EARTHQUAKE LOSS ESTIMATION STUDY FOR BERGEN COUNTY, NEW JERSEY:

GEOLOGIC COMPONENT

Prepared for the New Jersey State Police Office of Emergency Management

by the New Jersey Geological Survey

December 2000

CONTENTS

Final Report 1
Appendix A. Maps of Bergen County A.1
Appendix B. Magnitude 5 with default geology B.1
Appendix C. Magnitude 5 with upgraded geology C.1
Appendix D. Magnitude 5.5 with default geology D.1
Appendix E. Magnitude 5.5 with upgraded geology E.1
Appendix F. Magnitude 6 with default geology F.1
Appendix G. Magnitude 6 with upgraded geology G.1
Appendix H. Magnitude 6.5 with default geology H.1
Appendix I. Magnitude 6.5 with upgraded geology I.1
Appendix J. Magnitude 7 with default geology J.1
Appendix K. Magnitude 7 with upgraded geology K.1
Appendix L. Shear-wave velocity data L.1
Seismic Soil Class map folded in pocket
Liquefaction Susceptibility Map folded in pocket
Landslide Susceptibility Map folded in pocket

FINAL REPORT

GEOLOGIC COMPONENT OF THE EARTHQUAKE LOSS ESTIMATION STUDY FOR BERGEN COUNTY, NEW JERSEY

Prepared for the New Jersey State Police, Office of Emergency Management

by S cott D. Stanford, Ronald S. Pristas, David W. Hall, and Jeffrey S. Waldner New Jersey Geological Survey

December 8, 2000

Summary: Geologic and topographic data were acquired and analyzed in order to compile maps of seismic soil class, liquefaction susceptibility, and landslide susceptibility for Bergen County (folded in pocket). The soil class, liquefaction susceptibility, and landslide susceptibility data were entered into the HAZUS model for each census tract in the county. The HAZUS model was run with the upgraded geologic data and with the default geologic data for earthquake magnitudes of 5, 5.5, 6, 6.5, and 7. Selected outputs from these runs are attached in Appendices A through K. The upgraded geology produced significant changes in both the spatial distribution of damage and the total damage estimates. The upgraded geology produced greater building damage in the Hackensack Valley and Hackensack Meadowlands areas of the county, where soils are softer and more liquefiable than the default, and less building damage on most upland areas, where soils are stronger than the default. Because uplands comprise most of the area of Bergen County, the total estimated building damage is somewhat less with the upgraded geologic data at all magnitudes.

In addition to the HAZUS data upgrades and runs, shear-wave velocity was measured on four soil types at a total of 13 locations. The results of these measurements are provided in Appendix L. These measurements were made to check the soil-class assignments, which use test-drilling data as a proxy for shear-wave velocity. The measured velocities confirmed most of the assignments. Soil classes were adjusted for gravel-rich materials that yielded higher-than-predicted velocities.

Geologic Data Acquired: Six distinct units of surficial material were identified and mapped in Bergen County. These include glacial till, glacial-lake and glacial-river sand and gravel deposits, glacial-lake silt and clay deposits, postglacial river deposits, peat and organic silt and clay deposited in wetlands, and outcropping bedrock. The distribution and thickness of these materials were mapped at 1:24,000 scale using stereo-airphoto interpretation, field observations, archival geologic map data on file at the NJGS, and logs of about 1300 test borings. Till is a compact pebbly, cobbly, and, in places, bouldery silty sand to sandy silt sediment deposited directly beneath glacial ice. It veneers the bedrock surface and is as much as 150 feet thick in the county. On parts of the Palisades Ridge, Ramapo Mountain, Campgaw Mountain, and the

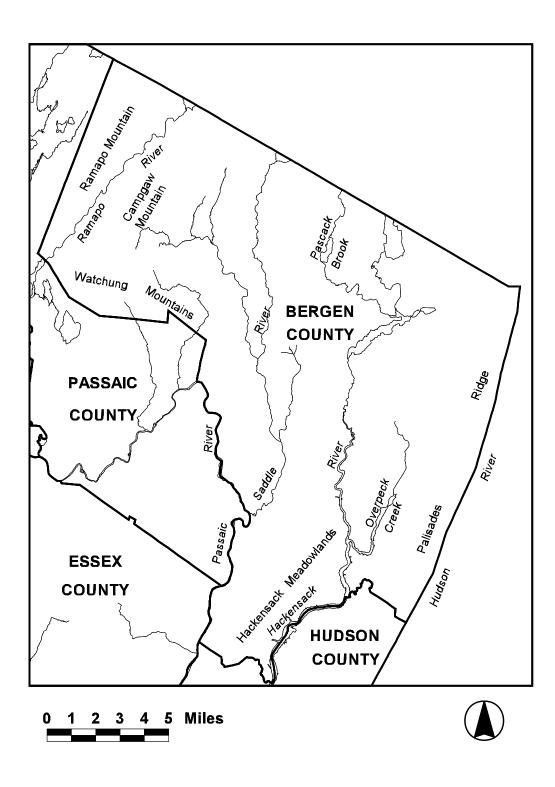


Figure 1. Bergen County, showing features named in text.

Watchung Mountains, till is thin or absent and bedrock is exposed or is within 10 feet of the surface (Figure 1). Glacial-lake deposits overlie the till in the lowlands along the Hackensack, lower Saddle, Ramapo, and Passaic Rivers, and in the Hackensack Meadowlands. These deposits include sand and gravel as much as 100 feet thick and silt and clay as much as 250 feet thick. Glacial-river sand and gravel forms terraces in the Pascack Brook and upper Saddle River valleys. Alluvial sand was deposited along all the main streams after the glacier retreated and the glacial lakes drained. It is as much as 20 feet thick and commonly overlies glacial-lake deposits. In the Hackensack Meadowlands, alluvial sand laid down before sea-level rise underlies saltmarsh and estuarine deposits. The salt-marsh and estuarine deposits are as much as 300 feet thick beneath the Hudson River but are generally less than 20 feet thick in the Hackensack Meadowlands. The extent of the these deposits is important because they are loose, saturated soils that are especially susceptible to seismic shaking. Archival maps at the NJGS dating back to 1880 were used to delineate the original limit of the marshes, which are now covered by fill over much of their former extent.

Data Analysis: Shaking behavior and liquefaction susceptibility of soils are determined by their grain size, thickness, compaction, and degree of saturation. These properties, in turn, are determined by the geologic origin of the soils and their topographic position. Soils can be classed into the HAZUS categories using Standard Penetration Test (SPT) data, which are acquired during the drilling of test borings. SPT tests report the number of blows of a 140-pound hammer falling 30 inches that are required to drive a sampling tube 12 inches into the test material. In addition to the approximately 300 borings in the Hudson County-Newark area, with a total of 4,777 SPT tests, that were used to define soil classes for the Newark and Hudson County HAZUS studies in 1998 and 1999 (Table 1), an additional 50 borings, with a total of 234 SPT tests, were acquired for Bergen County (Table 2). For each surficial unit, a mean SPT value, and standard deviation, were calculated. This mean value is then applied to the mapped extent of the surficial unit to prepare the soil class map. Fill includes a variety of materials ranging from demolition debris and excavated bedrock to trash and dredged silt and sand. Because of the variable composition of fill it is inappropriate to apply a mean SPT value, and fill was not included in the soil classification determinations. The behavior of fill under seismic shaking should be assessed on a site-specific basis. The boring logs also report the depth of the water table, which marks the upper limit of saturation. This information, along with the grain size and compaction of the soil, is used to map liquefaction susceptibility. HAZUS soil classes were assigned according to the procedures described in sections 4.1.2.1, 4.1.2.2, and 4.1.2.3 of the 1997 National Earthquake Hazards Reduction Program (NEHRP) Provisions. These procedures assign a soil class by using a weighting formula to sum the soil and rock layers to a depth of 100 feet. Liquefaction susceptibility was assigned based on Table 9.1 of the HAZUS Users Manual. The resulting maps are attached (folded in pocket).

Landslide susceptibility depends on slope angle and the geologic material underlying the slope. Slope angles for Bergen County were calculated from 1:24,000 topographic maps with 10-foot contour interval and slope materials were determined in the field. Landslide susceptibility was assigned according to the classification in Table 9.2 of the HAZUS User's Manual (refer to map folded in pocket). Areas of potential landsliding include cliffs and steep slopes in diabase bedrock and talus on the east slope of the Palisades Ridge, small areas of steep slope on the west

slope of the Palisades Ridge and on till-mantled sandstone and basalt ridges in the central and western parts of the county, and on steep slopes in gneiss and till on Ramapo Mountain.

Material	Number of Borings	Number of Tests	Range of SPT Values	Mean ± Standard Deviation	Percentage of Zero Values
fill	223	737	0-191	17.8±19.2	1.2%
salt-marsh deposits	218	647	0-38	2.8±4.5	45.9%
alluvial sand	67	221	0-89	24.0±13.9	1.8%
glacial-lake sand	79	573	2-139	27.3±17.3	0%
glacial-lake silt and clay	224	1559	0-157	13.7±13.9	11.4%
till	247	723	3-330	67.4±57.8	0%

Table 1.--Standard Penetration Test (SPT) data for surficial materials in the Hudson County-Newark area, from the 1998 and 1999 HAZUS studies.

Table 2.--Additional SPT data for Bergen County.

Material	Number of Borings	Number of Tests	Range of SPT Values	Mean± Standard Deviation
alluvial silt, sand, and gravel	23	109	2-123	24.3±30.3
glacial-lake sand and gravel	2	9	10-53	24.1±15.3
glacial-lake silt and clay	14	59	5-45	17.9±8.8
till	13	57	4-178	68.2±46.7

Shear-wave Velocity Measurements: To test the accuracy of using SPT data as a proxy for shear-wave velocity, seismic data were collected at thirteen sites in Bergen County. The tested soil types include glacial-lake sand and gravel (3 sites), postglacial river deposits (3 sites), glacial-lake silt and clay (3 sites) and till (5 sites) (Table 3). The measurements were made at sites where the natural deposit was undisturbed and not covered or mixed with man-made fill. At

each site, hand-auger holes were drilled to a depth of 5 feet to test for soil disturbance and fill. The seismic data were collected using a Bison 9000 digital engineering seismograph. Both shear wave (horizontal component) and compression (P) wave data were acquired (Appendix L). P-wave data allow the interpreter to discriminate between the shear and P-waves using their large velocity difference. P-wave data generally show two velocity layers. The uppermost layer is unsaturated sediment and the lower layer is saturated sediment. The boundary between the two layers is the water table. The water table is not detectable in shear wave data because liquids do not transmit shear waves.

Table 3. Shear-wave velocity measurements. Complete data provided in Appendix L.

Site	Location (latitude; longitude)	Material	Measured shear-wave velocity (feet/second)	Shear-wave velocity range predicted from SPT data (feet/second)	Comments
Dunkerhook Park	40E58'27"; 74E05'50"	glacial-lake sand and gravel	1159	600-1200	at high end of predicted range
Oakland	41E01'42"; 74E14'42"	glacial-lake sand and gravel	1578	600-1200	greater than predicted range; gravel increases velocity
Van Saun Park north entrance	40E57'07"; 74E02'52"	glacial-lake sand	846	600-1200	agrees
Mahwah	41E06'35"; 74E09'30"	alluvial silt, sand, and gravel	1203	600-1200	at high end of predicted range; gravel increases velocity
Old Tappan	41E00'37"; 74E00'37"	alluvial silt and sand	809	600-1200	agrees
Route 287	41E05'56": 74E10'14"	alluvial silt, sand, and gravel	1214	600-1200	at high end of predicted range; gravel increases velocity
Closter	40E58'11"; 73E57'30"	glacial-lake silt and clay	925	600-1200	agrees
McClellan Road	41E00'25"; 73E57'47"	glacial-lake silt and clay	826	600-1200	agrees
Harrington Park layer 1	41E00'05"; 73E59'16"	glacial-lake silt and clay	656	600-1200	agrees

Harrington Park layer 2	"	till	1084	1200-2500	lower than predicted range due to weathering
Campgaw Park	41E03'45"; 74E11'45"	till	2109	1200-2500	agrees
Railroad Avenue	40E59'20"; 73E57'25"	till	1446	1200-2500	agrees
Van Saun Park parking lot	40E57'07"; 74E02'52"	till	1483	1200-2500	agrees
Wood Dale Park	41E01'23"; 74E01'57"	till	1013	1200-2500	lower than predicted range due to weathering

Twelve shear geophones were used with a 6-foot spacing. The source was located 6 feet from the first geophone. Each geophone was oriented with its axis of movement parallel to the generating source. The source is a 6-inch channel steel beam that is 5 feet long and has triangular teeth welded to the bottom. A 10-pound sledgehammer is used to impact either side of the source. Two people stand on the source while it is being hit to improve ground coupling.

Compressional (P-wave) data were collected using the standard seismic refraction line type setup. Twelve 8-hertz geophones were used in-line at 6-foot spacing. A 10 pound sledgehammer and a strike plate are used as a source.

The first seismic break on the raw records from both the shear and compressional data is picked on the records much like picking first breaks for seismic refraction data. The regression velocity is calculated using the inverse slope on the time-distance curves. The data are also presented numerically as the interval velocity between consecutive geophones along each line and as an average of the interval velocities. This is done to check for lateral velocity variation along each seismic line. A large difference between the average velocity and the regression velocity is statistically more accurate as a bulk soil property. At the Harrington Park site, glacial-lake clay is about 10 feet thick over till. This layering is indicated by refracted arrivals in both the P and S wave, with the slower velocities for layer 1 recording the lake clay and the faster velocities for layer 2 recording the till.

Table 3 shows that 9 of the 14 tests yield velocities that fall within the range predicted from the county-wide SPT data. The Mahwah, Oakland, and Route 287 sites all yielded faster-than-predicted velocities. The alluvial sediments at the Mahwah and Route 287 sites, and the glacial-lake sand and gravel at Oakland, all of which are in the Ramapo River Valley, are more gravelly than the alluvial and glacial-lake deposits from which the SPT data were obtained, which are predominantly in the Hackensack Valley. In soils, shear-wave velocity generally increases with mean grain size (Fumal and Tinsley, 1985), so gravels will be faster than sands. The gravelly deposits at the Mahwah, Oakland, and Route 287 sites show this effect, as they

yielded higher velocities than the glacial-lake and alluvial sands at the Van Saun and Old Tappan sites.

Two of the five till measurements yielded lower-than-predicted velocities. Most till is deposited beneath glacial ice, and so is overconsolidated by the weight of the ice. Once exposed, however, the compact matrix of the till is broken apart and loosened by weathering and soil processes, so that the upper several feet of outcropping till is decompacted. Also, as the glacier margin retreats, material on the surface of the ice is deposited on top of the till laid down at the base of the glacier. This surface till is noncompact because it was never compressed by the ice. The loose surface till is recorded by SPT data from borings drilled into till outcrops. Typically, the upper several feet yield low blow counts, which increase significantly below the weathered zone. The tests at the Harrington Park and Wood Dale sites may have sampled weathered or noncompressed till. The high velocity at the Campgaw site compared to the Railroad Avenue and Van Saun sites reflects the high concentration of large gneiss boulders at the Campgaw site on Campgaw Mountain. Boulders, which increase shear-wave velocity, are rare in the till at the other test locations.

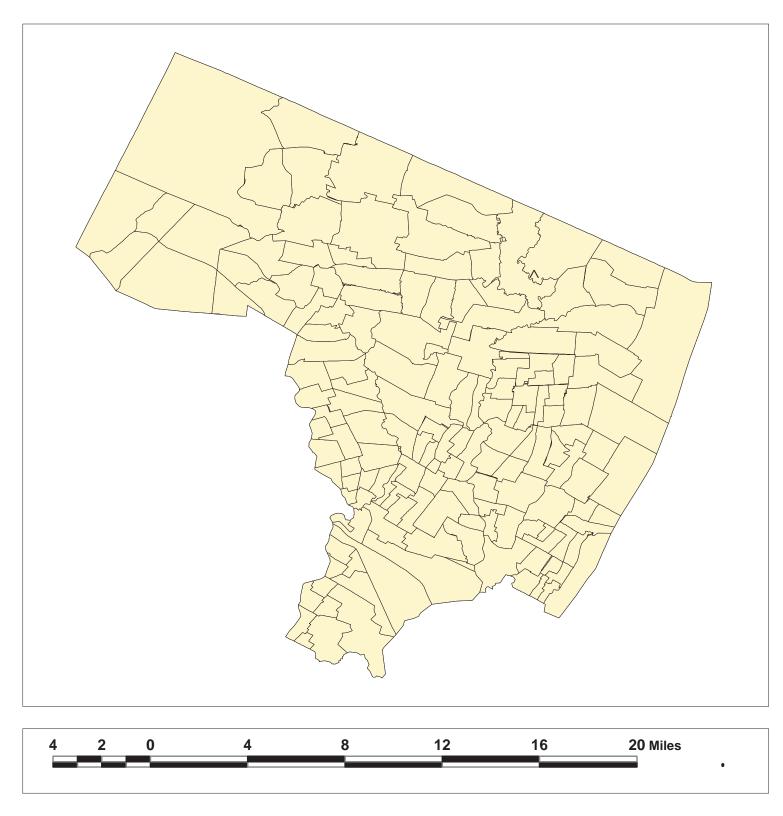
Soil classes were adjusted based on the above observations. Gravelly alluvium and gravel-rich glacial-lake and glacial-stream deposits in the Ramapo, Pascack, and upper Saddle River valleys were placed into class C rather than the D class indicated by the SPT data from nongravelly deposits. Till was maintained as class C because the boring data indicate that compact till everywhere underlies the loose till, which is generally less than 5 feet thick.

HAZUS Simulations: To evaluate the effect of upgraded geology, a total of ten simulations were run. Earthquake magnitudes of 5, 5.5, 6, 6.5, and 7, with an epicenter at 74EW; 41EN (Appendix A) and a focal depth of 10 km, were simulated for both the default and the upgraded geology. The selected magnitudes span the range of potential damaging earthquakes in the region. The largest local earthquake in historic records was an estimated magnitude 5.2 event in 1884 with an epicenter offshore from Brooklyn, and earthquakes with magnitudes between 6 and 7 have been recorded or estimated from historical accounts in the Boston area, southern Quebec, and the St. Lawrence Valley.

To upgrade the geologic data, soil type, liquefaction susceptibility, and landslide susceptibility were modified for each census tract using the seismic soil class, liquefaction susceptibility, and landslide susceptibility maps (folded in pocket). Many census tracts, particularly in the northern and western parts of the county, spanned two or more soil types. In these cases, the dominant soil under the most densely built part of the census tract was selected. Also, areas subject to landsliding cover only a small part of the census tracts that were assigned a landslide hazard. The default geology assigned a uniform soil type (class D), and no liquefaction or landslide susceptibility, for the entire county. Maps of the upgraded and default geology, by census tract, are provided in Appendix A. It was determined that building damage was the output parameter that would most directly illustrate the effect of geology on the simulations, because it does not directly incorporate economic and demographic patterns. Appendices B through K provide tables showing the number of the buildings (classed by use) in various states of damage, and the probability of a given damage state for a given use class. The appendices also provide maps showing the percent moderate or greater building damage by census tract for the various simulations, and the total economic loss by census tract. The moderate-or-greater cutoff was used because buildings with moderate damage must be evacuated and inspected prior to reoccupancy. Thus, moderate damage requires significant population disruptions and emergency response. The total economic loss includes repair and replacement costs, contents damage, business inventory damage, relocation costs, capital-related income costs, wage loss, and rental loss. A "Quick Assessment Report" summarizing damage, economic loss, casualties, and population displacement for each HAZUS run is also provided.

Evaluation of Simulations: The upgraded geologic data produced increased damage estimates in the Hackensack Valley and Meadowlands areas of the county and decreased damage estimates elsewhere for all of the magnitudes, although the effect is most pronounced at magnitudes 5.5, 6, and 6.5. This pattern reflects the softer wetland and glacial-lake soils beneath the Hackensack Valley and Meadowlands, which are of less stable soil class and are more liquefiable than the default conditions, and the compact glacial till soil on most of the upland areas of the county, which is of stronger soil class than the default. The effect of the stronger up grade soils is best shown on the Palisades Ridge, where thin till and exposed diabase bedrock give an up grade soil class of A, and the number of buildings experiencing moderate or greater damage is about 30% less than in the default runs, which use a soil class of D.

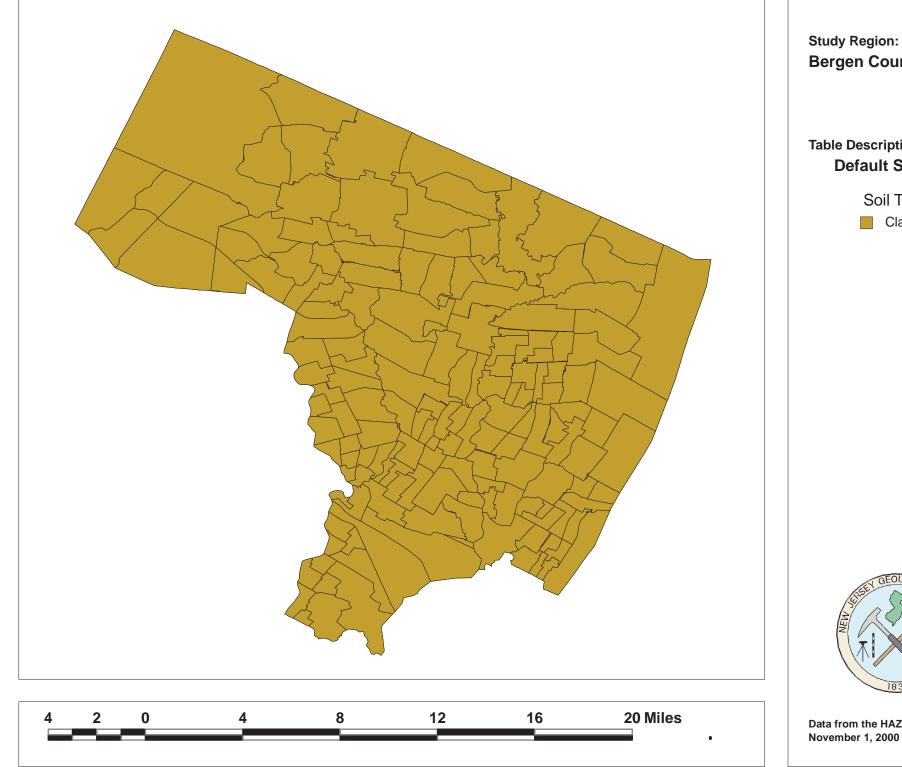
Because the upland areas of the county are more extensive in area than the Hackensack Valley and Meadowlands, the total number of buildings with moderate or greater damage is less with the up graded geologic data than with the default data. Thus, county-wide structural damage to buildings, and the resulting economic loss, population displacement, and casualties, are greater with the default geology than with the up graded geology, again reflecting the stronger upland soils in the up graded case.


Reference Cited (additional references are provided on the map plates)

Fumal, T. E., and Tinsley, J. C., 1985, Mapping shear-wave velocities of near-surface geologic materials, *in* Ziony, J. I., ed., Evaluating earthquake hazards in the Los Angeles region--an earth-science perspective: U. S. Geological Survey Professional Paper 1360, p. 127-149.

APPENDIX A

Maps of Bergen County, with census tracts, showing:

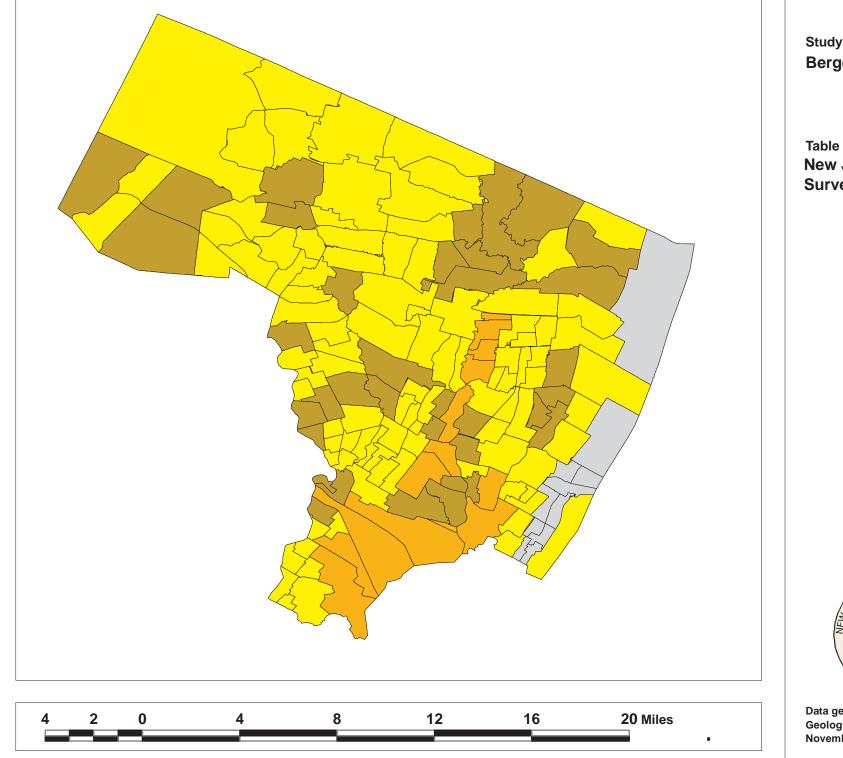

Epicenter location Default soil type Default liquefaction susceptibility Default landslide susceptibility Upgraded soil type Upgraded liquefaction susceptibility Upgraded landslide susceptibility

	/ Region: Jen County
	Description: ly Region Epicenter
Ð	Epicenter (Arbitrary) 74 degrees longitude 41 degrees latitude

Data from the HAZUS GIS software. November 1, 2000

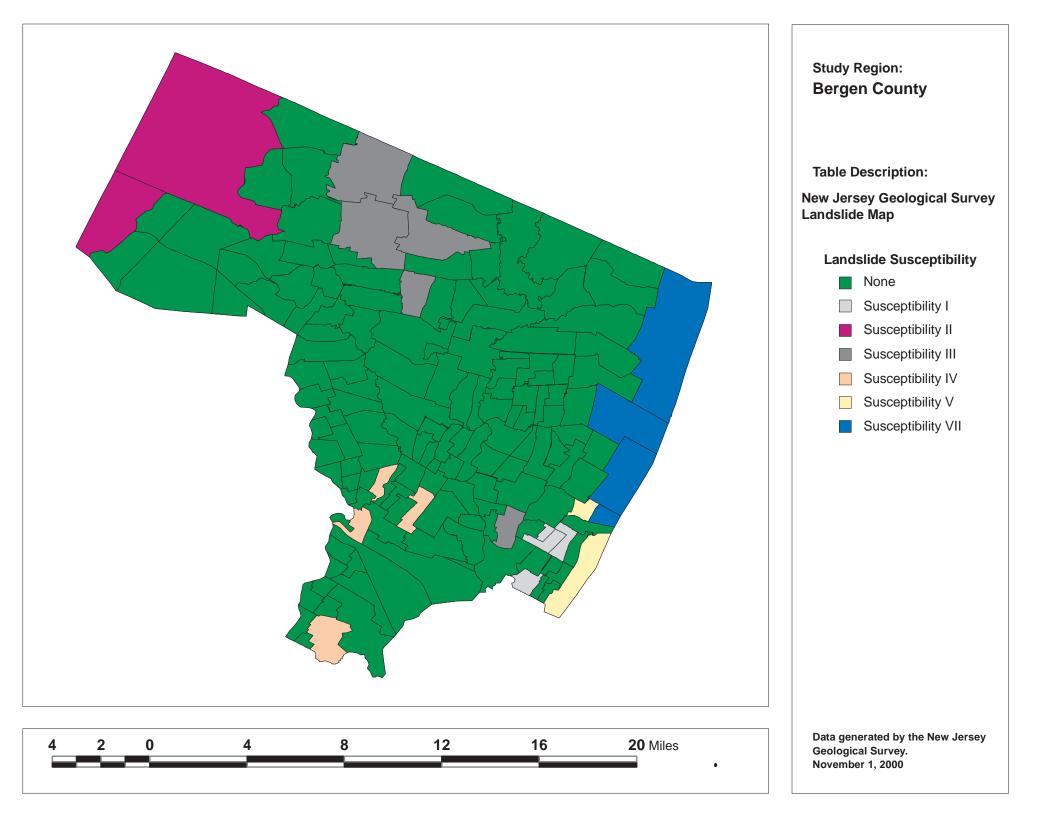
Bergen County Table Description: Default Soil Map Soil Type Class D

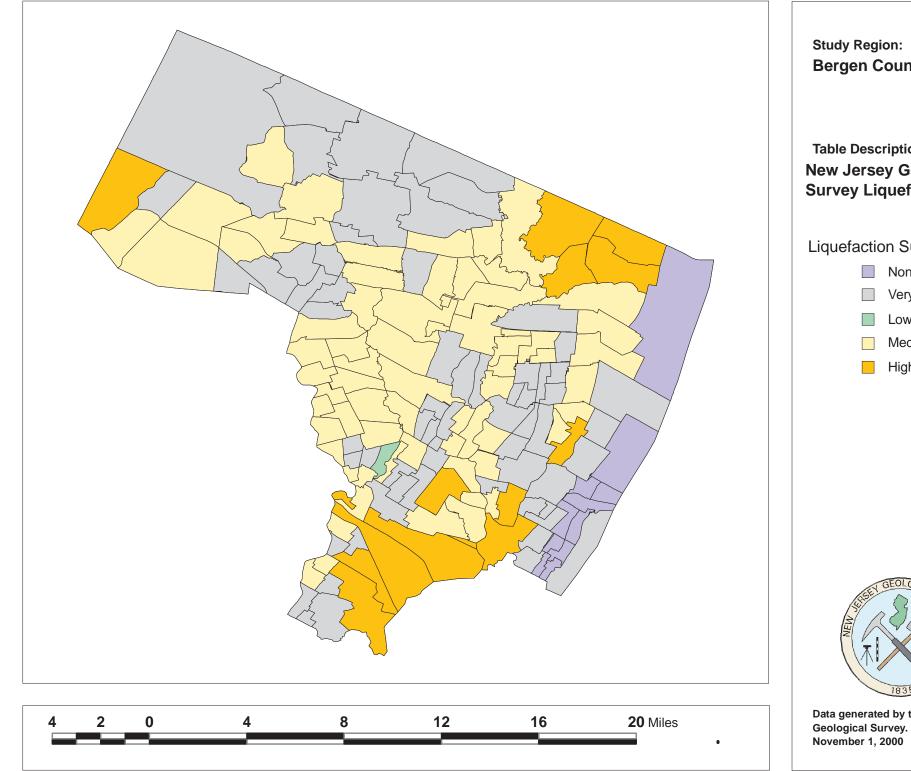


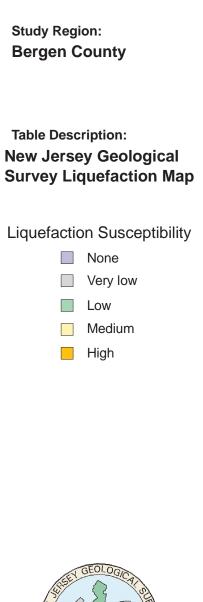

Data from the HAZUS GIS software. November 1, 2000

Study Region: Bergen County
Table Description:Default Liquefaction MapLiquefaction SusceptibilityNone
TI T

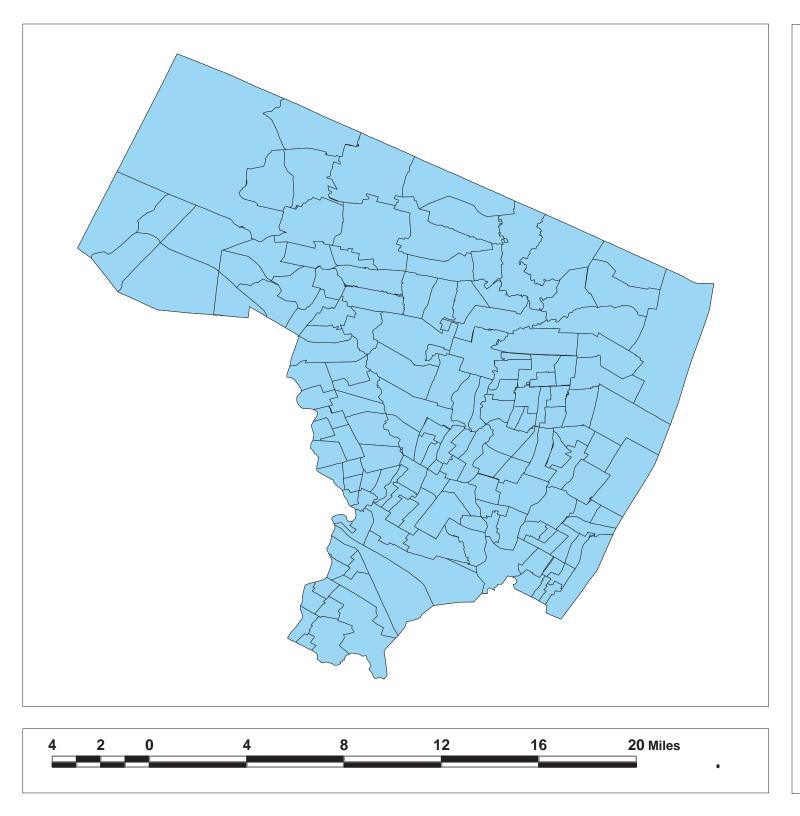
Data from the HAZUS GIS software. November 1, 2000



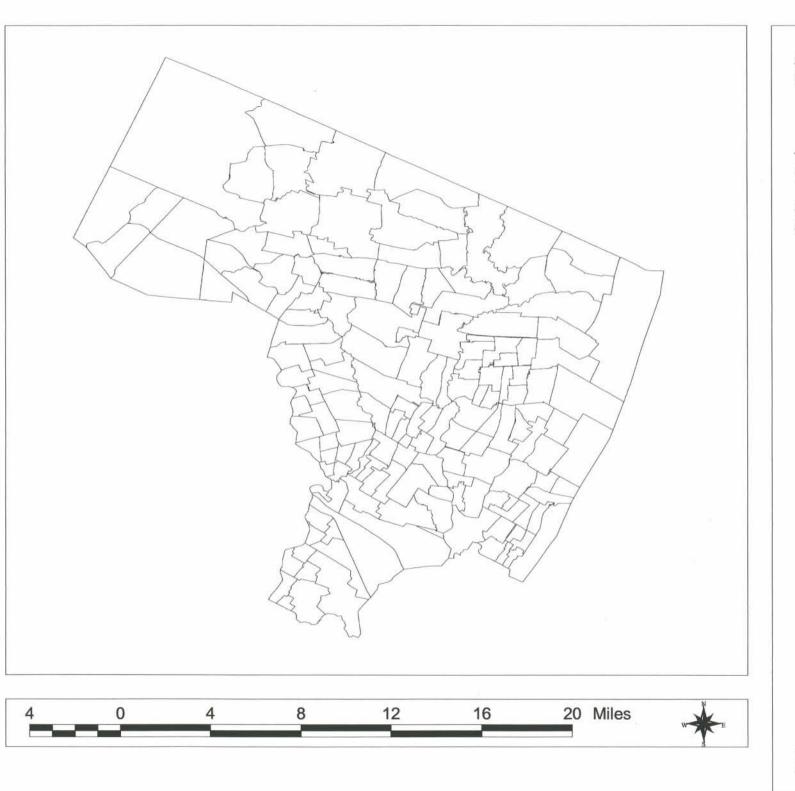



Study Region: **Bergen County** Table Description: New Jersey Geological Survey Soils Map Soil Type Class A Class C Class D Class E

Data generated by the New Jersey Geological Survey. November 1, 2000



Data generated by the New Jersey


APPENDIX B

Study Region Bergen County Scenario Description: 5.0 Default Scenario Percentage Of Buildings With Moderate and Greater Damage 0 to 10

Data from the HAZUS GIS software and the New Jersey Geological Survey. November 1, 2000

Study Region: Bergen County Table Description: Loss - GBS - Total Loss Scenario Description: 5.0 Default Scenario Total Loss (Thousands of Dollars) 0 to 50000

Data from the HAZUS GIS software. November 7, 2000

Building Damage By General Occupancy

November 07, 2000

	Square Footage	Damage State Probability (%)				
	(Thousand. sq.ft)	None	Slight	Moderate	Extensive	Complete
ew Jersey		2				
Bergen	×.				7	
Agriculture	1,828	59.12	6.24	2.35	0.42	0.00
Commercial	168,771	67.45	7.07	3.28	0.58	0.00
Education	8,495	58.60	5.78	2.68	0.49	0.00
Government	1,744	73.30	7.02	3.33	0.47	0.00
Industrial	62,870	65.52	6.39	3.13	0.48	0.00
Religion	5,705	59.20	6.26	2.89	0.58	0.00
Residential	425,393	75.89	6.61	1.78	0.03	0.00
tate Average	674,806	65.58	6.48	2.78	0.43	0.00
tudy Region Average	674,806	65.58	6.48	2.78	0.43	0.00

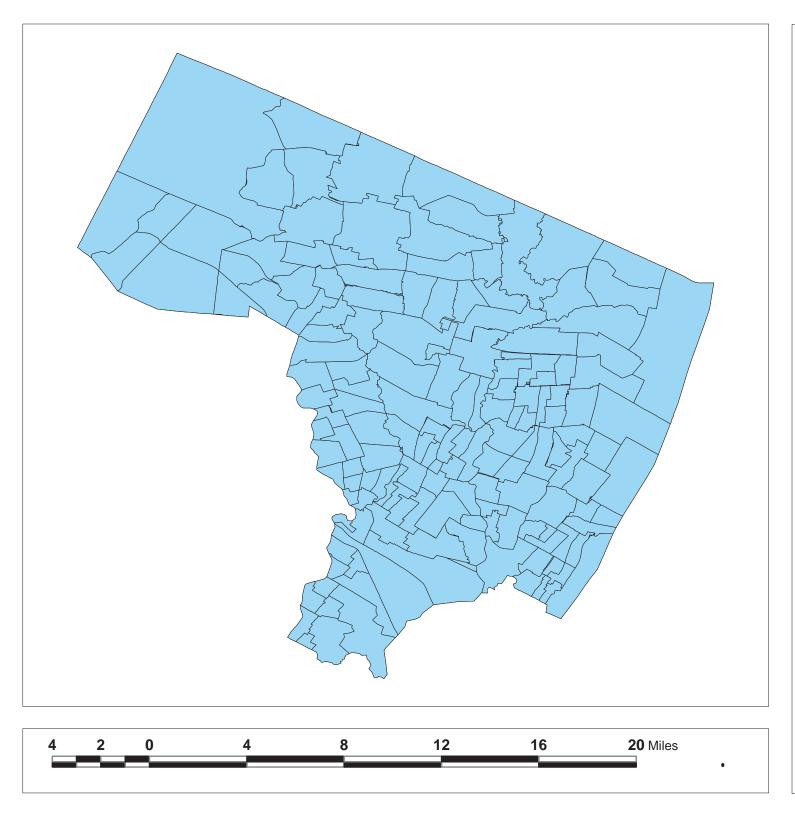
Building Damage by Count by General Occupancy

November 07, 2000

	# of Buildings						
	None	Slight	Moderate	Extensive	Complete	Tota	
ew Jersey							
ergen							
Agriculture	115	3	0	0	0	11	
Commercial	6,803	517	141	3	0	7,46	
Education	379	17	3	0	0	39	
Government	57	0	0	0	0	5	
Industrial	2,398	140	43	0	0	2,58	
Religion	344	20	9	1	0	374	
Residential	180,287	15,280	3,674	393	61	199,69	
Total State	190,383	15,977	3,870	397	61	210,688	
dy region	190,383	15,977	3,870	397	61	210,68	

Quick Assessment Report

Novemb	er 7, 200		
Regiona	I Statistics		
	Area (Square Miles)		247
	Number of Census Tracts		210
	Number of Buildings		
	Residential (x 1000)		200
	Total (x 1000)		211
	Number of People in the Region (x 10	00)	825
	Building Exposure (\$ Millions)		
2	Residential		32,800
	Total		49,300
Scenario	o Results		
	Maximum PGA (g)		0.37
	Number of Buildings Damaged		
	Damage Level	Residential	Total
	Slight	15,300	16,000
	Moderate	3,700	3,900
	Extensive	400	400
	Complete	100	100
	Total	19,400	20,300
	Casualties		
	Severity 1 (Medical treatment wi	thout hospitalization)	113
	Severity 2 (Hospitalization but no	t life threatening)	15
	Severity 3 (Hospitalization and lif	e threatening)	1
	Severity 4 (Fatalities)		1
	Shelter		
	Displaced Households (# househ	nolds)	220
	Short Term Shelter (# people)		130
	Economic Loss		
	Property Damage (Capital Stock) Losses (\$ Millions)	1,250
	Business Interruption (Income) L	osses (\$ Millions)	110
	Total (\$ Millions)		1,360

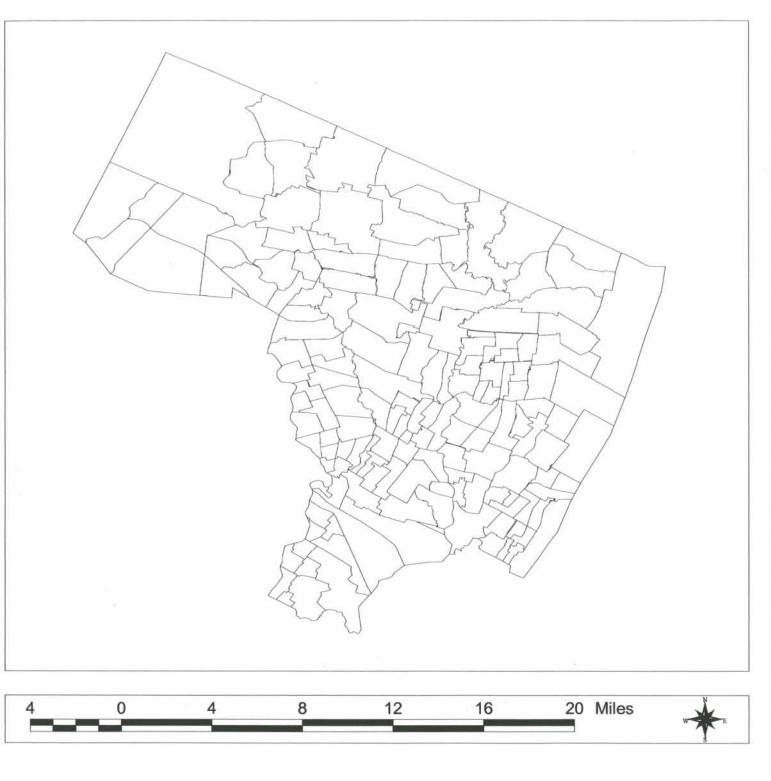

Disclaimer:

The estimates of social and economic impacts contained in this report were produced using HAZUS loss estimation methodology software which is based on current scientific and engineering knowledge. There are uncertainties inherent in any loss estimation technique. Therefore, there may be significant differences between the modeled results contained in this report and the actual social and economic losses following a specific earthquake. These results can be improved by using enhanced inventory, goetechnical, and observed ground motion data.

Study Region : ber1 Scenario : hazdef5

APPENDIX C

Magnitude 5 with upgraded geology



Bergen County Scenario Description: 5.0 Upgrade Scenario Percentage Of Buildings With Moderate and Greater Damage

Study Region:

Data from the HAZUS GIS software and the New Jersey Geological Survey. November 1, 2000

Study Region: Bergen County
Table Description: Loss - GBS - Total Loss
Scenario Description: 5.0 Upgrade Scenario
Total Loss (Thousands of Dollars)
0 to 50000
а.
GEOL OCC
A A A A A A A A A A A A A A A A A A A
TAX

Data from the HAZUS GIS software and the New Jersey Geological Survey. November 8, 2000

183

Building Damage By General Occupancy

November 07, 2000

		Square Footage	-	Damage	e State Probability	(%)	
		(Thousand. sq.ft)	None	Slight	Moderate	Extensive	Complete
ew Je	rsey						
В	ergen						
	Agriculture	1,828	61.66	4.46	1.54	0.22	0.00
	Commercial	168,771	70.66	5.10	2.20	0.32	0.00
	Education	8,495	61.00	4.28	1.84	0.28	0.00
	Government	1,744	76.56	5.08	2.18	0.24	0.00
	Industrial	62,870	68.39	4.64	2.12	0.28	0.00
	Religion	5,705	62.01	4.57	1.99	0.34	0.01
	Residential	425,393	78.63	4.34	0.87	0.10	0.00
tate A	verage	674,806	68.41	4.64	1.82	0.25	0.00
study I	Region Average	674,806	68.41	4.64	1.82	0.25	0.00

Building Damage by Count by General Occupancy

November 07, 2000

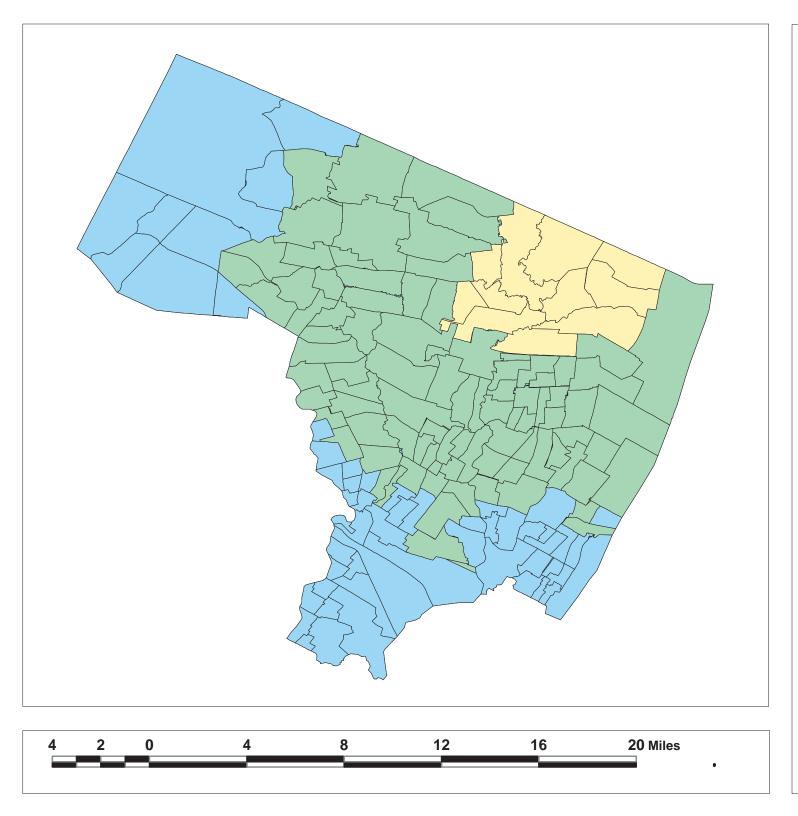
	# of Buildings						
	None	Slight	Moderate	Extensive	Complete	Tota	
lew Jersey							
Bergen							
Agriculture	118	1	0	0	0	119	
Commercial	6,975	388	117	10	0	7,490	
Education	387	10	1	0	0	398	
Government	57	0	0	0	0	57	
Industrial	2,415	123	44	7	0	2,589	
Religion	352	21	6	1	0	380	
Residential	187,166	10,044	2,017	394	27	199,648	
Total State	197,470	10,587	2,185	412	27	210,681	
udy region	197,470	10,587	2,185	412	27	210,681	

 τ_{τ}

Scenario : haznj5

Quick Assessment Report

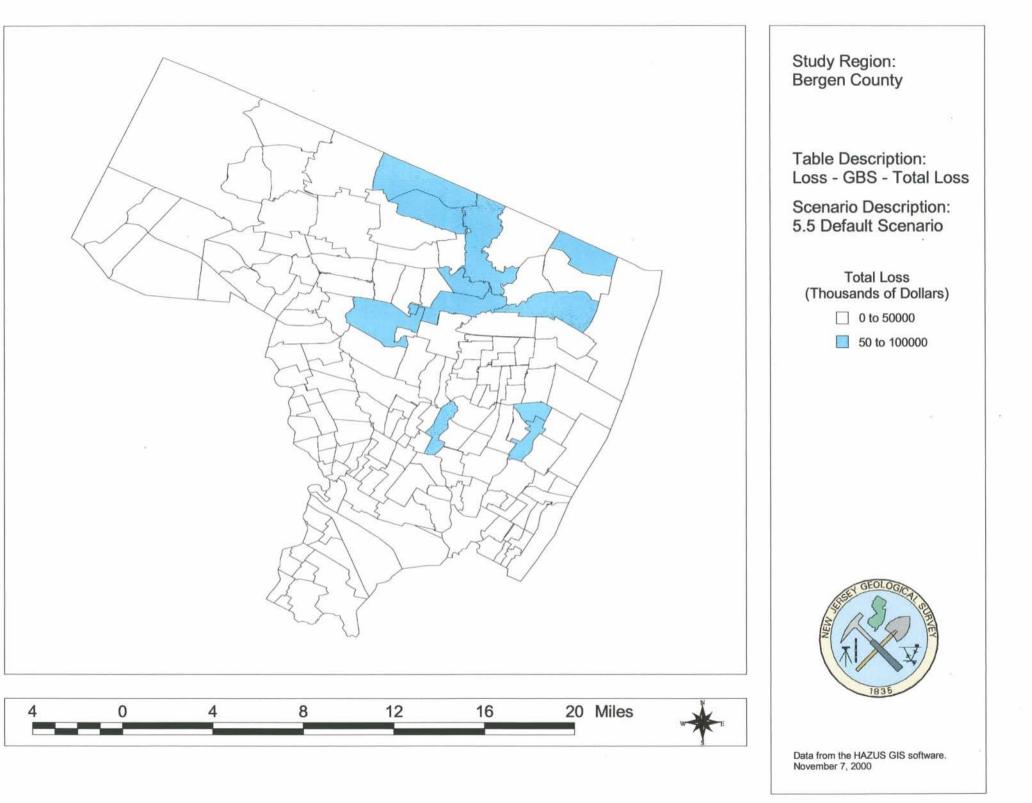
November 7, 200						
Regional Statistics	5					
Area (Squa	Area (Square Miles)					
Number of	Number of Census Tracts					
Number of	Buildings					
Resider	ntial (x 1000)		20	0		
Total (>	< 1000)		21	1		
Number of P	People in the Region (x 10	000)	82	5		
Building Ex	xposure (\$ Millions)					
Resider	ntial		32,80	0		
Total			49,30	0		
Scenario Results						
Maximum I	PGA (g)		0.3	7		
Number of	Buildings Damaged					
Damag	e Level	Residential	Tota	a/		
Slight		10,000	10,60	0		
Modera	te	2,000	2,20	0		
Extensi	ve	400	40	0		
Comple	te	0		0		
Total		12,500	13,20	0		
Casualties						
Severity	Severity 1 (Medical treatment without hospitalization)					
Severity	Severity 2 (Hospitalization but not life threatening)					
Severity	Severity 3 (Hospitalization and life threatening)					
Severity	y 4 (Fatalities)			1		
Shelter						
Displac	Displaced Households (# households)					
Short T	Short Term Shelter (# people)					
Economic	Loss					
Propert	y Damage (Capital Stoc	k) Losses (\$ Millions)	1,08	0		
Busines	ss Interruption (Income)	Losses (\$ Millions)	8	0		
Total (\$	6 Millions)		1,16	0		


Disclaimer:

The estimates of social and economic impacts contained in this report were produced using HAZUS loss estimation methodology software which is based on current scientific and engineering knowledge. There are uncertainties inherent in any loss estimation technique. Therefore, there may be significant differences between the modeled results contained in this report and the actual social and economic losses following a specific earthquake. These results can be improved by using enhanced inventory, goetechnical, and observed ground motion data.

Study Region : ber1 Scenario : haznj5

APPENDIX D


Magnitude 5.5 with default geology

Study Region: **Bergen County** Scenario Description: 5.5 Default Scenario Percentage Of Buildings With Moderate and Greater Damage 0 to 10 10 to 20 20 to 30

Data from the HAZUS GIS software and the New Jersey Geological Survey. November 1, 2000

18

Building Damage By General Occupancy

	Square Footage	Damage State Probability (%)				
	(Thousand. sq.ft)	None	Slight	Moderate	Extensive	Complete
ew Jersey						
Bergen						
Agriculture	1,828	42.39	14.40	8.82	2.16	0.20
Commercial	168,771	48.07	15.12	11.49	3.19	0.42
Education	8,495	42.41	12.51	9.60	2.60	0.41
Government	1,744	53.18	15.17	12.25	3.18	0.32
Industrial	62,870	47.30	13.57	11.19	3.05	0.30
Religion	5,705	40.38	14.86	10.10	3.11	0.69
Residential	425,393	51.60	21.01	9.47	1.96	0.05
tate Average	674,806	46.48	15.23	10.41	2.75	0.34
tudy Region Average	674,806	46.48	15.23	10.41	2.75	0.34

Building Damage by Count by General Occupancy

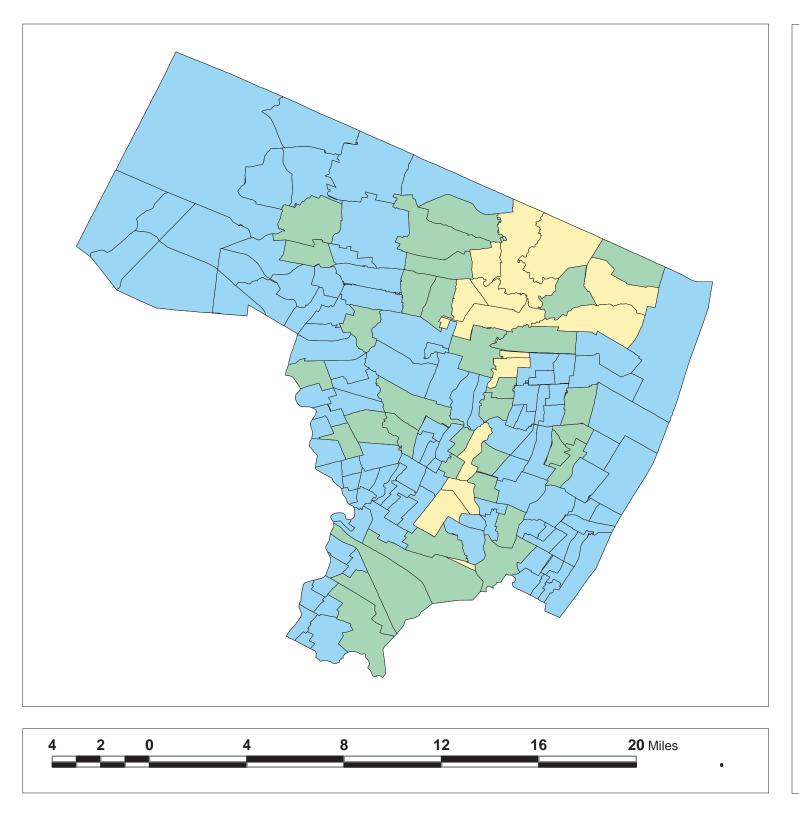
November 07, 2000

	# of Buildings						
	None	Slight	Moderate	Extensive	Complete	Tota	
ew Jersey			10 10				
ergen							
Agriculture	90	18	8	0	0	11	
Commercial	4,942	1,333	963	141	1	7,38	
Education	276	51	38	3	0	36	
Government	56	0	0	0	0	5	
Industrial	1,791	385	289	44	0	2,50	
Religion	232	65	45	10	1	35	
Residential	120,957	52,187	22,173	4,076	511	199,90	
Total State	128,344	54,039	23,516	4,274	513	210,68	
×							
dy region	128,344	54,039	23,516	4,274	513	210,68	

Scenario : hazdef55

Quick Assessment Report

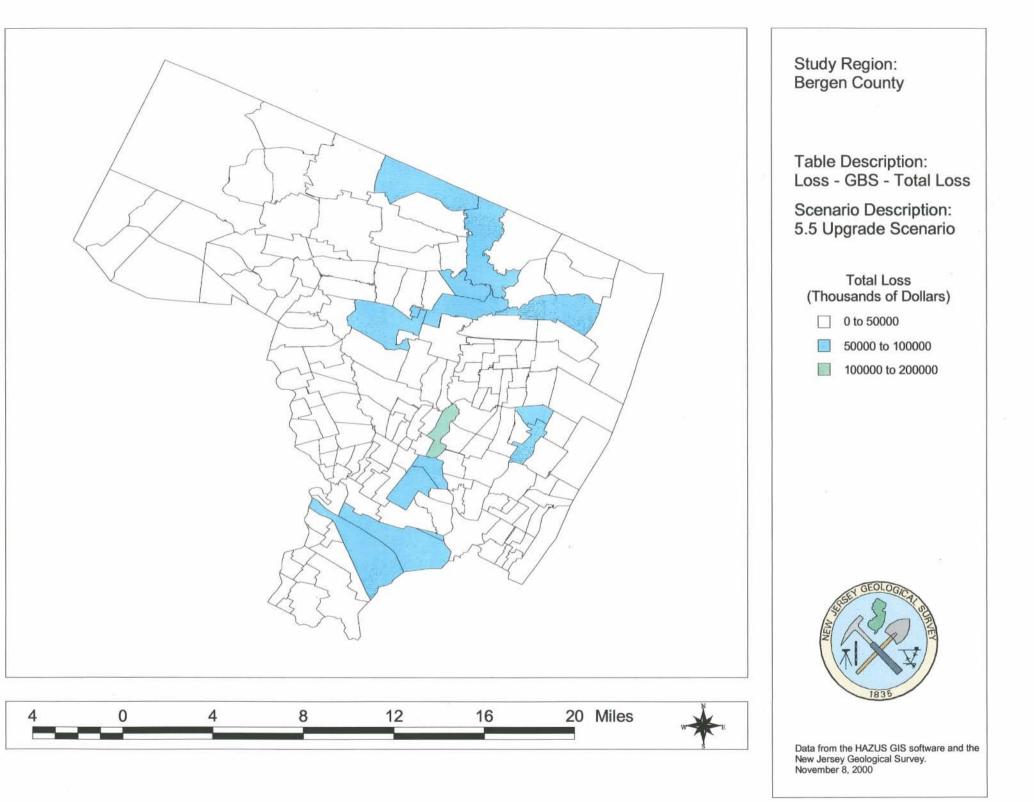
Novembe	er 7, 200					
Regional	Statistics					
	Area (Square Miles)					
	Number of Census Tracts		210			
	Number of Buildings					
	Residential (x 1000)			200		
	Total (x 1000)			211		
	Number of People in the Region (x 10	00)		825		
	Building Exposure (\$ Millions)		÷			
3	Residential			32,800		
	Total			49,300		
Scenario	Results					
	Maximum PGA (g)			0.49		
	Number of Buildings Damaged					
	Damage Level	Residential		Total		
	Slight	52,200		54,000		
	Moderate	22,200		23,500		
	Extensive	4,100		4,300		
	Complete	500		500		
	Total	78,900		82,300		
	Casualties					
	Severity 1 (Medical treatment w		728			
	Severity 2 (Hospitalization but no	ot life threatening)		106		
	Severity 3 (Hospitalization and li	fe threatening)		9		
	Severity 4 (Fatalities)					
	Shelter					
	Displaced Households (# house		3,280			
	Short Term Shelter (# people)		1,900			
	Economic Loss					
	Property Damage (Capital Stock	() Losses (\$ Millions)		3,220		
	Business Interruption (Income) I	Losses (\$ Millions)		650		
	Total (\$ Millions)			3,870		


Disclaimer:

The estimates of social and economic impacts contained in this report were produced using HAZUS loss estimation methodology software which is based on current scientific and engineering knowledge. There are uncertainties inherent in any loss estimation technique. Therefore, there may be significant differences between the modeled results contained in this report and the actual social and economic losses following a specific earthquake. These results can be improved by using enhanced inventory, goetechnical, and observed ground motion data.

Study Region : ber1 Scenario : hazdef55

APPENDIX E


Magnitude 5.5 with upgraded geology

Study Region: **Bergen County** Scenario Description: 5.5 Upgrade Scenario Percentage Of Buildings With Moderate and Greater Damage 0 to 10 10 to 20 20 to 30

Data from the HAZUS GIS software and the New Jersey Geological Survey. November 1, 2000

18

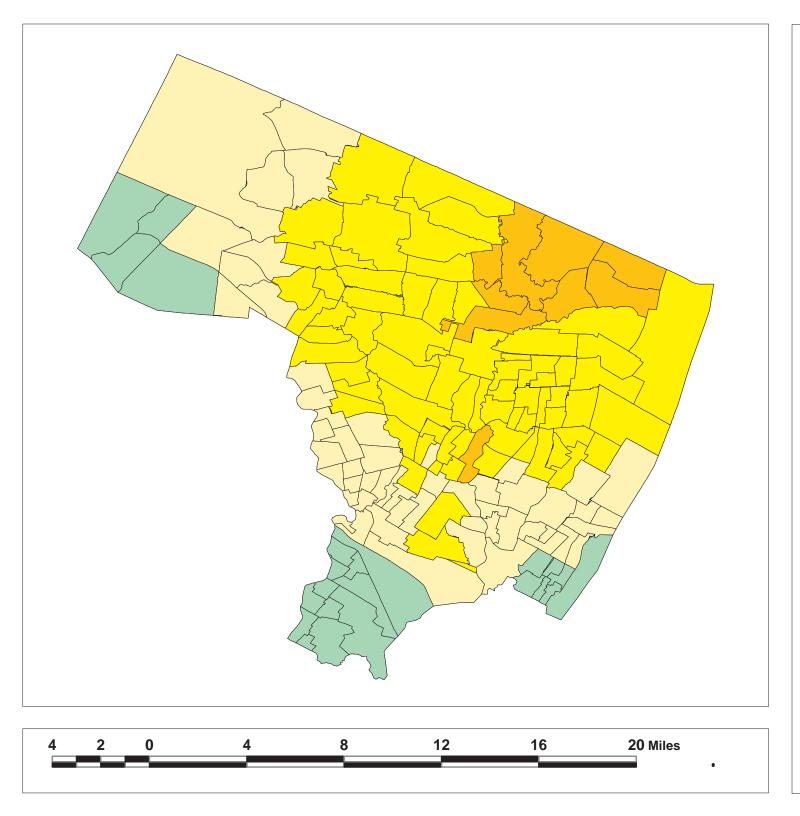
November 07, 2000							
	Square Footage		Damage State Probability (%)				
	(Thousand. sq.ft)	None	Slight	Moderate	Extensive	Complete	
New Jersey							
Bergen							
Agriculture	1,828	47.80	11.83	6.60	1.60	0.11	
Commercial	168,771	54.40	12.64	8.73	2.36	0.26	
Education	8,495	47.28	10.56	7.42	1.95	0.26	
Government	1,744	59.98	12.51	9.08	2.30	0.19	
Industrial	62,870	53.17	11.32	8.46	2.26	0.19	
Religion	5,705	46.28	12.20	7.70	2.33	0.49	
Residential	425,393	59.81	16.21	6.55	1.27	0.09	
State Average	674,806	52.67	12.47	7.79	2.01	0.23	
Study Region Average	674,806	52.67	12.47	7.79	2.01	0.23	

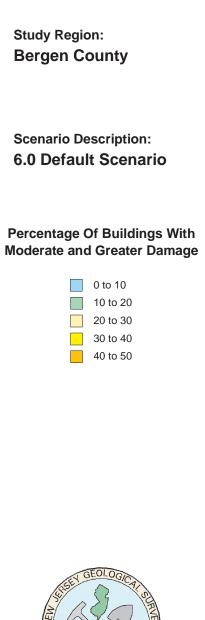
November 07, 2000

	# of Buildings						
<u> -</u>	None	Slight	Moderate	Extensive	Complete	Tota	
ew Jersey							
ergen							
Agriculture	97	14	5	0	0	11	
Commercial	5,367	1,142	760	140	7	7,41	
Education	306	40	26	1	0	37:	
Government	54	0	0	0	0	54	
Industrial	1,875	364	263	53	3	2,558	
Religion	257	57	35	8	1	358	
Residential	140,845	40,524	15,238	2,799	406	199,812	
Total State	148,801	42,141	16,327	3,001	417	210,68	
dy region	148,801	42,141	16,327	3,001	417	210,68	

Scenario : haznj55

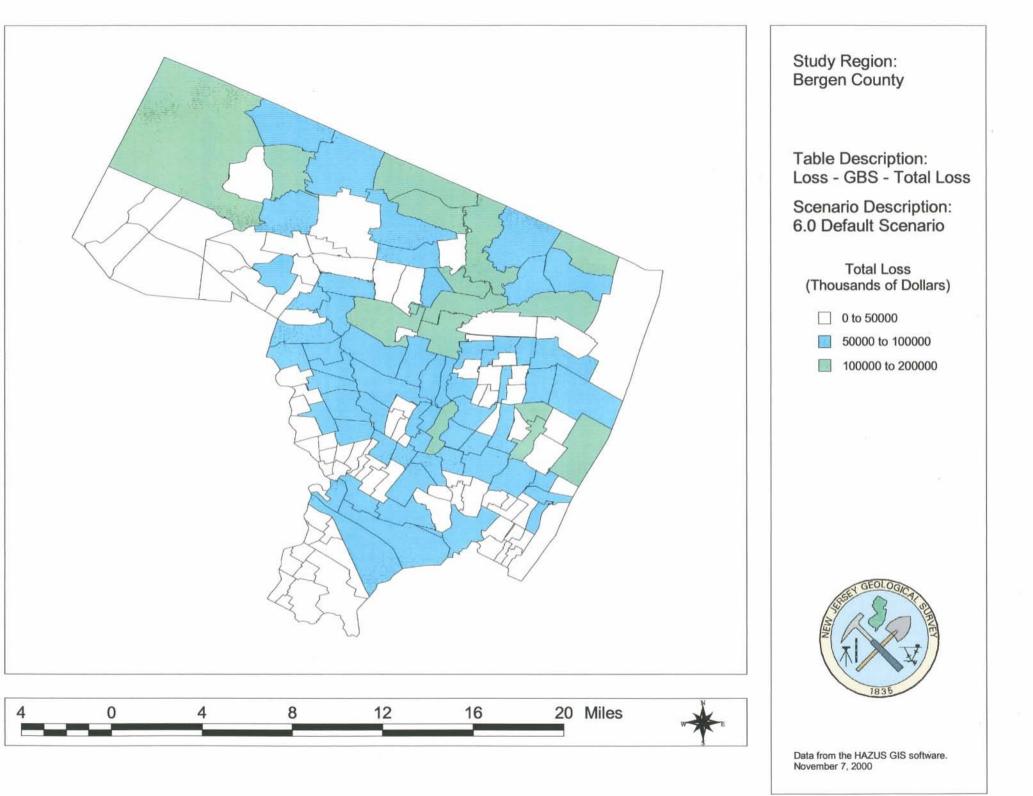
November 7, 200		
Regional Statistics		
Area (Square Miles)		247
Number of Census Tracts		210
Number of Buildings		
Residential (x 1000)		200
Total (x 1000)		211
Number of People in the Region (x 1	000)	825
Building Exposure (\$ Millions)		
Residential		32,800
Total		49,300
Scenario Results		
Maximum PGA (g)		0.49
Number of Buildings Damaged		
Damage Level	Residential	Total
Slight	40,500	42,100
Moderate	15,200	16,300
Extensive	2,800	3,000
Complete	400	400
Total	59,000	61,900
Casualties		
Severity 1 (Medical treatment v	without hospitalization)	528
Severity 2 (Hospitalization but r	not life threatening)	78
Severity 3 (Hospitalization and	life threatening)	8
Severity 4 (Fatalities)		7
Shelter		
Displaced Households (# house	eholds)	2,390
Short Term Shelter (# people)		1,440
Economic Loss		
Property Damage (Capital Stor	ck) Losses (\$ Millions)	2,730
Business Interruption (Income)	Losses (\$ Millions)	510
Total (\$ Millions)		3,240


Disclaimer:


The estimates of social and economic impacts contained in this report were produced using HAZUS loss estimation methodology software which is based on current scientific and engineering knowledge. There are uncertainties inherent in any loss estimation technique. Therefore, there may be significant differences between the modeled results contained in this report and the actual social and economic losses following a specific earthquake. These results can be improved by using enhanced inventory, goetechnical, and observed ground motion data.

Study Region : ber1 Scenario : haznj55

APPENDIX F


Magnitude 6 with default geology

Data from the HAZUS GIS software and the New Jersey Geological Survey. November 1, 2000

November 07, 2000

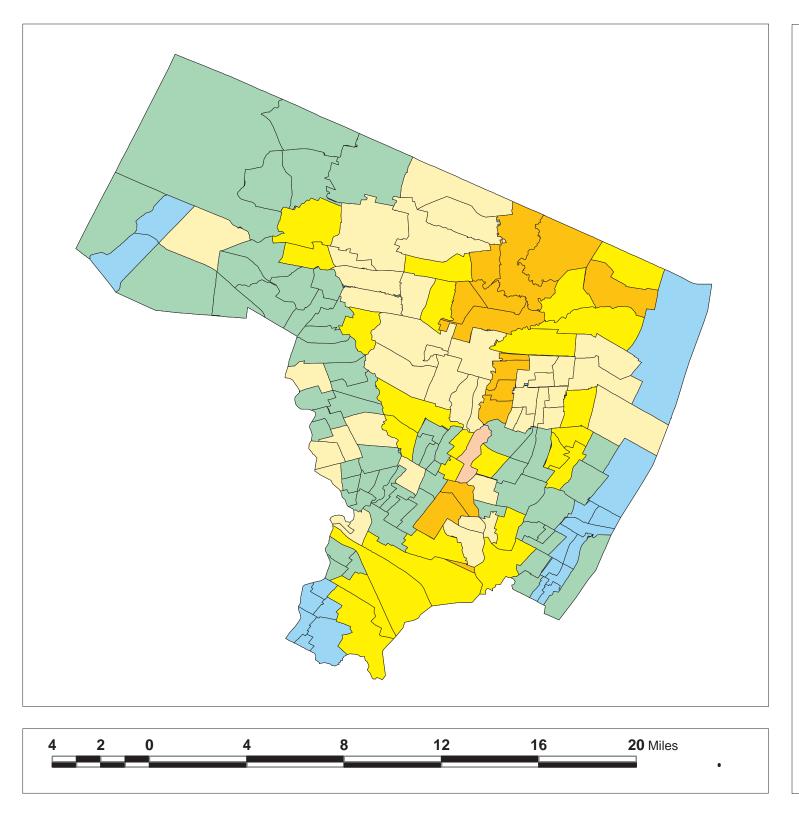
	Square Footage	Damage State Probability (%)				
	(Thousand. sq.ft)	None	Slight	Moderate	Extensive	Complete
ew Jersey						
Bergen						
Agriculture	1,828	22.73	17.89	18.67	6.98	1.87
Commercial	168,771	25.83	17.65	22.27	10.00	2.90
Education	8,495	23.31	14.83	18.88	8.22	2.47
Government	1,744	28.64	17.69	24.20	10.81	2.93
Industrial	62,870	25.53	15.82	21.62	10.07	2.70
Religion	5,705	22.56	17.60	17.93	8.28	2.75
Residential	425,393	30.41	27.58	19.51	5.48	1.36
ate Average	674,806	25.57	18.44	20.44	8.55	2.42
udy Region Average	674,806	25.57	18.44	20.44	8.55	2.42

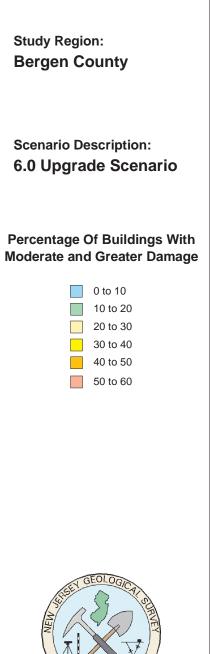
November 07, 2000

	# of Buildings						
	None	Slight	Moderate	Extensive	Complete	Tota	
w Jersey							
ergen							
Agriculture	28	20	24	3	0	7	
Commercial	2,693	1,608	2,111	813	99	7,32	
Education	138	60	110	30	3	34	
Government	4	0	1	0	0		
Industrial	971	493	700	253	25	2,44	
Religion	104	79	89	34	8	31	
Residential	71,304	67,798	46,139	12,157	2,795	200,19	
Total State	75,242	70,058	49,174	13,290	2,930	210,69	
ly region	75,242	70,058	49,174	13,290	2,930	210,69	

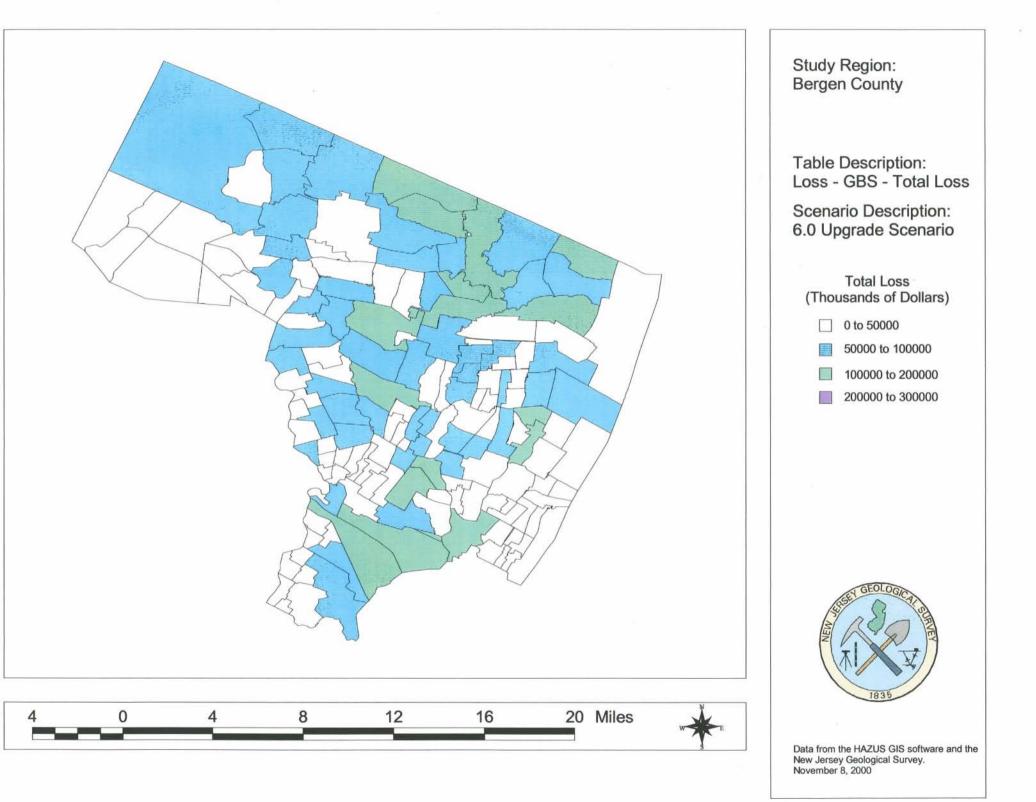
Scenario : hazdef6

Novem	ber 7, 200				
Regior	nal Statistics				
	Area (Square Miles)		247		
	Number of Census Tracts		210		
	Number of Buildings				
	Residential (x 1000)		200		
	Total (x 1000)		211		
	Number of People in the Region (x 1000)	825		
	Building Exposure (\$ Millions)				
7	Residential		32,800		
	Total		49,300		
Scena	rio Results				
	Maximum PGA (g)		0.68		
	Number of Buildings Damaged	1			
	Damage Level	Residential	Tota		
	Slight	67,800	70,100		
	Moderate	46,100	49,200		
	Extensive	12,200	13,300		
	Complete	2,800	2,900		
	Total	128,900	135,500		
	Casualties				
	Severity 1 (Medical treatment without hospitalization)				
	Severity 2 (Hospitalization be	ut not life threatening)	384		
	Severity 3 (Hospitalization a	nd life threatening)	44		
	Severity 4 (Fatalities)		41		
	Shelter				
	Displaced Households (# households)				
	Short Term Shelter (# people)				
	Economic Loss				
	Property Damage (Capital S	tock) Losses (\$ Millions)	6,560		
	Business Interruption (Incon	ne) Losses (\$ Millions)	1,960		
	Total (\$ Millions)		8,520		


Disclaimer:


The estimates of social and economic impacts contained in this report were produced using HAZUS loss estimation methodology software which is based on current scientific and engineering knowledge. There are uncertainties inherent in any loss estimation technique. Therefore, there may be significant differences between the modeled results contained in this report and the actual social and economic losses following a specific earthquake. These results can be improved by using enhanced inventory, goetechnical, and observed ground motion data.

Study Region : ber1 Scenario : hazdef6


APPENDIX G

Magnitude 6 with upgraded geology

Data from the HAZUS GIS software and the New Jersey Geological Survey. November 1, 2000

November 07, 2000

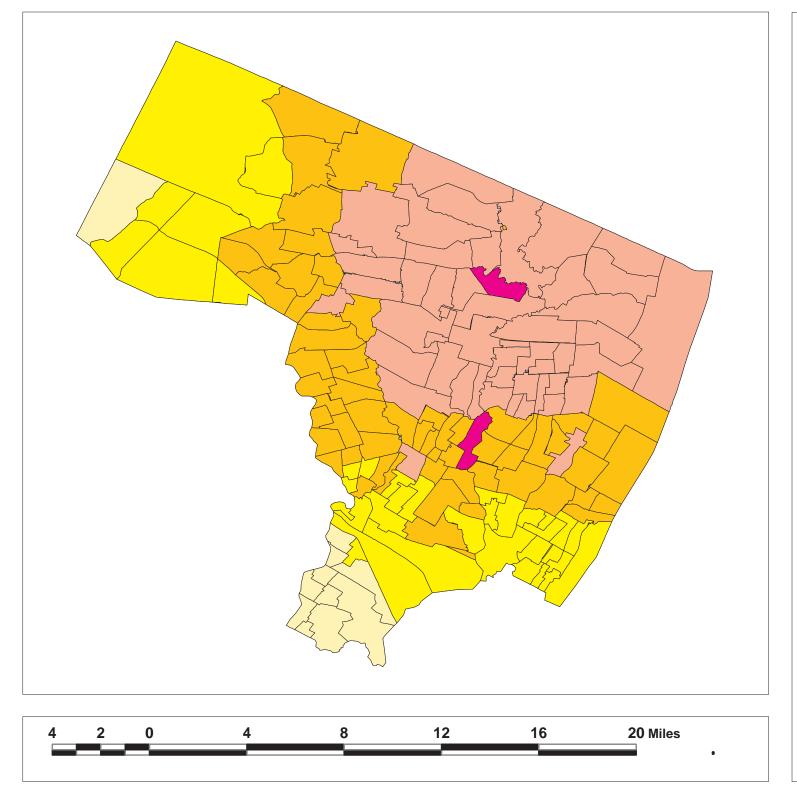
	Square Footage		Damage State Probability (%)				
	(Thousand. sq.ft)	None	Slight	Moderate	Extensive	Complete	
ew Jersey							
Bergen							
Agriculture	1,828	29.09	16.83	15.38	5.45	1.37	
Commercial	168,771	33.03	16.82	18.65	7.83	2.20	
Education	8,495	29.03	14.20	15.95	6.60	1.89	
Government	1,744	36.83	16.85	20.09	8.30	2.21	
Industrial	62,870	32.52	15.09	18.12	7.87	2.02	
Religion	5,705	29.42	16.21	14.81	6.54	2.06	
Residential	425,393	40.37	24.19	14.72	4.08	0.94	
te Average	674,806	32.90	17.17	16.82	6.66	1.81	
udy Region Average	674,806	32.90	17.17	16.82	6.66	1.81	

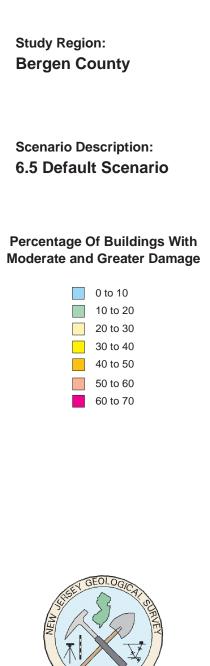
November 07, 2000

	-		# of Build	dings		
	None	Slight	Moderate	Extensive	Complete	Tota
ew Jersey						
ergen						
Agriculture	40	20	20	2	0	82
Commercial	3,202	1,517	1,831	680	121	7,351
Education	174	58	90	22	2	346
Government	18	0	1	0	0	19
Industrial	1,087	469	634	243	38	2,471
Religion	142	67	73	29	7	318
Residential	94,133	60,301	34,879	8,892	1,897	200,102
Total State	98,796	62,432	37,528	9,868	2,065	210,689
dy region	98,796	62,432	37,528	9,868	2,065	210,689

2

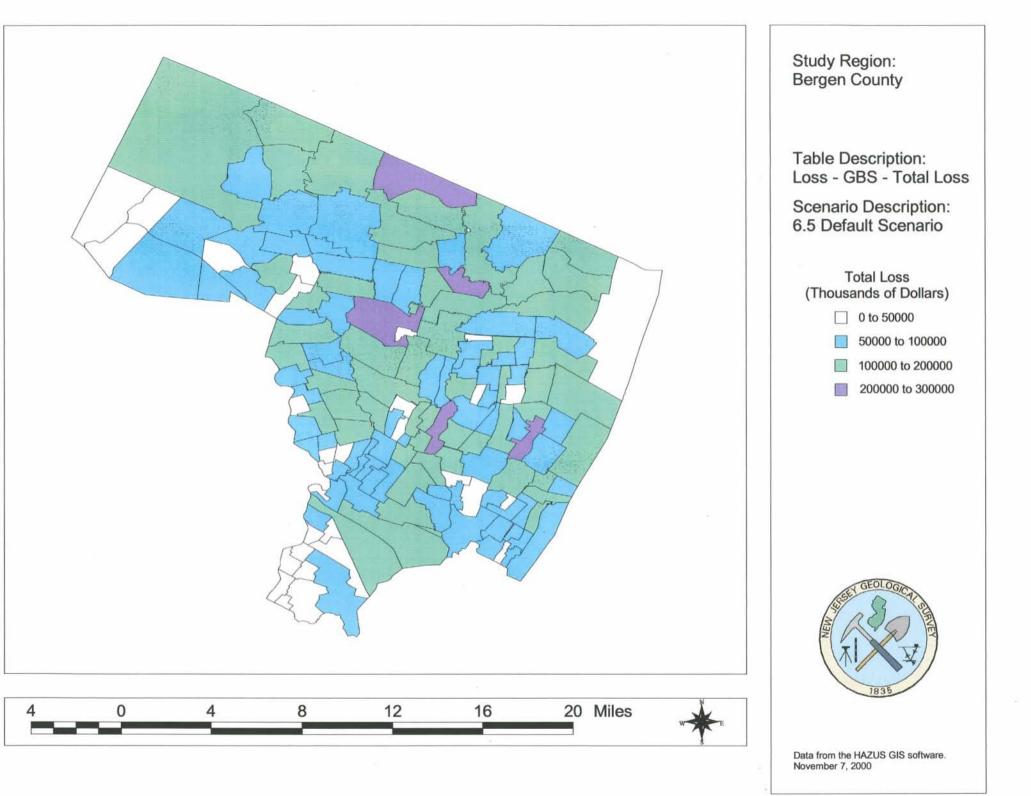
November 7, 200			
Regional Statistics			
Area (Squar	e Miles)		247
Number of	Census Tracts		210
Number of	Buildings		
Residen	tial (x 1000)		200
Total (x	1000)		211
Number of P	eople in the Region (x 1000)	825
Building Ex	posure (\$ Millions)		
Residen	tial		32,800
Total			49,300
Scenario Results			
Maximum F	GA (g)		0.68
Number of	Buildings Damaged	đ	
Damage	Level	Residential	Total
Slight		60,300	62,400
Modera	e	34,900	37,500
Extensiv	e	8,900	9,900
Comple	e	1,900	2,100
Total		106,000	111,900
Casualties			
Severity	1 (Medical treatme	nt without hospitalization)	1,902
Severity	2 (Hospitalization bi	ut not life threatening)	326
Severity	3 (Hospitalization a	nd life threatening)	41
Severity	4 (Fatalities)		36
Shelter			
Displac	ed Households (# ho	ouseholds)	9,900
Short T	erm Shelter (# peopl	e)	5,890
Economic	_OSS		
Propert	/ Damage (Capital S	Stock) Losses (\$ Millions)	5,670
Busines	s Interruption (Incon	ne) Losses (\$ Millions)	1,610
Total (\$	Millions)		7,280


Disclaimer:


The estimates of social and economic impacts contained in this report were produced using HAZUS loss estimation methodology software which is based on current scientific and engineering knowledge. There are uncertainties inherent in any loss estimation technique. Therefore, there may be significant differences between the modeled results contained in this report and the actual social and economic losses following a specific earthquake. These results can be improved by using enhanced inventory, goetechnical, and observed ground motion data.

Study Region : ber1 Scenario : haznj6

APPENDIX H


Magnitude 6.5 with default geology

Data from the HAZUS GIS software and the New Jersey Geological Survey. November 1, 2000

18

November 07, 2000

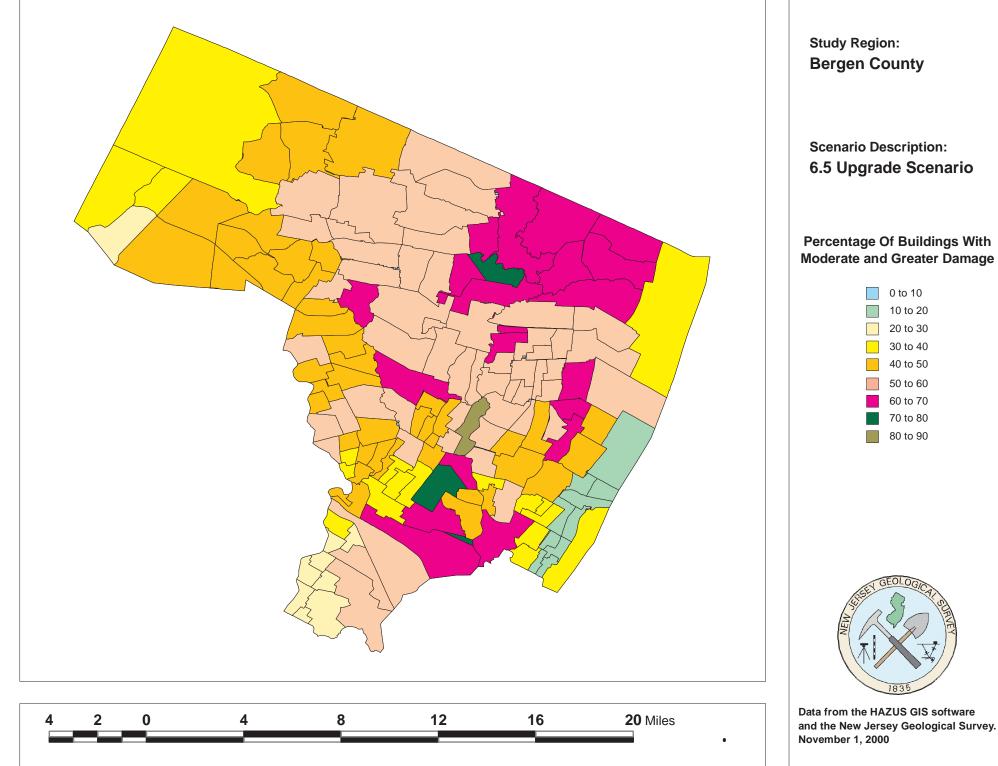
	Square Footage	Damage State Probability (%)					
	(Thousand. sq.ft)	None	Slight	Moderate	Extensive	Complete	
ew Jersey							
Bergen							
Agriculture	1,828	11.73	15.04	23.62	12.30	5.38	
Commercial	168,771	13.29	14.22	26.02	17.08	8.02	
Education	8,495	12.13	12.03	22.26	14.47	6.72	
Government	1,744	14.54	13.83	27.83	19.43	8.71	
Industrial	62,870	13.03	12.45	24.87	17.53	7.8	
Religion	5,705	12.59	15.70	21.21	13.16	6.3	
Residential	425,393	18.13	26.45	26.38	9.80	3.32	
te Average	674,806	13.63	15.67	24.60	14.82	6.62	
dy Region Average	674,806	13.63	15.67	24.60	14.82	6.62	
						2019	

November 07, 2000

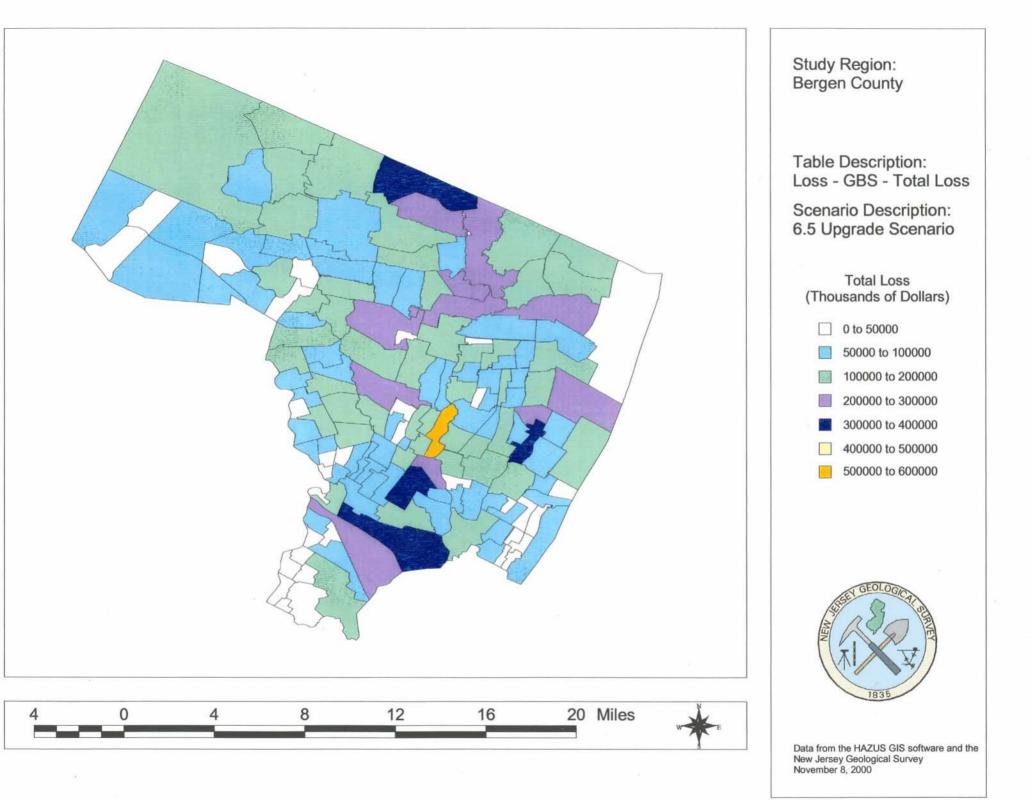
	# of Buildings						
	None	Slight	Moderate	Extensive	Complete	Total	
ew Jersey							
Bergen							
Agriculture	10	13	30	13	3	69	
Commercial	1,397	1,278	2,481	1,561	583	7,300	
Education	67	47	122	77	22	335	
Government	0	0	1	0	0	1	
Industrial	488	390	829	533	163	2,403	
Religion	49	62	110	56	23	300	
Residential	42,752	65,798	63,437	21,720	6,579	200,286	
Total State	44,763	67,588	67,010	23,960	7,373	210,694	
udy region	44,763	67,588	67,010	23,960	7,373	210,694	

Scenario : hazdef65

November 7, 200	D		
Regional Statis			
8	quare Miles)		247
Numbe	r of Census Tracts		210
Numbe	r of Buildings		
Res	idential (x 1000)		200
Tota	al (x 1000)		211
Number	of People in the Region ()	< 1000)	825
Buildin	g Exposure (\$ Millions)		
Res	idential		32,800
Tota	al		49,300
Scenario Resul	ts		
Maxim	um PGA (g)		0.95
Numbe	r of Buildings Damaged		
Dai	nage Level	Residential	Total
Slig	ht	65,800	67,600
Mod	derate	63,400	67,000
Ext	ensive	21,700	24,000
Cor	nplete	6,600	7,400
Tota	al	157,500	165,900
Casual	ties		
Sev	verity 1 (Medical treatmer	t without hospitalization)	4,916
Sev	erity 2 (Hospitalization bu	it not life threatening)	904
Sev	verity 3 (Hospitalization an	d life threatening)	182
Sev	verity 4 (Fatalities)		109
Shelter	(
Dis	placed Households (# hou	useholds)	26,600
Sho	ort Term Shelter (# people	e)	15,450
Econor	nic Loss		
Pro	perty Damage (Capital St	ock) Losses (\$ Millions)	10,720
Bus	siness Interruption (Incom	e) Losses (\$ Millions)	3,630
	al (\$ Millions)		14,350


Disclaimer:

The estimates of social and economic impacts contained in this report were produced using HAZUS loss estimation methodology software which is based on current scientific and engineering knowledge. There are uncertainties inherent in any loss estimation technique. Therefore, there may be significant differences between the modeled results contained in this report and the actual social and economic losses following a specific earthquake. These results can be improved by using enhanced inventory, goetechnical, and observed ground motion data.


Study Region : ber1 hazdef65 Scenario :

APPENDIX I

Magnitude 6.5 with upgraded geology

Data from the HAZUS GIS software and the New Jersey Geological Survey.

November 07, 2000

	Square Footage	Damage State Probability (%)					
	(Thousand. sq.ft)	None	Slight	Moderate	Extensive	Complete	
ew Jersey							
Bergen							
Agriculture	1,828	15.73	15.56	21.48	10.67	4.64	
Commercial	168,771	17.96	14.97	24.11	14.76	6.78	
Education	8,495	15.86	12.61	20.71	12.60	5.85	
Government	1,744	20.07	14.80	25.80	16.40	7.35	
Industrial	62,870	17.71	13.20	23.07	15.02	6.69	
Religion	5,705	16.32	16.06	19.66	11.49	5.47	
Residential	425,393	22.86	26.53	23.62	8.29	2.86	
ate Average	674,806	18.07	16.25	22.64	12.75	5.66	
udy Region Average	674,806	18.07	16.25	22.64	12.75	5.66	

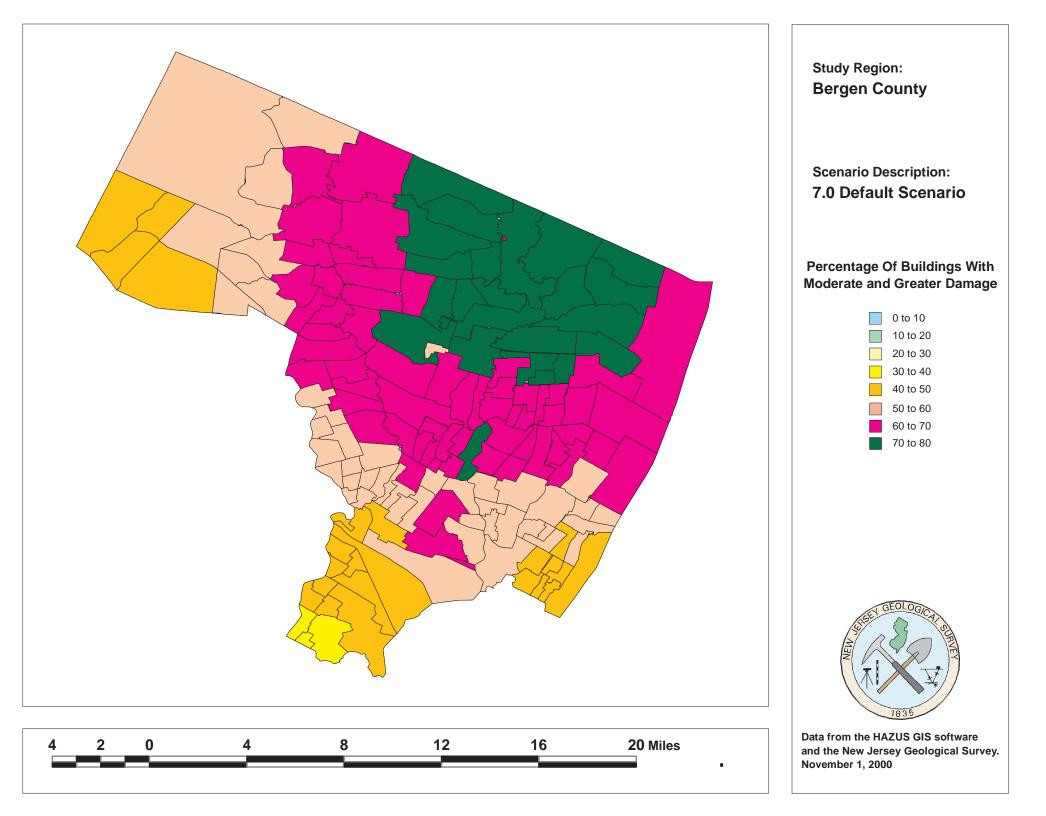
November 07, 2000

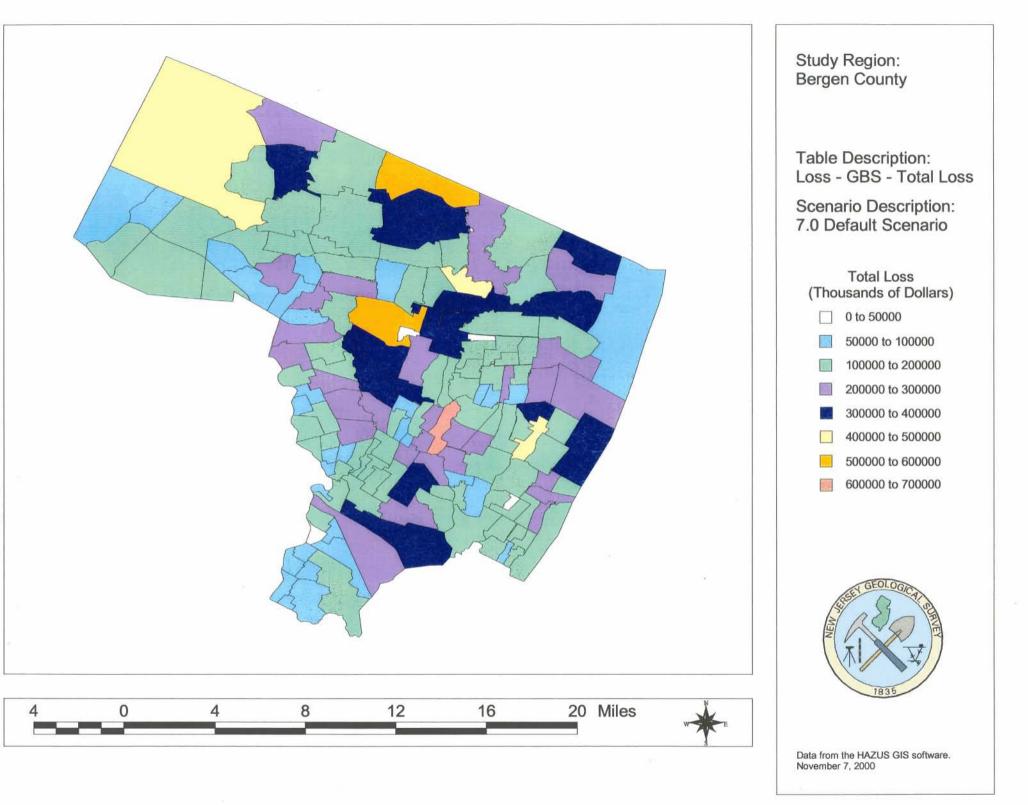
	# of Buildings					
	None	Slight	Moderate	Extensive	Complete	Tota
w Jersey	(K					
ergen						
Agriculture	16	17	28	9	2	7
Commercial	1,709	1,295	2,329	1,410	573	7,31
Education	86	47	124	60	18	33
Government	7	0	2	1	0	1
Industrial	552	377	783	518	207	2,43
Religion	67	66	100	53	27	31
Residential	51,912	66,360	57,422	18,695	5,821	200,21
Total State	54,349	68,162	60,788	20,746	6,648	210,69
dy region	54,349	68,162	60,788	20,746	6,648	210,69

Study Region : ber1

Scenario : haznj65

November 7, 200					
Regional Statistics					
Area (Square Miles)	247				
Number of Census T	210				
Number of Buildings					
Residential (x 100	0)	200			
Total (x 1000)		211			
Number of People in th	e Region (x 1000)	825			
Building Exposure (\$	Millions)				
Residential		32,800			
Total		49,300			
Scenario Results					
Maximum PGA (g)	0.95				
Number of Buildings	Damaged				
Damage Level	Residential	Total			
Slight	66,400	68,200			
Moderate	57,400	60,800			
Extensive	18,700	20,700			
Complete	5,800	6,600			
Total	148,300	156,300			
Casualties					
Severity 1 (Medica	4,725				
Severity 2 (Hospita	Severity 2 (Hospitalization but not life threatening)				
Severity 3 (Hospita	163				
Severity 4 (Fatalitie	106				
Shelter					
Displaced Househ	22,280				
Short Term Shelte	13,140				
Economic Loss					
Property Damage	9,990				
Business Interrupt	ion (Income) Losses (\$ Millions)	3,340			
Total (\$ Millions)		13,330			


Disclaimer:


The estimates of social and economic impacts contained in this report were produced using HAZUS loss estimation methodology software which is based on current scientific and engineering knowledge. There are uncertainties inherent in any loss estimation technique. Therefore, there may be significant differences between the modeled results contained in this report and the actual social and economic losses following a specific earthquake. These results can be improved by using enhanced inventory, goetechnical, and observed ground motion data.

Study Region : ber1 Scenario : haznj65

APPENDIX J

Magnitude 7 with default geology

November 07, 2000

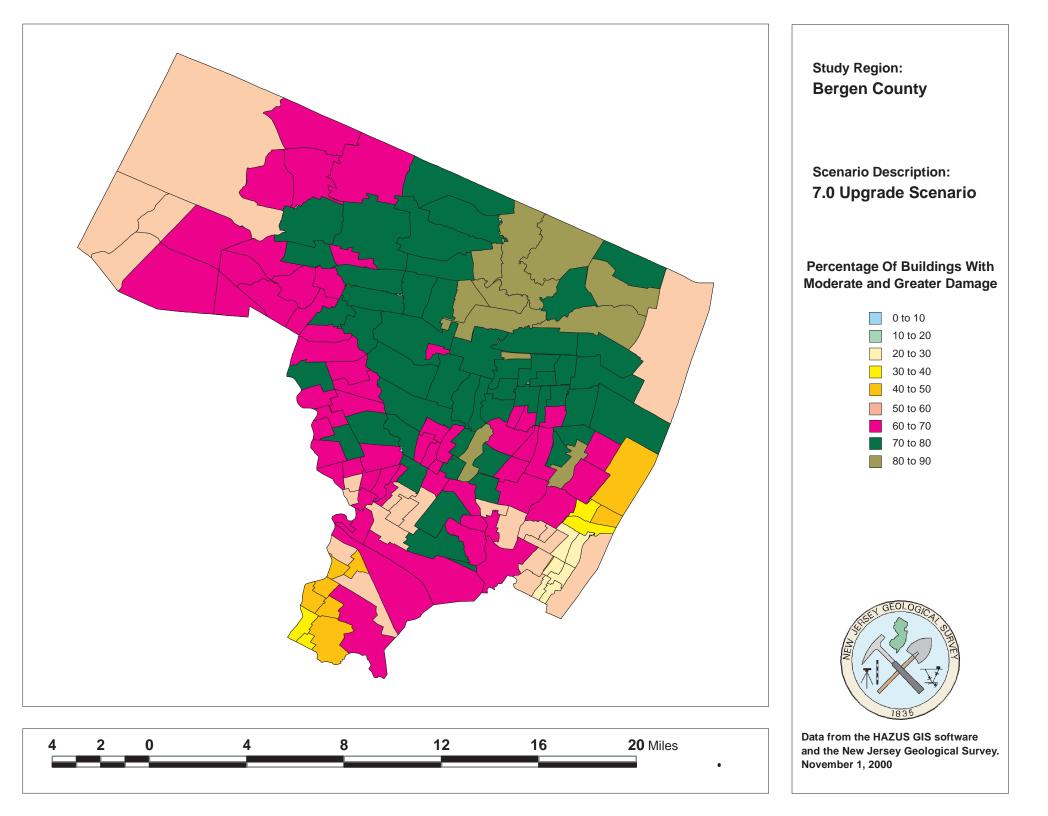
(Thousand. sq.ft)		Damage State Probability (%)						
(modound: oqiny	None	Slight	Moderate	Extensive	Complete			
1,828	5.61	10.33	23.15	16.96	12.06			
168,771	6.07	9.24	23.46	22.50	17.31			
8,495	5.67	7.87	20.18	19.59	14.39			
1,744	6.32	8.54	23.87	25.78	19.80			
62,870	5.76	7.84	21.61	23.00	17.55			
5,705	6.47	12.05	21.37	17.00	12.19			
425,393	9.74	22.00	30.80	15.22	6.59			
674,806	6.52	11.12	23.49	20.01	14.27			
674.000	0.50		00.40		14.27			
	168,771 8,495 1,744 62,870 5,705 425,393	168,771 6.07 8,495 5.67 1,744 6.32 62,870 5.76 5,705 6.47 425,393 9.74 674,806 6.52	168,771 6.07 9.24 8,495 5.67 7.87 1,744 6.32 8.54 62,870 5.76 7.84 5,705 6.47 12.05 425,393 9.74 22.00 674,806 6.52 11.12	168,771 6.07 9.24 23.46 8,495 5.67 7.87 20.18 1,744 6.32 8.54 23.87 62,870 5.76 7.84 21.61 5,705 6.47 12.05 21.37 425,393 9.74 22.00 30.80	168,7716.079.2423.4622.508,4955.677.8720.1819.591,7446.328.5423.8725.7862,8705.767.8421.6123.005,7056.4712.0521.3717.00425,3939.7422.0030.8015.22674,8066.5211.1223.4920.01			

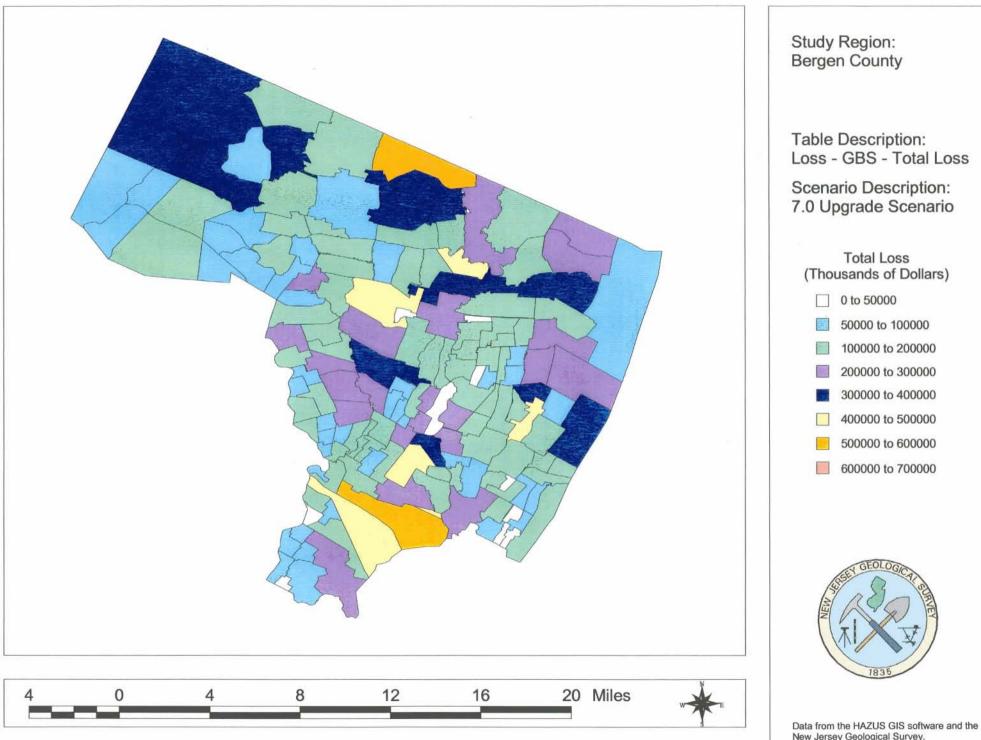
November 07, 2000

			# of Build	dings		
	None	Slight	Moderate	Extensive	Complete	Tota
ew Jersey						
ergen						
Agriculture	3	6	28	21	17	7
Commercial	631	793	2,257	2,133	1,525	7,339
Education	21	16	106	117	69	329
Government	0	0	1	1	0	1
Industrial	211	233	751	755	478	2,428
Religion	15	35	108	76	57	29
Residential	22,643	54,679	75,300	34,296	13,311	200,229
Total State	23,524	55,762	78,551	37,399	15,457	210,693
dy region	23,524	55,762	78,551	37,399	15,457	210,693

Scenario : hazdef7

Novembe	er 7, 200				
Regional	Statistics				
	247				
	210				
	Number of Buildings				
	Residential (x 1000)		200		
	Total (x 1000)		211		
	Number of People in the Region (x 100	00)	825		
	Building Exposure (\$ Millions)				
7.	Residential		32,800		
	Total		49,300		
Scenario	Results				
	Maximum PGA (g)		1.19		
	Number of Buildings Damaged				
	Damage Level	Residential	Total		
	Slight	54,700	55,800		
	Moderate	75,300	78,600		
	Extensive	34,300	37,400		
	Complete	13,300	15,500		
	Total	177,600	187,200		
	Casualties				
	9,207				
	Severity 2 (Hospitalization but not life threatening)				
	476				
	229				
	Shelter				
	44,860				
	26,040				
	Economic Loss				
	15,950				
	Business Interruption (Income) L	osses (\$ Millions)	5,880		
	Total (\$ Millions)		21,820		


Disclaimer:


The estimates of social and economic impacts contained in this report were produced using HAZUS loss estimation methodology software which is based on current scientific and engineering knowledge. There are uncertainties inherent in any loss estimation technique. Therefore, there may be significant differences between the modeled results contained in this report and the actual social and economic losses following a specific earthquake. These results can be improved by using enhanced inventory, goetechnical, and observed ground motion data.

Study Region : ber1 Scenario : hazdef7

APPENDIX K

Magnitude 7 with upgraded geology

New Jersey Geological Survey. November 8, 2000

Building Damage By General Occupancy

November 07, 2000

	Square Footage	Damage State Probability (%)				
	(Thousand. sq.ft)	None	Slight	Moderate	Extensive	Complete
ew Jersey						
Bergen						
Agriculture	1,828	7.92	11.59	22.60	15.44	10.60
Commercial	168,771	8.85	10.65	23.40	20.50	15.11
Education	8,495	7.87	8.94	20.09	17.90	12.86
Government	1,744	9.65	10.10	24.24	23.32	17.02
Industrial	62,870	8.62	9.14	21.79	20.87	15.30
Religion	5,705	8.85	13.07	20.80	15.55	10.82
Residential	425,393	12.97	23.22	28.84	13.26	5.83
ate Average	674,806	9.25	12.39	23.11	18.12	12.51
udy Region Average	674,806	9.25	12.39	23.11	18.12	12.51

Building Damage by Count by General Occupancy

November 07, 2000

	# of Buildings								
	None	Slight	Moderate	Extensive	Complete	Tota			
lew Jersey									
Bergen									
Agriculture	3	9	29	19	10	70			
Commercial	843	858	2,196	1,981	1,464	7,342			
Education	29	25	114	100	56	324			
Government	1	0	0	1	3	5			
Industrial	232	218	701	717	546	2,414			
Religion	18	41	103	71	54	287			
Residential	29,084	57,626	71,057	30,478	12,006	200,251			
Total State	30,210	58,777	74,200	33,367	14,139	210,693			
udy region	30,210	58,777	74,200	33,367	14,139	210,693			

Page:1 of 1

Quick Assessment Report

Novembe	er 7, 200					
Regional	Statistics					
	Area (Square Miles)		247			
	Number of Census Tracts	5	210			
	Number of Buildings					
	Residential (x 1000)		200			
	Total (x 1000)		211			
	Number of People in the Region (x 1000)					
	Building Exposure (\$ Mill	ions)				
< 44	Residential		32,800			
	Total		49,300			
Scenario	Results					
	Maximum PGA (g)		1.19			
	Number of Buildings Dan	naged				
	Damage Level	Residential	Total			
	Slight	57,600	58,800			
	Moderate	71,100	74,200			
	Extensive	30,500	33,400			
	Complete	12,000	14,100			
	Total	171,200	180,500			
	Casualties					
	Severity 1 (Medical tre	atment without hospitalization)	8,980			
	Severity 2 (Hospitalizat	ion but not life threatening)	1,734			
	Severity 3 (Hospitalizat	ion and life threatening)	422			
	Severity 4 (Fatalities)		223			
	Shelter					
	Displaced Households	(# households)	38,690			
	Short Term Shelter (#	people)	22,710			
	Economic Loss					
	Property Damage (Cap	bital Stock) Losses (\$ Millions)	15,160			
	Business Interruption (Income) Losses (\$ Millions)	5,530			
	Total (\$ Millions)		20,700			

Disclaimer:

The estimates of social and economic impacts contained in this report were produced using HAZUS loss estimation methodology software which is based on current scientific and engineering knowledge. There are uncertainties inherent in any loss estimation technique. Therefore, there may be significant differences between the modeled results contained in this report and the actual social and economic losses following a specific earthquake. These results can be improved by using enhanced inventory, goetechnical, and observed ground motion data.

Study Region : ber1 Scenario : haznj7

APPENDIX L

Shear-wave velocity data

Abbreviations are:

gp spc = distance of geophone from source (feet)
pick = arrival time of wave at geophone (milliseconds)
int time = interval travel time between geophone (milliseconds)
int vel = interval velocity--wave velocity between geophones (feet/second)
avg vel = wave velocity calculated by averaging the interval velocities
regression velocity = wave velocity calculated from best-fit line to first
arrivals

DUNKERHOOK PARK

P-	v	V	Α١	V	E
	-			•	_

P-WAVE						REGRESSION
gp spc	pick 9.1	int time	int vel.	AVG VEL ft/sec	SLOPE	VELOCITY ft/sec
	14.5			5369.729943	0.22253	4493.871993
12	19.9	5.4	1111.111111			
18	25	5.1	1176.470588	8		
24	26	1	6000			
30	27.5	1.5	4000			
36	28.7	1.2	5000			
42	30	1.3	4615.384615			
48	30.5	0.5	12000			
54	31.3	0.8	7500			
60	32.7	1.4	4285.714286			
66	34.3	1.6	3750			

ODEOOION

	12.3					
	20.2			1218.487386	0.86303	1158.707865
12	25.1	4.9	1224.489796			
18	31.7	6.6	909.0909091			
24	35.1	3.4	1764.705882			
30	39.6	4.5	1333.333333			
36	45	5.4	1111.111111			
42	52.6	7.6	789.4736842			
48	56.7	4.1	1463.414634			
54	61.7	5	1200			
60	66.3	4.6	1304.347826			
66	71.8	5.5	1090.909091			

OAKLAND							
P-WAVE						REGRESSION	
gp spc	pick	int time	int vel.	AVG VEL	SLOPE	VELOCITY	
0	5			ft/sec		ft/sec	
6	9.6	4.6	1304.347826	2702.098966	0.40029	2498.18023	
12	13.2	3.6	1666.666667				
18	17.3	4.1	1463.414634				
24	19.8	2.5	2400				
30	22.1	2.3	2608.695652				
36	24	1.9	3157.894737				
42	25.6	1.6	3750				
48	27.8	2.2	2727.272727				
54	29.5	1.7	3529.411765				
60	30.8	1.3	4615.384615				+
66	33.2	2.4	2500				
S-WAVE							
0	12.4						
6	18.4	6	1000	1653.749434	0.63357	1578.366446	
12	22.9	4.5	1333.333333				
18	27.4	4.5	1333.333333				
24	32	4.6	1304.347826				

1538.461538

1764.705882

1500

2068.965517

1818.181818

2307.692308

2222.222222

30

36

42

48

54

60

66

35.9

39.3

43.3

46.2 49.5

52.1

54.8

3.9

3.4

4

2.9

3.3

2.6

2.7

VAN SAUN PARK--ENTRANCE ON NORTH SIDE P-WAVE

			NTT SIDE			
P-WAVE						REGRESSION
gp spc	pick	int time	int vel.	AVG VEL	SLOPE	VELOCITY
0	4.6			ft/sec		ft/sec
6	13.9			6858.6283	0.23455	4263.565891
12	16.9	3	2000			
18	20.9	4	1500			
24	24.4	3.5	1714.285714			
30	26.1	1.7	3529.411765			
36	26.7	0.6	10000			
42	28.4	1.7	3529.411765			
48	28.9	0.5	12000			
54	30	1.1	5454.545455			
60	30.5	0.5	12000			
66	31	0.5	12000			

0	107						
0	16.7						
6	27.3			913.4891509	1.18232	845.7923964	
12	35.1	7.8	769.2307692				
18	41.7	6.6	909.0909091				
24	50.4	8.7	689.6551724				
30	60.3	9.9	606.0606061				
36	67.5	7.2	833.3333333				
42	73.4	5.9	1016.949153				
48	80.3	6.9	869.5652174				
54	86.3	6	1000				
60	93.5	7.2	833.3333333				
66	97.6	4.1	1463.414634				

MAHWAH						
P-WAVE						REGRESSION
gp spc	pick	int time	int vel.	AVG VEL	SLOPE	VELOCITY
0	6.6			ft/sec		ft/sec
6	8.2	1.6	3750	9267.316017	0.15047	6646.010844
12	9.6	1.4	4285.714286			
18	10.6	1	6000			
24	11.1	0.5	12000			
30	12.6	1.5	4000			
36	13.8	1.2	5000			
42	14.2	0.4	15000			
48	15.1	0.9	6666.666667			
54	15.3	0.2	30000			
60	16.2	0.9	6666.666667			04
66	16.9	0.7	8571.428571			

0	16.9						
6	22.9	6	1000	1369.247295	0.83147	1202.691337	
12	30	7.1	845.0704225				
18	34.1	4.1	1463.414634				
24	38.7	4.6	1304.347826				
30	44.9	6.2	967.7419355				
36	52.4	7.5	800				
42	57.2	4.8	1250				
48	60.8	3.6	1666.666667				
54	64.5	3.7	1621.621622				
60	67.5	3	2000				
66	70.3	2.8	2142.857143				

OLD TAPPAN P-WAVE gp spc 0	pick	int time	int vel.	AVG VEL ft/sec	SLOPE	REGRESSION VELOCITY ft/sec
6	7	7	857.1428571	6505.195839	0.24939	4009.720535
12	13	6	1000			
18	17.1	4.1	1463.414634			
24	17.3	0.2	30000			
30	18.2	0.9	6666.666667			
36	19.2	1	6000			
42	20.5	1.3	4615.384615			
48	21.3	0.8	7500			
54	22.8	1.5	4000			
60	24.3	1.5	4000			
66	25.4	1.1	5454.545455	×		
S-WAVE						
0						

6	11.5	11.5	521.7391304	840.08958	1.23651	808.7291399
12	25.6	14.1	425.5319149			
18	31.3	5.7	1052.631579			
24	38	6.7	895.5223881			
30	45.2	7.2	833.3333333			
36	54.7	9.5	631.5789474			
42	58.6	3.9	1538.461538			
48	65.9	7.3	821.9178082			

ROUTE 287 P-WAVE						REGRESSION
gp spc	pick	int time	int vel.	AVG VEL	SLOPE	VELOCITY
0	11.3			ft/sec		ft/sec
6	16.2	4.9	1224.489796	4966.71186	0.19682	5080.831409
12	18	1.8	3333.333333			
18	19.6	1.6	3750			
24	20.3	0.7	8571.428571			
30	21.8	1.5	4000			
36	23.1	1.3	4615.384615			
42	23.8	0.7	8571.428571			
48	24.7	0.9	6666.666667			
54	26.1	1.4	4285.714286			
60	27.4	1.3	4615.384615			
66	28.6	1.2	5000			

S-WAVE

0	24.2						
6	39.6	15.4	389.6103896	1366.406798	0.82364	1214.128035	
12	42.8	3.2	1875				
18	52	9.2	652.173913				
24	59.2	7.2	833.3333333				
30	62	2.8	2142.857143				
36	66.2	4.2	1428.571429				
42	71.8	5.6	1071.428571				
48	78.2	6.4	937.5				
54	81.2	3	2000				
60	83.6	2.4	2500				
66	88.6	5	1200				

.

CLOSTER						
P-WAVE						REGRESSION
gp spc	pick	int time	int vel.	AVG VEL	SLOPE	VELOCITY
0	10.2			ft/sec		ft/sec
6	13.1	2.9	2068.965517	7051.209989	0.1736	5760.322256
12	14.1	1	6000			
18	15.65	1.55	3870.967742			
24	17.15	1.5	4000			
30	18.2	1.05	5714.285714			
36	18.7	0.5	12000			
42	19.45	0.75	8000			
48	20.65	1.2	5000			
54	21.4	0.75	8000			
60	21.95	0.55	10909.09091			
66	22.45	0.5	12000			

0	24						
6	37	13	461.5384615	931.8947541	1.08153	924.6187833	
12	48.6	11.6	517.2413793				
18	62.4	13.8	434.7826087				
24	73	10.6	566.0377358				
30	84.4	11.4	526.3157895				
36	93.2	8.8	681.8181818				
42	96	2.8	2142.857143				
48	103.6	7.6	789.4736842				
54	110	6.4	937.5				
60	113.4	3.4	1764.705882				
66	117.6	4.2	1428.571429				

McCLELLAN ROAD

P-WAVE						REGRESSION
gp spc	pick	int time	int vel.	AVG VEL	SLOPE	VELOCITY
0	6.1			ft/sec		ft/sec
6	7.8	1.7	3529.411765	6657.632474	0.17372	5756.457565
12	9.9	2.1	2857.142857			
18	10.7	0.8	7500			
24	11.8	1.1	5454.545455			
30	12.8	1	6000			
36	13.6	0.8	7500			
42	15.2	1.6	3750			
48	16	0.8	7500			
54	16.5	0.5	12000			
60	17.2	0.7	8571.428571			
66	17.9	0.7	8571.428571			

0	1	8.2					
6		32 13	.8 434.	7826087	841.2427471	1.21045	826.1359369
12	- 3	9.2 7.	2 833.	3333333			
18		46 6.	8 882.	3529412			
24	5	5.6 9.	6	625			
30	6	1.4 5.	8 1034	4.482759			
36	6	7.4 6	6	1000			
42	7	4.9 7.	5	800			
48	8	1.1 6.	2 967.	7419355			
54	8	7.9 6.	8 882.	3529412			
60	9	4.2 6.	3 952.	3809524			

HARRINGTON	PARK						
P-WAVE						REGRESSION	
gp spc	pick	int time	int vel.	AVG VEL	SLOPE	VELOCITY	
0	10.3			ft/sec		ft/sec	
6	14	3.7	1621.621622	2742.921493	0.405	2469.135802	Velocity of layer 1
12	16.1	2.1	2857.142857	12601.19048	0.10437	9581.749049	Velocity of layer 2
18	17.7	1.6	3750				
24	17.9	0.2	30000				
30	18.6	0.7	8571.428571				
36	19.3	0.7	8571.428571				
42	19.8	0.5	12000				
48	20.7	0.9	6666.666667				
54	21.1	0.4	15000				
60	21.7	0.6	10000				
66	22.3	0.6	10000				
S-WAVE	10.1						
0	13.4						
6	23.4	10	600	747.374543	1.525		Velocity of layer 1
12	32.4	9	666.6666667	1173.107033	0.92222	1084.337349	Velocity of layer 2
18	40.9	8.5	705.8823529				
24	46.8	5.9	1016.949153				
30	53.6	6.8	882.3529412				
36	60.9	7.3	821.9178082				
42	65.3	4.4	1363.636364				

48

54

60

66

70.9

75.1

82.6

85.6

5.6

4.2

7.5

3

1071.428571

1428.571429

800

2000

CAMPGAW PARK P-WAVE

- ----

P-WAVE						REGRESSION
gp spc	pick	int time	int vel.	AVG VEL	SLOPE	VELOCITY
0	8.7			ft/sec		ft/sec
6	12.1	3.4	1764.705882	5658.956476	0.32106	3114.676734
12	16.7	4.6	1304.347826			
18	19.6	2.9	2068.965517			
24	22.3	2.7	2222.222222			
30	24.2	1.9	3157.894737			
36	26	1.8	3333.333333			
42	26.3	0.3	20000			
48	27.1	0.8	7500			
54	28	0.9	6666.666667			
60	28.7	0.7	8571.428571			

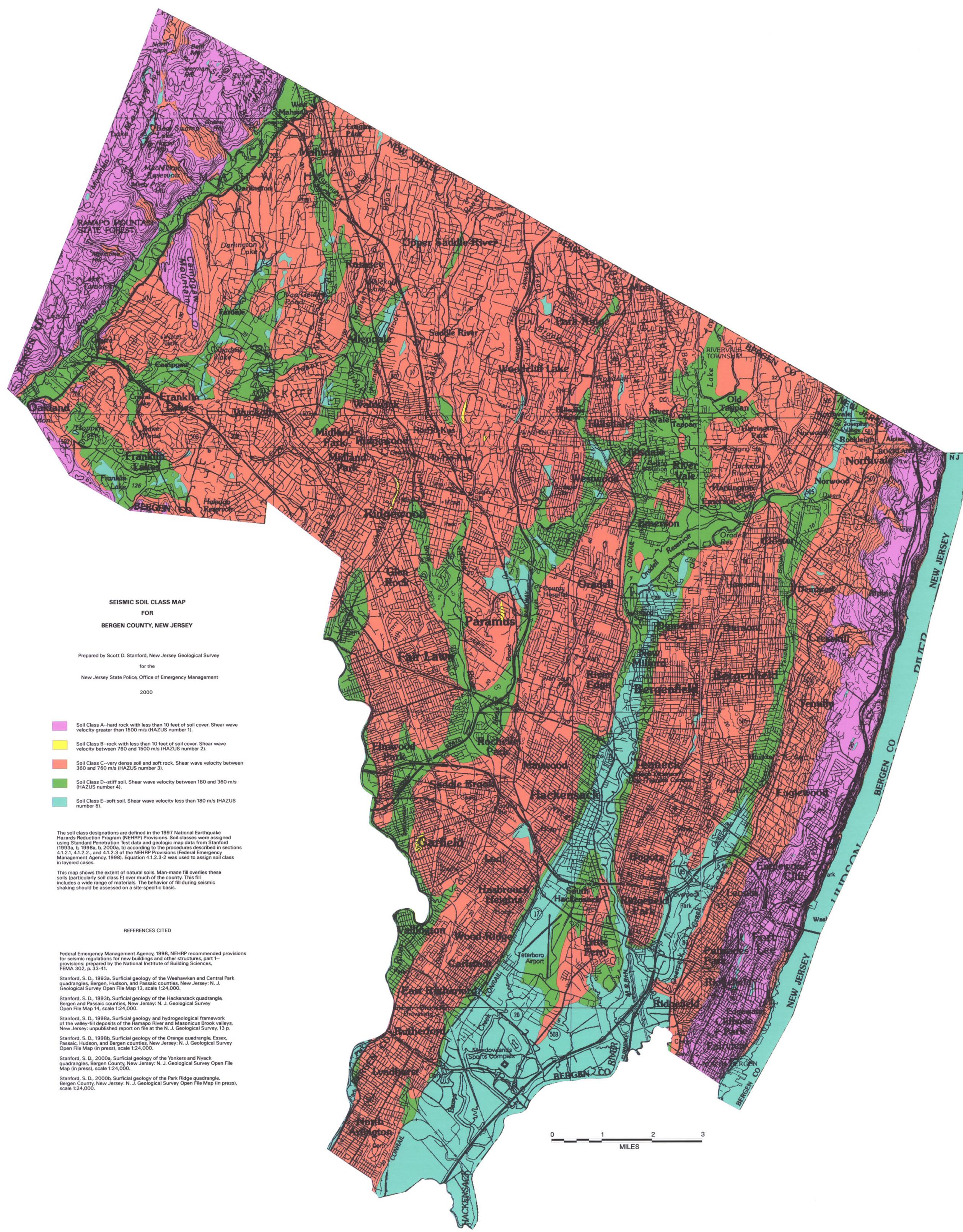
S-WAVE						
0	14					
6	20.1	6.1	983.6065574	2151.374473	0.47413	2109.144543
12	23	2.9	2068.965517			
18	26.3	3.3	1818.181818			
24	30	3.7	1621.621622			
30	31.9	1.9	3157.894737			
36	33.9	2	3000			
42	36.7	2.8	2142.857143			
48	39.4	2.7	2222.222222			
54	41.4	2	3000			
60	44.9	3.5	1714.285714			
66	48	3.1	1935.483871			

RAILROAD AVE						
P-WAVE						REGRESSION
gp spc	pick	int time	int vel.	AVG VEL	SLOPE	VELOCITY
0	5.5			ft/sec		ft/sec
6	10.6	5.1	1176.470588	6700.06355	0.23773	4206.500956
12	16.9	6.3	952.3809524			
18	20	3.1	1935.483871			
24	22.2	2.2	2727.272727			
30	22.6	0.4	15000			
36	23.8	1.2	5000			
42	24.9	1.1	5454.545455			
48	26	1.1	5454.545455			
54	26.3	0.3	20000			
60	27.3	1	6000			
66	27.9	0.6	10000			

S-	VA.	۱۸	V	F

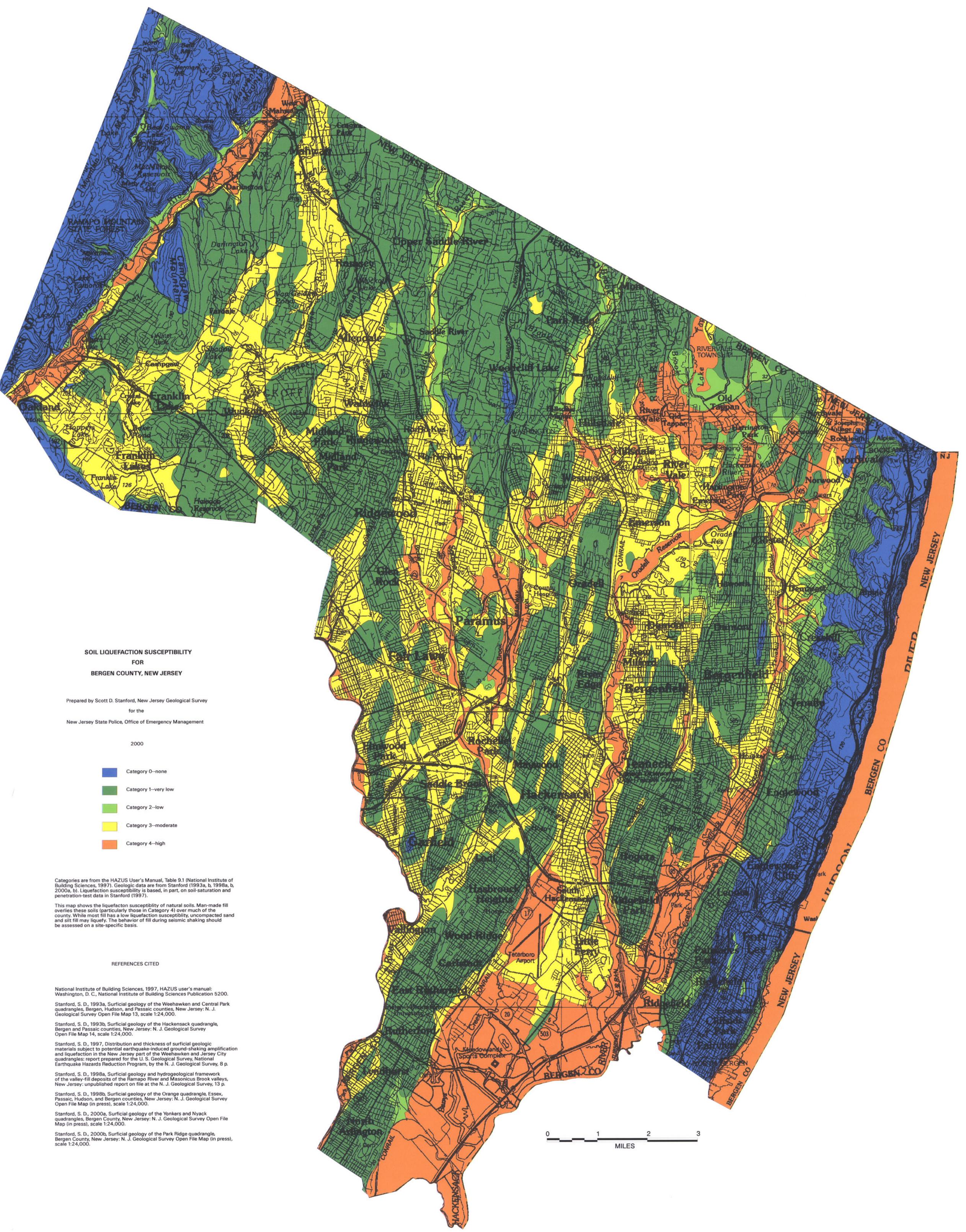
0	15.8						
6	24.5	8.7	689.6551724	1661.341184	0.69136	1446.416831	
12	30.3	5.8	1034.482759				
18	38	7.7	779.2207792				
24	46.3	8.3	722.8915663				
30	48.9	2.6	2307.692308				
36	52.8	3.9	1538.461538				
42	55.1	2.3	2608.695652				
48	58.5	3.4	1764.705882				
54	62.5	4	1500				
60	64.1	1.6	3750				
66	67.9	3.8	1578.947368				

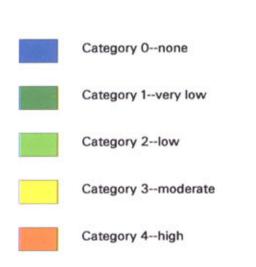
VAN SAUN PARK -- PARKING LOT


10.0

P-WAVE

P-WAVE						REGRESSION
gp spc	pick 7.9	int time	int vel.	AVG VEL ft/sec	SLOPE	VELOCITY ft/sec
	11.6			2703.437689	0.40566	2465.139442
12	14.3	2.7	2222.222222			
18	16.2	1.9	3157.894737			
24	18.5	2.3	2608.695652			
30	22	3.5	1714.285714			
36	24.4	2.4	2500			
42	26.6	2.2	2727.272727			
48	29.7	3.1	1935.483871			
54	31.6	1.9	3157.894737			
60	33.6	2	3000			
66	35.3	1.7	3529.411765			


	16.2					
	22.8			1531.742449	0.67424	1483.146067
12	26.3	3.5	1714.285714			
18	30.7	4.4	1363.636364			
24	34.5	3.8	1578.947368			
30	38.7	4.2	1428.571429			
36	42.5	3.8	1578.947368			
42	46.7	4.2	1428.571429			
48	52	5.3	1132.075472			
54	55	3	2000			
60	57.8	2.8	2142.857143			
66	63.1	5.3	1132.075472			


WOOD DALE I P-WAVE	7.4.41					REGRESSION	
gp spc	pick	int time	int vel.	AVG VEL ft/sec	SLOPE	VELOCITY ft/sec	
6	8.5			2009.31677	0.475	2105.263158	VELOCITY OF LAYER
12	12.7	4.2	1428.571429	8761.151892	0.12639	7912.087912	VELOCITY OF LAYER
18	16.7	4	1500				
24	19.1	2.4	2500				
30	21.4	2.3	2608.695652				
36	22.4	1	6000				
42	23	0.6	10000				
48	24.1	1.1	5454.545455				
54	25.2	1.1	5454.545455		4		
60	25.5	0.3	20000				
66	26	0.5	12000				
72	26.7	0.7	8571.428571				(5)
S-WAVE							
6	17.5			1052.038747	0.98758	1013.568122	
12	25.5	8	750				
18	31.3	5.8	1034.482759				
24	38.3	7	857.1428571				
30	44.7	6.4	937.5				
36	52.4	7.7	779.2207792				
42	59.2	6.8	882.3529412				
48	63.8	4.6	1304.347826				
54	69.5	5.7	1052.631579				
60	74.9	5.4	1111.111111				
66	79.3	4.4	1363.636364				
72	83.3	4	1500				

