coli Measurements to Assess Fecal 

Contamination Along the Raritan River in New Jersey, Environmental Science & Technology, 

Vol. 43(10), pp. 3736-3742. 
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5. Case Study1: Comparing BMEGUI and Inverse Distance Weighting (IDW) 

estimation of surface water ammonia concentration 

 

5.1. Study Area and Data Source: 

Surface water quality is monitored by the Water Monitoring and Standards (WM&S) division 

of the New Jersey Department of Environmental Protection. Ammonia concentrations (g 

Nitrogen / L) measured from July 12
th

, 1989 to Sept 1, 2010 at irregular time intervals were 

provided by Mr. Mike Kusmiesz, GIS specialist at the Bureau of Marine Water Monitoring at 

NJDEP, who we are working with on this case study.  Figure 5 (a) shows the counties in the 

State of New Jersey and figure 5(b) shows the location of ammonia concentrations provided by 

NJDEP. All these observation sites are located near the coastal region of Ocean County. 

 

 (a) (b) 

 
Figure 5: (a) Counties of State of New Jersey and (b) ammonia observation sites in the coastal  region of Ocean 

County in New Jersey 

 

5.2. BMEGUI estimation versus Inverse Distance Weighting interpolation: 

Inverse Distance Weighting (IDW) interpolation calculates an interpolated value as the 

weighted average of neighboring measurements, where the weights are proportional to the 

inverse of the distance between measurements and interpolation point. On the other hand the 

BMEGUI estimation is based on the sophisticated Bayesian Maximum Entropy (BME) theory, 

which provides a sound geostatistical framework that accounts for the space/time autocorrelation 

of the environmental variable between the measurement points and the estimation point, as well 

as the uncertainty associated with measured values. As a result we expect BME estimation to 

provide a better representation of the space/time distribution of environmental variables than that 

obtained from IDW interpolation. In this case study, we used the BMEGUI to obtain the kriging 
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estimate shown in figure 6a, and we implemented the IWD interpolation in the MATLAB 

programming platform to obtain the IDW map shown in figure 6b. 

 

 (a)  (b) 

 
Figure 6: Estimates of surface water quality (ammonia conc.  (g/L)) in Ocean County coastal area of New Jersey     

on May 24, 2009 using (a) Kriging and (b) the IDW interpolation technique  

 

We can see from figure 6 that each method provides a slightly different water quality map. 

The objective of this case study is to visualize the relative performance of the IDW and BME 

mapping methods. The new version of BMEGUI with its added functionality was used to obtain 

the BMEGUI map shown in figure 6(a), which provides a representation of the spatial 

distribution of ammonia concentrations on May 24, 2009. The IDW map obtained for the same 

day is shown in figure 6(b). This map was calculated using only the concentrations measured on 

that day. A comparison of figure 6(a) and (b) indicates a clear difference in the values estimated 

by these two methods in the southern area of the study domain, where IDW values are clearly 

higher than that of BMEGUI. From theory the BMEGUI map is more accurate than the IDW 

map because BMEGUI accounts for measurements made on days prior and after the estimation 

day. Hence the accuracy provided by the BMEGUI map leads to a substantial difference in 

estimation value in the southern area where IDW is only using data available for the estimation 

day. 

 

There are some fundamental differences in the IDW and BME methods which explain why 

BME is a very powerful tool. BMEGUI and IDW techniques can be compared as following: 
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(i) BMEGUI interpolation is based on a modern spatiotemporal geostatistical framework 

that accounts for space/time autocorrelation and non-Gaussian uncertainties, whereas IDW is a 

deterministic method that does not account for randomness. As a result IDW only provides an 

interpolated value, while BMEGUI provides both an estimated value, as well as a corresponding 

estimation error variance (or equivalently an estimation confidence interval). 

(ii) IDW may be obtained as a linear limiting case of BME under the following three 

simplistic assumptions: (a) there is no measurement error, (b) the autocorrelation between 

measurements can be neglected, and (c) the autocorrelation between a measurement and the 

estimation point increases linearly with the inverse of separation distance. However, when these 

assumptions are violated, BMEGUI will result in a more accurate estimation than IWD 

(iii) BMEGUI maps can be estimated on any day, even days when no measurements are 

taken, on the strength of auto correlated measurements taken on previous or following days. On 

the other hand IDW maps should only be created for days at which several measurements were 

taken. As a result BMEGUI is a much better tool to analyze how spatial trends change over time, 

which is critical for many environmental monitoring efforts. 

We estimated the ammonia concentrations using BMEGUI for all dates on which water 

quality observations have been provided by NJDEP. Figure 7 shows the output from BMEGUI 

on some of these specific dates.  
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 (a) (b) 

 
 (c) (d) 

 
 (e) (f) 

 
Figure 7: Estimates of surface water quality (ammonia conc. (µg/L)) in the coastal region of Ocean County in New 

Jersey on July 12
th

, 1989 (a); August 10
th

, 1990 (b);  July 20
th

, 1993 (c); July 6
th

, 1994 (d);  July 14
th

, 2000 (e), and 

May 12, 2010 (f). 

 

BMEGUI also produces the estimation error variance maps shown in figure 8. We can see 

from that figure that the estimation error variance is higher in the southern part of the study 
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domain. This makes sense because we do not have any measurement in the southern part of the 

study domain. On the other hand uncertainty is almost zero at locations where we measurements. 

These maps may be useful in assessing where new monitoring stations should be located.  

 

 (a) (b) 

 
Figure 8: plots of BMEGUI produced uncertainty estimates of ammonia concentration for the days of July 12

th
, 1989 

(a); and August 10
th

, 1990 (b).  

 

NOTE: Figures for this study were generated in the MATLAB computing platform. Similar 

figures were generated using BMEGUI as described in the corresponding case study tutorial. 

 

5.3. Cross validation analysis 

BMEGUI is a powerful graphical user interface based on a sound geostatistical estimation 

framework that produces maps that can be substantially different than those obtained with the 

IDW interpolation technique, as supported by figure 6. The BMEGUI map should be more 

accurate as it accounts for the space/time autocorrelation in the data. However, the accuracy of 

these two methods cannot be quantified based only on the visual inspection of these maps.  

In order to assess and compare the accuracy of these substantially different maps, we 

performed a cross validation analysis using the BMElib package implemented in the MATLAB 

numerical platform to quantify the estimation error of each technique. The cross validation 

analysis consists in removing each ammonia value in turn from the data set, and calculating an 

estimate of that removed value from the remaining data. The difference between the estimated 

value and the value that was removed (the true value) is the estimation error. Using these 

estimation errors obtained at 1209 spatio-temporal locations we calculate the cross validation 

statistics shown on Table 1. These statistics consist in the Mean of the Squares of the estimation 

Errors (MSE), the Mean of the Absolute Value of estimation Errors (MAE), and the Mean of the 

estimation Errors (ME). The MSE and MAE are measures of the overall estimation error, as they 

quantify both the estimation bias and the lack of precision.  
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Table 1: Estimated errors in IDW and Kriging estimations   

Estimation method IDW  BME 

MSE (µg/L)
2
 

MAE (µg/L) 

ME(µg/L) 

290.5 

8.446 

0.112 

275.6 

8.416 

0.012 

 

These statistics reported in Table 1 indicate that the BME method implemented in the 

BMEGUI is overall better than the IWD method. The ME measures the bias of the estimation. 

The positive bias reported in Table 1 for both IDW and BME indicate that both methods slightly 

over predict the true ammonia concentration. The bias is more pronounced for IDW, and it is 

reduced when using BME. Furthermore the MSE and MAE are consistently lower for BME than 

for IDW, indicating that BME estimates are more precise and accurate than those of IDW. It can 

therefore be concluded from the table 1 that the map created using BMEGUI, which implements 

the BME method, is more accurate and therefore better than the map created using IWD.  

We note that in this case study we only used hard data, and in this case the BME method is 

the same as the space/time kriging method of classical geostatistics. If soft data were included in 

the analysis, then we would expect that the improvement of BME over IDW would be even 

larger than those reported in Table 1, because BME can rigorously incorporate soft data while 

that is not possible with IWD. 
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6. Case Study2: BMEGUI Estimation of Total Organic Carbon 

using hard and soft data 

 

6.1. Introduction: 

One of the features of the upgraded version of BMEGUI is the extended list of the types of 

soft data that can be considered, which now includes the triangular and truncated Gaussian PDFs. 

These added types of PDFs are very useful for the BME spatiotemporal estimation of air quality 

using data from different sources, as demonstrated in De Nazelle et al. (2010)
(1)

. We therefore 

completed a second case study to demonstrate how BMEGUI can be used to estimate PM2.5 

chemical speciation across NJ using the new version of BMEGUI. Chemical speciation of PM2.5 

provides information about air pollution that is critical to develop policies and regulations that 

are effective in protecting the public health. The analysis of spatial and temporal patterns of the 

chemical composition of PM2.5 provide critical insights about the contribution of local and urban 

pollution sources relative to regional background concentrations. For example these insights 

might help understand which chemical constituents are primary drivers for high PM
2.5 

mass in 

urban areas.  

New Jersey State has 4 monitoring stations that provide PM2.5 chemical speciation out of a 

total of 12 PM2.5 monitoring stations.  Important components of PM2.5 at these stations include 

sulfate, nitrate, total carbonaceous mass, ammonium, and crustal material. These components 

have complex spatial-temporal dependency and cross dependency structures. In order to 

demonstrate how BMEGUI can be used to map these important PM2.5 components, we provide 

here a case study that focuses on Organic Carbon (OC). Using BMEGUI it would be easy to 

extend the analysis performed here to any the other components of PM2.5. 

 

6.2. Materials and Method: 

Monitoring Data: 

PM2.5 speciation stations measure the daily average of both OC and PM2.5 concentrations. 

These stations provide hard data on OC average daily concentrations because OC is directly 

measured with a small measurement error. On the other hand regular PM2.5 stations only measure 

the daily average PM2.5 concentrations. These stations are more numerous, but they only provide 

an indirect assessment of OC since OC is a fraction of PM2.5. We will use these stations to 

provide soft data on OC, i.e. data with associated uncertainty, since these data are not coming 

from direct measurements of OC. 

The State of New Jersey has 4 PM2.5 speciation stations, and an additional 8 regular PM2.5 

stations where only PM2.5 is measured. Since at least 10-15 speciation stations measuring OC are 

needed to conduct a reliable OC space/time geostatistical analysis, we extended our study 



18 

 

domain to the rectangular area shown in Figure 9. This rectangular domain consists in New 

Jersey and surrounding parts of Connecticut, Maryland, Pennsylvania, and New York, so as to 

include 20 PM2.5 speciation stations and 29 regular PM2.5 stations. We obtained the PM2.5 and OC 

daily average concentrations observed at these stations from Jan 2007 to Dec 31, 2008.  Due to 

missing values in this time period, 5 of the 20 PM2.5 speciation stations did not have any data. On 

the other hand, all 29 stations where only PM2.5 is measured had data in our time period. As a 

result we ended up with 15 PM2.5 speciation stations where both PM2.5 and OC were measured, 

and 29 additional stations where only PM2.5 is measured. 

 

 
Figure 9: Sampling sites measuring PM2.5 and OC.  

 

Mass Fraction Model for organic Carbon: 

The procedure used to map OC consists in treating the log of OC daily concentrations 

observed at the 15 PM2.5 speciation stations as hard data for logOC, and in generating a soft 

datum for logOC for each PM2.5 daily concentration measured at the 29 stations where only 

PM2.5 is measured. The mass fraction procedure to generate the logOC soft data from the 

measured PM2.5 concentrations is described in Allshouse et al. (2009)
 (2)

. Briefly, logOC is 

related to logPM2.5 by the following relationship 

 

logOC= logPM2.5+logMF,  
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where MF=OC/PM2.5 is the Mass Fraction of OC in PM2.5. If follows that the mean and variance 

of OC given a measured value for PM2.5 are given by  

 

E[logOC|logPM2.5]= logPM2.5 + E[logMF], and 

var[logOC|logPM2.5]= var[logMF] 

 

We set the values of E[logMF] and var[logMF] to the mean and variance, respectively, of the 

MF values observed at the 15 PM2.5 speciation stations. Then, for each logPM2.5 value observed 

at a station where only PM2.5 is measured, we calculated the mean and variance of logOC using 

the above equations, and we entered these values in BMEGUI as the mean and variance of soft 

data of Gaussian type. 

 

6.3. Results and Discussions: 

Using the hard and soft data described above, BMEGUI generated maps of logOC for any 

day of interest. The map displayed in Figure 10 shows the spatial distribution of OC across New 

Jersey on Jan 03, 2007. This figure shows the hard and soft data available on that day with 

circles and squares, respectively. The BME method provides a rigorous mathematical framework 

that incorporates both hard and soft data to obtain the estimated values shown on the map. This 

estimation process puts more weights on the hard data, since they represent values of OC that 

were directly measured at PM2.5 speciation stations, and also incorporates (with lesser weights) 

the information provided by the soft data inferred from PM2.5 concentrations observed at stations 

that do not monitor OC. 
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Figure 10: Estimated OC (log µg/m

3
) on January 3, 2007. Circles represent observed (hard data) and square 

represent soft data generated using the mass fraction approach 

 

An important feature of the map of Figure 10 is that it describes the spatial distribution of OC 

at a finer spatial resolution than a map that would only incorporate the hard OC data obtained at 

PM2.5 speciation stations, or in other words, that would disregard the valuable information 

provided by the many stations that only monitors PM2.5. The estimation error associated with the 

BME map of Figure 10 is shown in Figure 11. The BME estimation error is zero at the hard data 

locations, small (but greater than zero) at the soft data locations, and increases with distance 

away from the hard and soft data points. 
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Figure 11: BME error variance of estimated OC (log µg/m

3
)

2
 on January 3, 2007.  

 

NOTE: Figures for this study were generated in the MATLAB computing platform. Similar 

figures were generated using BMEGUI as described in the corresponding case study tutorial.  

 

6.4. Conclusions: 

This case study illustrates the power of BMEGUI in mapping air quality data. As shown in 

this case study, BMEGUI will provide reliable and accurate maps of PM2.5 chemical constituents 

that can be used to better understand its spatial and temporal patterns across New Jersey and help 

in designing effective policies and regulations to contain air pollution. 
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7. Case Study3: Water Quality Monitoring Network Design 

 

7.1. Introduction: 

There is an ever-increasing demand for environmental monitoring data and other interpretive 

products derived from those data.  However, due to budget constraints it is not possible to collect 

samples at all locations and times of interests.  It is therefore necessary to efficiently design the 

monitoring network used to collect water quality data.  In this work we propose a methodology 

that can be used to prioritize locations where new water quality monitoring stations should be 

installed in the coastal area of Ocean County in New Jersey State in order to efficiently expand 

the existing water quality monitoring network. The monitoring network methodology is based on 

the BME geostatistical method, which is used to identify locations with high estimation errors. 

Based on this methodology we identified 20 optimal locations for new monitoring sites in the 

study area. These new monitoring sites would collectively enhance the reliability of interpolated 

water quality across the domain of study region. 

If the results of this case study are of interest to the NJDEP, then future works could consider 

the implementation of this proposed monitoring network design methodology in the BMEGUI. 

 

7.2. Monitoring Water Quality: 

Water quality monitoring is very important to protect the ecosystem and ultimately the public 

health. The importance of water quality monitoring has been well accepted among experts in 

sustainable water resources across the world. However, existing water quality monitoring 

networks may not be sufficient to provide comprehensive information about current water 

quality and resources. The U.S. commission on Ocean Policy (2004) emphasized the importance 

of water quality monitoring, saying that “Ongoing monitoring is essential to assess the health of 

ocean and coastal ecosystems and detect changes over time.  More than any other measure, 

monitoring provides accountability for management actions.  The nation needs a coordinated, 

comprehensive monitoring network that can provide the information necessary for managers to 

make informed decisions, adapt their actions as needed, and assure effective stewardship of 

ocean and coastal resources.”  (An Ocean Blueprint for the 21
st
 Century”, U.S. Commission on 

Ocean Policy, 2004.).  

 

7.3. Study Area and Data Source: 

Ocean County is located along the Jersey Shore of New Jersey State.  Surface water quality 

is monitored by the Water Monitoring and Standards (WM&S) division of the New Jersey 

Department of Environmental Protection. The department collects and provides water quality 

information from water quality monitoring stations located throughout a extensive water body 

inlet near the coastal region (Figure 11). Ammonia concentrations (µg Nitrogen / L) measured 

from July 12
th

, 1989 to Sept 1, 2010 at irregular time intervals were provided by Mr. Mike 

Kusmiesz, GIS specialist at the Bureau of Marine Water Monitoring at NJDEP, who we are 
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working with on this case study.  Figure 11 shows the monitoring stations where ammonia 

concentrations were observed in Ocean County of New Jersey State.   

 

 
Figure 11: Ammonia monitoring sites in coastal area of Ocean County of New Jersey State 

 

7.4. Network Design: 

The proposed water quality network primarily provides optimal sites for additional 

monitoring stations for reliable and improved water quality information. The optimal monitoring 

sites in this study are based on a single water pollutant i.e. ammonia concentration in the water. 

However, the design approach can be extended for multiple water pollutants by incorporating all 

pollutants into a single number based on their toxicity potential level. For instance, a water 

quality index can be developed based for all pollutants present in the water and then the 

monitoring network can be designed for this index. This type of approach has been used 

successfully for designing air quality monitoring network. Statistical approaches such as 

principal component analysis (Peterson 1970), cluster analysis (Sabaton, 1976), linear 

programming (Hougland and Stephens 1976), and optimization based on the inverse of the 

estimation variance (Husain and Khan 1983) have been used widely for designing air quality 

monitoring network.  However, these statistical design approaches rely substantially on estimates 

of pollutant concentrations obtained from high quality data on air pollution measurements and 
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model outputs, or a combination of both. The coastal water region in this study poses a unique 

set of challenges because water pollution is strongly influenced by point and non point sources 

off its coast. As a result we have developed a monitoring network optimization procedure that 

mainly focuses on the uncertainty in the geostatistical estimation of water quality, as well as the 

mean average ammonia concentration over the 20 years observations. 

 

7.5. Interpolation uncertainty: 

The kriging method of linear Geostatistics provides the best linear unbiased estimation of 

water quality across a study domain. Hence the kriging method provides a robust tool to 

interpolate ammonia concentration in water at unobserved sites. Typically the kriging variance 

(model uncertainty) is zero at each monitoring station, and increases with distance away from 

monitoring stations. The distance over which the kriging variance increases away from a 

monitoring station is described by the spatial covariance function, which is a measure of the 

autocorrelation of ammonia across space.  

The covariance model for ammonia was obtained using the BMEGUI. The spatial component 

of this covariance model can be mathematically expressed as by the equation below  

 

       

 

where  

   (degree)  (degree) 

285.07 427.61 0.085 0.300 

 

Using this spatial component of the covariance model we calculated the kriging variance across 

domain of study region. 

 

7.6. Placement of preselected monitoring stations 

We calculate the priority index at any location of interest as the multiplication of kriging 

variance and the average ammonia concentration over the 20 years observations at that location.  

Thus, the priority index (PI) is higher for locations of higher interpolation uncertainty and higher 

mean ammonia concentration.  The PI is used for the pre selection of 42 sites as follow: We 

create a regular grid of potential new locations for monitoring sites, and we select the grid point 

with the highest PI value as an optimal new monitoring site. Adding a station at that new location 

results in a total of 35 stations (34 existing stations plus 1 new station). We recalculate the 

kriging variance and PI map for these 35 stations. We then use this updated PI map to find the 

next grid point with the highest PI value where we locate our second preselected site. This results 

in a total of 36 stations (34 existing and 2 new stations). We iteratively repeat this procedure 

until we have 42 preselected sites. These preselected sites are shown in Figure 12 as “candidate” 

sites. 
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Figure 12: Existing and candidate monitoring sites 

 

Out of the 42 candidate sites we selected 20 recommended sites based on expert judgment. In 

this work we simply selected recommended sites based on their PI score, but future work should 

include knowledge from the agency involved, consideration about accessibility to the sampling 

sites, cost of operation, etc. For each of the recommended site we calculated the percent 

reduction in aggregate priority index that results from installing a monitoring station at that site. 

The recommended sites are then ranked from largest to smallest reduction in aggregate PI. 

Figure 13 shows these final proposed sites and the kriging estimate of ammonia concentration 

(µg Nitrogen / L) on August 15, 2009.  
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Figure 13: Kriging estimate of ammonia concentration (µg Nitrogen / L) on August 15, 2009 

 

The priority of these proposed monitoring sites were assessed using the total percent 

reduction in PI value. This percent reduction in PI and priority rank of proposed monitoring sites 

are tabulated in table 2.  The combination of Figure 13 and Table 2 provides NJDEP managers 

with a powerful tool to select optimal location where to locate new stations in a way that will 

result in the highest reduction of uncertainty where ammonia concentrations are high. 

 

Table2: Priority rank and percent reduction in PI (over all interpolation uncertainty).  

Percent 

reduction in 

total uncertainty 

Priority 

Rank 

Percent 

reduction in 

total uncertainty 

Priority 

Rank 

-5.65 1 -1.61 11 
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7.7. Conclusions:  

The proposed water quality monitoring stations primarily provides optimal sites for 

additional monitoring stations for reliable information on interpolated water quality. First, a total 

of 42 candidate monitoring sites (Figure 11) were pre-selected based on the PI index. Then out of 

these candidate sites we selected 20 proposed sites, which we ranked based on percent reduction 

in overall interpolation uncertainty where ammonia concentration is high. This methodology is 

applicable to any water body and any combination of water quality parameters, and it is highly 

flexible as it relies on a priority index that can be adjusted as desired by the relevant agency.  

We recommend that future works consider the implementation of a graphical user interface 

for this methodology, which can be ideally be done in the BMEGUI, and will provide users with 

a powerful tool to optimize water quality monitoring network operating under limited or reduced 

budgets. This tool can also be easily extended to choose which stations should be removed or 

how stations should be relocated in the case of budget cuts. Ultimately this tool may allow 

monitoring agencies to reduce the cost of their monitoring operation while improving water 

quality assessment. 
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QUALITY ASSURANCE PLAN (QAP) 

 

Quality Assurance Plan (QAP): The following three steps have been adopted to ensure the 

quality and development of the upgraded version of the BMEGUI software 

1. Planning and implementation 

2. Testing 

3. Corrective action 

Planning and Implementation: Many significant improvements on the functionality of 

BMEGUI have been implemented and successfully executed. These added BMEGUI features 

will greatly enhance the user’s experience when performing a spatiotemporal analysis of 

environmental variables. A new approach to estimate water quality variables along river network 

has also been implemented in this upgraded version. We followed exactly the plan for the 

version upgrade, expansion, and improvement of the BMEGUI as described in the Methods 

section of contract SR08-037.  

Final Testing and Delivery: The final upgraded and improved version of BMEGUI has been 

tested after each new BMEGUI features are implemented and executed successfully. A 

comprehensive testing procedure was used to test each feature separately, and then as a complete 

package, in order to ensure a good product quality.  This testing was involved the operation of 

BMEGUI under normal conditions (i.e. for a typical user with knowledge of this software and 

the way it should be used) and abnormal conditions (i.e. for a person without any knowledge of 

this software). 

Corrective Action: Any defect or flaw in design and calculation, and any code bug identified in 

the upgraded version of BMEGUI, have been fixed and tested again up until no further changes 

were needed. We conclude that the upgraded BMEGUI is bug free under normal operating 

conditions and is as user friendly. 


