VOLUME II

FINAL REPORT

BY

THOMAS BATZ, JOHN POWERS, JONN: MANRODT, AND RICHARD HOLLINGER

PREPARED BY

NEW JERSEY DEPARTMENT OF TRANSPORTATION DIVISION OF RESEARCH AND DEVELOPMENT BUREAU OF OPERATIONS RESEARCH

DECEMBER 1975

TECHNICAL REPORT STANDARD TITLE PAGE

ACKNOVLLEDGEMENT

The authors wish to express their appreciation for the assistance given them in this project by Frank Parker, Chief Engineer Design, the Bureau of Traffic Engineering, the Bureau of Surface Design, Eugene F. Reilly, Joseph Santacroce, and Allen Toole of the New Jersey Department of Transportation.

TABLE OF CONTENTS

Page
Appendix A - Data Collection 1
Appendix B - Manual Method for the Pedestrian Grade 16 Separation Location Priority Ranking System
Appendix C - Computer Program Method for the Pedestrian 50 Grade Separation Location Priority Ranking System
Appendix D - COMDEL Program Listing 69
Appendix E - PEDOP1 Program Listing 72
Appendix F - PEDOP2 Program Listing 81
LIST OF FIGURES Page
A-1. Sites Where Pedestrian Activity Exists Initial Field Study Data Sheet
A-2. Hourly Pedestrian Count Field Study Data Sheet 5
A-3. Signalized Site's Pedestrian Delay Field Study 6 Data Sheet
A-4. School Children Count Field Study Data Sheet 8
A-5. Unsignalized Site's Pedestrian Delay Ficld Study 10 Data Sheet
A-6. Example of Trip Generation Map 12
A-7. Sites Where Pedestrian Activity is not Possible 13 Initial Field Study Data Sheet
A-8. Bus Stop User Data Sheet 15
B-1. Pedestrian Vehicle Volume Points 32
B-2. Peak Hour Delay Factor (Non-Signalized Location) 33
B-3. Peak Hour Delay Factor (Signalized Location) 34
B-4. Desirable Sight Distance 36
B-5. Combined Sight Distance 37
B-6. Pedestrian Crossing/Maximum Vehicle Green 38
B-7. School Crossing Protection 40
B-8. Distance to Alternate Crossing (Non-Controlled Access 41 Location)
B-9. Trip Generation 46
B-10. Distance to Alternate Crossing (Controlled Access 48 Location)
C-1. COMDEL Computer Program Input and Output Data 52
C-2. PEDOP1 Program Input Data for Sites Where Pedes- 54 trian Activity Exists
C-3a. Input Format for P[DOP1 Computer Program for Sites 55 Where Pedestrian Activity Exists

LIST OF FIGURES

Page
C-3b. Input Format for PEDOP 1 Computer Program for Sites 55 Where Pedestrian Activity is Not Possible
C-4a. PEDOP1 Output (Input Variable Check Not Done) 56
C-4b. PEDOP 1 Output (Input Variable Check Done - No Errors) 56
C-4c. PEDOP Output (Input Variable Check Done - One Error) 56
C-5. PEDOP2 Program Output Data for Sites Where Pedestrian 62 Activity Exists
C-6. PEDOP1 Program Input Data for Sites Where Pedestrian 64 Activity is Not Possible
C-7. PEDOP2 Program Output for Sites Where Pedestrian 68 Activity is Not Possible
LIST OF TABLES
Page
B-1. Data for Three Sites Where Pedestrian Activity is 22 Possible
B-2. Data for Two Sites Where Pedestrian Actitivity is Not 28 Possible
C-1. Limits of Input Variables for Locations Where Pedestrian 58Activity Exists
C-2. Limits of Input Variables for Locations Where Pedestrian 65 Activity is Not Possible

NOILJヨ770J $\forall 1 \forall O$
\forall XIONJdd \forall

Consistent procedures in the collection of data are necessary for comparing sites from different areas to determine the relative need for a pedestrian grade separation. Thus, set rules must be followed in the data collection.

Data collection should start with a field inspection of each site. The exact placement of the proposed pedestrian grade separation must be decided so that physical measurements can be made. Also, specific characteristics for the site should be found to determine what day of the week and time of the day to do the required field studies. For example, if the peak pedestrian trip generator is a church, the actual field studies should be performed on a Sunday when the church is holding services.

After this inspection, a more detailed site description is obtained. This includes the route number, milepost designation, if available, and the county and municipality. Also, a detailed map, such as a tax map, or sketch of the area should be obtained for later use in the field.

At this point, an initial field study must be done. Figure A-1 shows a suggested form for tabulating data for a site where pedestrian activity exists. First, it must be determined whether the site is to be studied as a signalized or unsignalized site. If the proposed location of the pedestrian grade separation is within fifty feet of a signal, the site will be studied as a signalized site.

Seven pieces of field data must be collected during the initial study for a signalized site where pedestrian activity is possible. The first is the annual average daily traffic (AADT). Second, a twelve-hour pedestrian crossing count must be performed. This is the number of pedestrians crossing the roadway at the proposed pedestrian grade separation site tabulated by hour so that the peak pedestrian hour can be easily identified.

SITE WHERE PEDESTRIAN ACTIVITY EXISTS

INITIAL STUDY

Route \qquad
County and Municipality \qquad Date \qquad Recorder \qquad
A. Signalized \qquad

1. AADT \qquad
2. Twelve-Hour Pedestrian Count \qquad
Occurrences
Per Week \qquad
3. Roadway Width \qquad ft.
4. Distance to Alternate Crossing_ 50 ft ft.
5. Protection at Alternate Crossing Signal
6. Is a School in the Vicinity? \qquad
7. Notes: \qquad
\qquad
B. Unsignalized
8. AADT \qquad
9. Twelve-Hour

Pedestrian Count \qquad
Occurrences
Per Week \qquad
3. Roadway Width ft.
4. Posted Speed Limit mph
5. Minimum Actual

Sight Distance ft.
6. Distance to

Alternate Crossing ft.
7. Protection at Alternate Crossing (Check One)
___ Passive Protection (Flashing Signal, Signs Only, or No Signs)

Active Protection (Traffic Signal)
Grade Separation (Underpass or Over-
8. Is a School in the

Vicinity? \qquad
9. Notes: \qquad
\qquad
\qquad

Also, bicyclists and the ages of pedestrians are classified for possible future use in the design of the grade separation. The sketch of the location can be used for tabulating this count. Figure A-2 shows a suggested layout for this sketch.

The number of times a week the pedestrian count is expected to occur must be recorded, i.e. if a church is the only trip attractor, the pedestrian count would be expected to occur once a week. The engineer will use this number later to adjust the pedestrian count so that it is comparable to other sites' pedestrian counts.

Roadway width must be measured either from curb-to-curb or from curb to pedestrian refuge island ${ }^{45}$, if one exists. Next, distance to the alternate legal crossing is assumed to be fifty feet for a signalized site. This is based on a subjective decision that the grade separation location is not likely to be exactly at the intersection but not further than fifty feet away. The protection at the alternate crossing will be a signal in this case.

The presence of a school in the vicinity or the use of the crossing by school children should be noted and anything unusual about the site should be noted during the initial study.

After this data is collected, the twelve-hour pedestrian count must be checked to determine the pedestrian peak hour. This is the hour with the highest number of pedestrian crossings. The pedestrian delay study must subsequently be done during this hour and on the same day of the week as the initial study was performed.

For a signalized site, four pieces of data must be collected during the pedestrian delay study. Figure A-3 shows a suggested form for tabulating this data. The red time of the side street (street parallel to the proposed facility) is measured and recorded for each signal cycle

$$
\begin{aligned}
& Y=\text { Youth }-16 \text { years old or younger. } \\
& M=\text { Middle-Aged }-17 \text { to } 65 \text { years old. } \\
& E=\text { Elderly }-65 \text { years old or older. }
\end{aligned}
$$

Place tic mark in appropriate age group box for each pedestrian. Place "B" in appropriate age group box for each bicyclist. Arrows indicate direction of pedestrian crossings to be counted.

Location: \qquad at \qquad
County: \qquad
Time: From \qquad to \qquad
Recorder: \qquad
ilote anything unusual on reverse sidc.

FIGURE A-2. HOURLY PEDESTRIAN COUNT FIELD STUDY DATA SHEET

SITE WHERE PEDESTRIAN ACTIVITY EXISTS

SIGNALIZED LOCATION

PEDESTRIAN DELAY STUDY

\qquad
Route
Milepost
County and Municipality \qquad
Time Begin
Time End \qquad
Date \qquad Recorder \qquad

Pedestrians Wait-

Signal Cycle	ing at Beginning of Green	Pedestrians Cross- ing During Green	Red Time (sec.)	Cycle Time (sec.)

during the peak hour. When the signal turns green for the side street, the number of pedestrians waiting to cross the street over which the proposed grade separation is to be located are counted and recorded. During this green, the number of pedestrians crossing are counted and at the end of this green phase the total number of pedestrians that have crossed is recorded, along with the total cycle length. This is done for every signal cycle during the pedestrian peak hour.

If school children were observed crossing at the site or a school was detected in the vicinity during the twelve-hour pedestrian count, a separate school children count field study must be performed. If the school was determined to be the peak pedestrian trip generator during the site inspection phase, this study could be done during the twelvehour pedestrian count. The school children count is done either in the morning just before school begins or in the afternoon just after school ends. The time to obtain this data is during the entire duration of the period that the arriving or departing school children are present. Also, the protection afforded these school children must be noted. Figure A-4 is an example of a school children count field study data sheet.

If the site where pedestrian activity exists is to be studied as an unsignalized site, the following nine pieces of data would be collected during the initial field study. Figure A-1 shows the suggested form for tabulating this data. The first data indicated is the annual average daily traffic.

A twelve-hour pedestrian count, also previously described, must also be performed by hour so that the peak pedestrian hour can be determined. Again, Figure A-2 can be used for tabulating this count.

Roadway width must be measured either from curb-to-curb or from curb-to-pedestrian refuge island, if one exists.

SITE GHERE PEDESTRIAN ACTIVITY EXISTS SCHOOL CHILDREN COUNT

Route \qquad Milepost \qquad
County and Municipality \qquad
Time Begin Time End \qquad
Date \qquad Recorder \qquad

School Children Crossing \qquad

Protection at School Children Crossing (Check One)
___ Not Protected (No School Crossing Signs)
_ Passive Protection (School Crossing Signs)
Active Protection (Flashing Lights)

_ S
 Signal

___Guard on Duty

FIGURE A-4. SCHOOL CHILDREN COUNT FIELD STUDY DATA SHEET

The posted speed limit must be recorded. It may be determined that the posted speed limit does not accurately reflect the actual speeds of vehicles. For this case, the prevailing speed could be used.

The minimum actual sight distance must ibe measured. This is the shortest distance at which a pedestrian, waiting to cross the roadway, can first detect an approaching vehicle.

Distance to the nearest alternate legal crossing must be measured. The definition of a legal crossing may vary from state to state, but is unusually consistent within a state. A more detailed discussion about the legality of pedestrian crossings can be found in the Traffic Engineering Handbook. Also, the protection at this alternate crossing must be recorded.

The presence of a school in the vicinity or the use of the crossing by school children should be noted.

Finally, anything unusual about the site should be noted during the initial study.

After this data is collected, the twelve-hour pedestrian count is checked to determine the pedestrian peak hour. This again is the hour during which the most pedestrian crossings were recorded. A pedestrian delay study is then done for this hour.

The following pedestrian peak hour delay study must be done when the site is unsignalized. During each minute of the pedestrian peak hour, the number of pedestrians waiting to cross the roadway at fifteen-second intervals are counted and recorded individually. Also counted and recorded once each minute is the total number of pedestrians that crossed the roadway during that minute. A suggested field data sheet for unsignalized sites is shown in Figure A-5.

A separate school children count must be performed if school children have been observed to cross at the site or a school was detected in the vicinity during the initial study. Also, the protection afforded these

SITE WHERE PEDESTRIAN ACTIVITY EXISTS

Unsignalized Location
Pedestrian Delay Study

Pedestrians waiting at

Time of Day Pedestrians cross-
(hour \& minute) $15 \mathrm{sec} .30 \mathrm{sec} . \quad 45 \mathrm{sec} .60 \mathrm{sec} . \quad$ ing during minute
school children must be noted. The procedure for this study is the same as for a signalized site. The suggested form in Figure A-4 can again be used for the school children count field study.

The last type of site is where pedestrian activity is not possible. To evaluate this type of site, the trip generation procedure must be performed. In order to perform this procedure, the following data must be collected. First, the detailed map as described earlier, is utilized. With this map, a one-quarter mile circle is defined about the proposed location. This circle is then split into two roughly semi-circular zones which are divided by the location of the controlled access highway. Figure A-6 shows an example of such a map.

After this map is completed, the actual field study can be performed. A suggested initial field study data sheet for sites where pedestrian activity is not possible is shown in Figure A-7. Using the detailed map, the streets within the circle are surveyed and the number of households, including apartments, are counted for each zone. A survey of trip attractors must also be performed. For each zone, conmercial estabiishments, recreational facilities, institutions, and any schools present are recorded. It showld also be noted when a bus stop exists at the proposed pedestrian grade separation site.

As previously discussed for the other proposed grade separation location types, the distance to the nearest alternate legal crossing must be measured and the protection at this alternate crossing must be recorded. If the alternate crossing is a grade separation, the presence of sidewalks and whether or not a roadway surface must be crossed in getting to the alternate crossing must be noted.

Finally, anything unusual about the site should be noted during the initial study.
dVW NOIDV\＆BNZO

SITES WHERE PEDESTRIAN ACTIVITY IS NOT POSSIBLE

Route \qquad Mile Post \qquad
County and Municipality \qquad
Date \qquad Recorder \qquad

Zone 1

Number of Households
Commercial Establishments:

Institutions:

Recreational Facilities:

Schools:

Does Bus Stop Exist at
Study Location \qquad

Zone 2
Number of Households
Commercial Establishments:

Institutions:

Recreational Facilities:

Schools:

Does Bus Stop Exist at Study Location \qquad

Distance to Alternate Crossing \qquad feet

Protection at Alternate Crossing (check one)
_ Passive Protection (Flashing signal, sign only, or no signs) Active Protection (Traffic signal)

\qquad
 Grade Separation (Overpass or underpass)

Are Sidewalks Present on Grade Separation? \qquad
Must at grade road surface be crossed to get from proposed site to grade separated alternate crossing?

Notes: \qquad
\qquad
\qquad

FIGURE A-7. SITES WHERE PEDESTRIAN ACTIVITY IS NOT POSSIBLE INITIAL FIELD DATA SHEET

1
If a school was detected in the initial study, an estimate of the number of school children who could use a pedestrian grade separation should be determined. This could be accomplished by contacting the particular school district to obtain the number of school children who live in one zone and attend school in the other.

Also, if a bus stop was detected in the initial study, a twelve-hour bus stop user count must be performed. Figure A-8 is a suggested form for tabulating the follow-up study data. The bus stop study should be done from early in the morning to late in the evening so that the peak hours of use are included in the study.

SITES WHERE PEDESTRIAN ACTIVITY NOT POSSIBLE
 Twelve Hour Bus Stop User Count

Location	Mile Post
County and Municipality	।
Date	Recorder
Hour	Bus Stop Users
)
	1

APPENDIX B

[^0]The parameter evaluation sheets and figures that are used in manually calculating the priority point score for a pedestrian grade separation location are at the end of this Appendix, pages 30 to 49.

A. LOCATIONS WITH EXISTING PEDESTRIAN ACTIVITY

For locations with existing pedestrian activity, page 30 lists the five parameters which are used to determine the need for a pedestrian grade separation and the point ranges for each.
I. PEDESTRIAN AND VEHICLE VOLUME WITH PEAK HOUR DELAY FACTOR

This parameter requires four items of field data, average 24hour vehicle volume, 12-hour pedestrian volume, pedestrian count occurrence per week, and average pedestrian delay observed during pedestrian peak hour, as shown on page 31 .

1. The first thing to be done is to multiply the 12hour pedestrian volume by the pedestrian count occurrence per week. This product is then divided by five days to determine the "average day" pedestrian volume for the site.
2. The next step is to add the average 24 -hour vehicle volume to the "average day" pedestrian volume. This total is divided into the "average day" pedestrian volume to calculate the percent pedestrians. Using total pedestrian and vehicle volume and percent pedestrians, the pedestrianvehicle volume points are found from Figure B-1, page 32 .
(a) If the site is unsignalized, the average pedestrian delay observed during the pedestrian peak hour is needed. This delay, which must be in units of seconds, is calculated by the following equation:

Average Pedestrian Delay
Observed During Pedestrian
Peak Hour
:---:
to Cross at $15-\text { Second Intervals } \times 15 \text { Seconds }$

The average pedestrian delay observed during the pedestrian peak hour is then used in Figure $B-2$, page 33 , to find the peak hour delay factor.
(b) If the site is signalized, the average pedestrian delay observed during pedestrian peak hour must first be found. To obtain this, the total pedestrian delay in seconds must be calculated. The following equation is used:

Total Total Number of Pedestrians Wait- Average Red Time
Pedestrian $=$ ing to Cross at the Beginning of x During Pedestrian Delay Green During Pedestrian Peak Hour
x During Pedestrian Peak Hour 2

This equation is valid only when all pedestrians waiting at the beginning of green, cross during that cycle's green time. If all pedestrians don't cross during the cycle in which they arrived, the total pedestrian delay must be done cycle by cycle with some alterations. The delay for the pedestrians who did not cross during their initial cycle at the signal would be an additional cycle length for each cycle waited. Also, the additional pedestrians 'waiting at the beginning of green during the next cycle would have a delay of at least one-half the cycle length and even longer if additional cycles are waited. If pedestrians are held over for more than one cycle, it is recommended that the COMDEL computer program be used because of the difficulty in manually calculating the total pedestrian delay.

Using this total delay, the average pedestrian delay observed during pedestrian peak hour, which must be in units of signal cycles for a signalized site, can be found. The following equation is used:

Average Pedestrian Delay
Observed During Pedestrian
Peak Hour
:---:
Average Cycle Length Pedestrian Peak Hour

Peak Hour

The average pedestrian delay observed during pedestrian peak hour is then used in Figure B-3, page 34 , to find the peak hour delay factor.
3. The pedestrian-vehicle volume points from Figure B-1 are then multiplied by the peak hour delay factor to calculate the POINTS AWARDED for the PEDESTRIAN AND VEHICLE VOLUME WITH PEAK HOUR DELAY FACTOR parameter.

II. ACTUAL SIGHT DISTANCE/DESIRABLE SIGHT DISTANCE OR PEDESTRIAN CROSSING/MAXIMUM VEHICLE GREEN

This parameter involves two separate methods for determining its point score. When the site is unsignalized the ACTUAL SIGHT DISTANCE/ DESIRABLE SIGHT DISTANCE parameter's method is used, and when the site is signalized the PEDESTRIAN CROSSING/MAXIMUM VEHICLE GREEN parameter's method is used. Both methods compare the time needed by the pedestrian to cross the roadway to the maximum time that is actually given the pedestrian to cross.

1. The field data required for the parameter, ACTUAL SIGHT DISTANCE/DESIRABLE SIGHT DISTANCE, are roadway width in feet, posted speed limit, and minimum actual sight distance, as shown on page 35 .
(a) Using the roadway width in feet and the posted speed limit, Figure $B-4$, page 36 , is used and a desirable sight distance in feet is determined.
(b) The desirable sight distance in feet and the shortest actual sight distance in feet are then used to find the POINTS AWARDED for this parameter from Figure B-5, page 37 .
2. The field data required for the parameter, PEDESTRIAN CROSSING/MAXIMUM VEHICLE GREEN, is roadway width in feet and maximum vehicle green and yellow, as shown on page 35 . The maximum vehicle green and yellow is the side street vehicle green and yellow portions of the cycle length during which pedestrians are allowed to cross.
(a) First the roadway width in feet is divided by four feet per second which is the average pedestrian walking speed and a clearance interval of seven seconds ${ }^{41}$ is added to the resultant walking time. This calculation produces the total pedestrian crossing time needed.
(b) Using the total pedestrian crossing time needed and maximum vehicle green and yellow, the POINTS AWARDED can be found from Figure B-6, page 38.
III. SCHOOL CROSSING

The field data needed for this parameter is the number of school children crossings and protection at the crossing, as shown on page 39. The school children crossings acquired from the field data is multiplied by two to obtain the total number of crossings made by the school children. Using the total volume of school children crossings and school children protection at the crossing in Figure B-7, page 40 , the POINTS AWARDED can be found.

IV. DISTANCE TO NEAREST ALTERNATE CROSSING

The field data necessary for this parameter are the distance to the crossing in feet and the type of protection at the alternate crossing, as shown on page 39 . "Average day"pedestrian volume, calculated for the first parameter,is also needed. Using these three pieces of data, the POINTS AWARDED is found from Figure B-8, page 41 .
v. JUDGEMENT

The POINTS AWARDED are for uniqueness of location and are to account for any circumstances which are not covered by the other four parameters, as indicated on page 42 .
VI. TOTAL POINTS

The POINTS AWARDED for the appropriate five parameters are entered on page 30 and summed to yield a total point score for the evaluated location.

VII. EXAMPLES OF METHOD

Table B-1 shows three sites' field data and point scores for the five parameters. Sites A and B are unsignalized and Site C is signalized. The first parameter, PEDESTRIAN-VEHICLE VOLUME, seems contradictory. The pedestrian volume for Site B is more than three times that for Site A. However, Site A receives a larger score. This is because both sites are awarded the maximum or forty points from Figure B-1, but Site A receives a larger peak hour delay factor from Figure B-2 because of the larger pedestrian delay. Site C also has a smaller pedestrian volume than Site B but it also receives a larger peak hour delay factor from Figure B-3.

The SIGHT DISTANCE parameter scores also show a large difference in scores. Site A and B have similar roadway widths and speed limits

TABLE B-1: DATA FOR THREE SITES WHERE PEDESTRIAN ACTIVITY IS POSSIBLE
which are used in Figure $B-4$. However, the actual sight distance is less for Site A than Site B. Therefore, Site A is awarded a larger score from Figure B-5. The score for Site C can be obtained from Figure $B-6$.

The scores awarded for the SCHOOL CROSSING parameter are straight forward. Site B has no school children, thus no points. Sites A and C both have a crossing guard as the protection at the crossing, but Site C has more school children and, therefore, a larger score from figure B-7.

The ALTERNATE CROSSING parameter also seems somewhat contradictory because of the large difference in pedestrian volumes between Sites A and B. However, both sites have a signal as the protection at the crossing and the distance to the alternate crossing for Site A is larger than that for Site B. Because of the shape of the curves in Figure B-8, therefore, Site A receives a larger point score.

Sites A and B receive ten additional points for the JUDGEMENT parameter. This means there is something unusual about these sites which was not taken into account by the other parameters.

Finally, the total point scores show that Site A would appear much higher on a priority list than Sites B and C which have similar total scores.

B. LOCATIONS WITH NO PEDESTRIAN ACTIVITY POSSIBLE

Page 43 lists the three parameters which are used to determine the need for a pedestrian grade separation and the point ranges for each when no pedestrian activity is possible. They are TRIP GENERATION, DIStance to nearest alternate crossing, and Judgemeñt.

I. TRIP GENERATION

The proposed locations for this group are along controlled access roadways or non-controlled access roadways with a center barrier where grade crossings are not allowed. Therefore, a model had to be devised to determine the demand of pedestrians to cross the roadway. The following trip generation model is used.

1. The number of households in each zone are recorded, as shown on pages 44 and 45 .
2. The Trips/Day/Household is now assigned for the trip attractors. If two identical attractors are located, one in each zone, see Section (e).
(a) If a school exists in a zone, the Trips/Day/ Household is 1.0 , if one does not exist, the Trips/Day/ Household is zero. If the actual number of school children for either zone is known, see Section (f).
(b) Commercial activity is the next trip
attractor. For a zone, if there are:
13 or more commercial establishments, Trips/Day/Household is 0.4;
9 to 12 commercial establishments, Trips/Day/Household is 0.3;
5 to 8 commercial establishments, Trips/Day/Household is 0.2;
1 to 4 commercial establishments, Trips/Day/Household is 0.1; and no commercial establishments, Trips/Day/Household is zero.
(c) The third attractor is Institutional activity. If an institution, such as a church or museum exists in a zone, the Trips/Day/Household is 0.3 , if one does not exist, the Trips/Day/Household is zero.
(d) The fourth attractor is Recreational activity. If a recreational area such as a park or playground exists in a zone, the Trips/Day/Household is 0.3 , if one does not exist, the Trips/Day/Household is zero,
(e) If an attractor in Zone 1 is identical to an attractor in Zone 2, they cancel each other. For example, if there is a playground in Zone 1 and no playground in Zone 2, Trips/Day/Household for recreational activity in Zone 1 is 0.3 and for Zone 2 is zero. However, if there is an identical playground in Zone 2, they would not be used in the study and the Trips/Day/Household for both zones is zero.
(f) If the actual number of school children is known for either zone, this number is multiplied by two and used as the total Trips/Day for the school attractor. If this is done, the school Trips/Day/Household is not used.
3. The Trips/Day/Household for each of the four categories for Zone 1 are then multiplied by the number of households in Zone 2 to find the total Trips/Day from Zone 2 to Zone 1.
4. The Trips/Day/Household for each of the four categories for Zone 2 are multiplied by the number of households in Zone 1 to find the total Trips/Day from Zone 1 to Zone 2.
5. If there is a bus stop located at the site, an estimated bus stop trips per day is determined. Because it was assumed that a commuting pedestrian would cross the non-access highway either in the morning to get to the bus stop or in the evening to get back to their home for a total of one crossing, the number of bus riders found during the field study is divided by two.
6. The total Trips/Day from Zone 1 to Zone 2, total Trips/ Day from Zone 2 to Zone 1, and the bus stop Trips/Day are added to obtain total trips. If total trips are more than 700 , only 700 are used for this parameter. The remaining trips are noted and may be used later in the JUDGEMENT parameter.
7. Using the total trips, the POINTS AWARDED for this parameter is found from Figure $B-9$, page 46 .

II. DISTANCE TO NEAREST ALTERNATE CROSSING

The field data needed for this parameter are distance to crossing in feet and type of protection at alternate crossing, as shown on page 47. Along with the two pieces of field data, the total trips calculated for the first parameter is used to find the POINTS AWARDED from Figure $B-10$, page 48.

III. JUDGEMENT

This parameter has three sections, as shown on page 49 .

1. The first section is Safety of Alternate Crossing. If the alternate crossing is a grade separation which has no sidewalk, five points are awarded. If the alternate crossing is a grade separation which has sidewalks, but a roadway surface, such as an entrance or exit ramp, must be crossed to get to the alternate crossing, three points are awarded.
2. The second section is Surplus Trip Generation. The POINTS AWARDED is found by taking the number of total trips in excess of 700, as found in the TRIP GENERATION parameter, and dividing it by fifteen. If the number of excess trips is three hundred or more, 20 points are awarded. If the evaluator decides that the site does not warrant these additional points, he may elect not to include them into the total point score.
3. The last section is Uniqueness of Location. The POINTS AWARDED is the point score given to account for any circumstances which are not covered by the other two parameters. The POINTS AWARDED for the three sections are summed to obtain the TOTAL POINTS AWARDED for this parameter.
IV. TOTAL POINTS

Finally, the POINTS AWARDED for the three parameters are entered as on page 43 and summed to give the TOTAL POINTS used to rank a LOCATION WITH NO PEDESTRIAN ACTIVITY POSSIBLE.
V. EXAMPLES OF METHOD

Table B-2 shows two sites' field data and point scores for the three parameters.

The first parameter, TRIP GENERATION, shows the number of households in the two zones and whether the trip attractors are in each zone. The numbers in parenthesis are the attraction factors which are multiplied by the number of households to obtain the generated pedestrian trips. Because of the larger number of households and trip attraction factor at Site A, more pedestrian trips are generated. However, there is a bus stop located at Site B. This causes the point scores for both sites obtained from Figure B-9 to be fairly close for this parameter.

Site A point score for the ALTERNATE CROSSING parameter is at its maximum for the grade separation protection. This is because of the large number of generated trips and the distance to the alternate crossing. Site B has a much lower total score because of the shorter distance to the alternate crossing.

The third parameter, JUDGEMENT, has three parts. Neither site has more than seven hundred generated pedestrian trips, and, therefore, receive no points. A roadway surface must be crossed to get to the

TABLE B-2: DATA FOR TWO SITES WHERE PEDESTRIAN ACTIVITY IS NOT POSSIBLE
alternate crossing for Site B. Thus, it receives three points for adequacy at alternate crossing while A receives none. Finally, both sites receive five points for uniqueness of location. This means there is something unusual about both sites which is not taken into account in any other parameter.

It can be seen from the total score that Site A would be higher on the priority list than Site B.

LOCATIONS WITH EXISTING PEDESTRIAN ACTIVITY

Points	Points Awarded

Awarded
II. Actual Sight Distance/Desirable Sight
Distance or Pedestrian Crossing/
(0 to 50) Maximum Vehicle Green and Yellow
III. School Crossing
(0 to 30)
IV. Distance to Nearest Alternate
(0 to 30)
Crossing

I. Pedestrian and Vehicle Volume with
Peak Hour Delay Factor

(0 to 80)
V. Judgement
$(0$ to 10$)$
VI. TOTAL POINTS
(0 to 200)

1. PEDESTRIAN AND VEHICLE VOLUME WITH PEAK HOUR DELAY FACTOR

12-Hour Pedestrian Volume
Pedestrian Count Occurrence Per Week
"Average Day" Pedestrian Volume
Average 24-Hour Vehicle Volume
TOTAL
Percent Pedestrian CrossingPedestrian-Vehicle Volume Points Awarded from Figure B-1
Average Pedestrian Delay Observed During PedestrianPeak Hour
Peak Hour Delay Factor Awarded from Figure B-2(Unsignalized) or B-3 (Signalized)
POINTS AWARDED (Pedestrian-Vehicle Volume Points XPeak Hour Delay Factor)\square1

Figure B-I. PEDESTRIAN VEHICLE VOLUME POINTS

Figure B-2. PEAK HOUR DELAY FACTOR
(NON-SIGNALIZED LOCATION)

Figure B-3. PEAK HOUR DELAY FACTOR (SIGNALIZED LOCATION)

PEDESTRIAN CROSSING/MAXIMUM VEHICLE GREEN

A. UNSIGNALIZED LOCATION
Roadway Width in Feet (Curb-to-Curb or Curb-to-Island if Present)
Posted Speed Limit
Desirable Sight Distance Obtained fromFigure B-4Minimum Actual Sight Distance
POINTS AWARDED FROM FIGURE B-5
B. SIGNALIZED LOCATION
Roadway Width in Feet (Curb-to-Curb or Curb-to-Island if Present)
Pedestrian Crossing Time Needed Plus Seven (7) Seconds
Maximum Vehicle Green and Yellow
POINTS AWARDED FROM FIGURE B-6

$\qquad$$\square$

Figure B-4. DESIRABLE SIGHT DISTANCE

Figure B-5. COMBINED SIGHT DISTANCE

Figure B-6. PEDESTRIAN CROSSING/MAXIMUM VEHICLE GREEN
III. SCHOOL CROSSING

Volume of School Children Crossing
School Children Protection at Crossing (check one of the following)
___ Not Protected (No School Crossing Signs)
Passive Protection (School Crossing Signs)
Active Protection (Flashing Lights)
\qquad Signal
\qquad Guard on Duty

POINTS AWARDED FROM FIGURE B-7
IV. DISTANCE TO NEAREST ALTERNATE CROSSING

Distance to Crossing in Feet
"Average Day" Pedestrian Volume
Type of Protection at Alternate Crossing
(check one of the following)
Passive Protection (Flashing Signal, Signs Only, or No Signs)

Active Protection (Traffic Signal)
___Grade Separation (Overpass or Underpass)
POINTS AWARDED FROM FIGURE B-8

$$
-42-
$$

V. JUDGEMENT

Uniqueness of Location - Is there something unusual or different about this location that is not shown in any other point score? Make explanation below. Limit ten points.

POINTS AWARDED \qquad

LOCATIONS WITH NO PEDESTRIAN ACTIVITY POSSIBLE

Points. \quad| Points |
| :--- |
| Awarded |

I. Trip Generation
II. Distance to Nearest Alternate Crossing
III. Judgement
IV. TOTAL POINTS
(0 to 60)
(0 to 70)
(0 to 70)
(0 to 200)
,
1

I. TRIP GENERATION

[^1]** If Commercial Activity exists:
Trips/Day/Household $=0.1$, if there are 1 to 4 establishments, Trips/Day/Household $=0.2$, if there are 5 to 8 establishments, Trips/Day/Household $=0.3$, if there are 9 to 12 establishments, Trips/Day/Household $=0.4$, if there are 13 or more establishments.

Distance to Crossing in Feet
Total Trips
Type of Protection at Alternate Crossing (Check one of the Following)

Passive Protections (Flashing Signal, Signs Only, or No Signs)

Active Protections (Traffic Signal)
____Grade Separation (Overpass or Underpass)

POINTS AWARDED FROM FIGURE B-10

Figure B-IO. DISTANCE TO ALTERNATE CROSSING (CONTROLLED ACCESS LOCATION)

1. Safety of Alternate Crossing - Limit 5 points

If the alternate crossing is a grade separation which has no sidewalks, five points are awarded.

If the alternate crossing is a grade separation which has sidewalks, but a roadway surface must be crossed to get to the sidewalk, three points are awarded.

POINTS AWARDED
2. Surplus Trip Generation - Assign one point for each 15 trips generated in excess of 700. If evaluator decides that the site does not warrant these additional points, he may elect not to include them into the total point score. Record explanation on reverse side.

POINTS AWARDED
3. Uniqueness of Location - Is there something unusual or different about this location that is not shown in any other point score. Make explanation on reverse. Limit 35 points.

POINTS AWARDED

TOTAL POINTS AWARDED - JUUGEMENT

APPENDIX C

COMPUTER PROGRAM METHOD FOR THE PEDESTRIAN GRADE SEPARATION LOCATION PRIORITY RANKING SYSTEM

The three computer programs, COMDEL, PEDOP1, and PEDOP2, developed during this project, are written in Fortran language and are listed in Appendices D, E, and F, respectively. These programs were prepared for use on an IBM 370 computer system with terminals. The examples of input and output were printed as they appear on a terminal. Conversion for batch operation would involve adding job control cards, preparing a data deck, and changing READ and WRITE statements.

A. LOCATIONS WITH EXISTING PEDESTRIAN ACTIVITY

I. COMDEL

The first program used is COMDEL. This program calculates the total pedestrian delay in seconds for a signalized location. Equation (2), described on page 18 , is used first. If pedestrians did not cross the roadway during the cycle that they arrived, the program will use a group of equations based on cycle times rather than red times to determine this delay as previously discussed on page 18 . When all cycles have been examined, COMDEL uses Equation (3) on page 19, in the manual method description in Appendix B, to calculate the average pedestrian delay in cycles observed during the pedestrian peak hour for a signalized location.

Figure $C-1$ shows an example of input and output data for the COMDEL computer program. COMDEL uses five items of field data collected during the pedestrian peak hour delay study. The first is the number of signal cycles in the peak hour. The input format is I3. If the number of cycles exceed 100 , the program will terminate. If this circumstance ever actually occurs; the dimension statement for this variable would have to be increased.

The remaining four items of data are the observations of pedestrians waiting to cross at the beginning of the green phase for each cycle, the observations of pedestrians crossing during the green phase for each cycle, the pedestrian red time in seconds for each cycle, and the total cycle length in seconds for each cycle. All four of these are input in a free format. This means that these numbers can follow each other in the input with the only requirement being a blank space separating each variable. The output from the program is the average pedestrian delay observed during the pedestrian peak hour in signal cycles.

RUN COMDEL TEXT
*EXECUTION BEGINS....
*ENTER NUMBER OF CYCLES IN HOUR. $>100=$ END OF DATA

34

*ENTER 34 OBSERVATIONS OF PEOPLE AT START OF GREEN.
0000000020000000011100000000000000
*ENTER 34 OBSERVATIONS OF PEOPLE CROSSING IN GREEN. 0000004020000000011100000000000100 *ENTER 34 RED TIME (SECONDS).

73727379717368717768797670687773777568666463
657475676074797170797374
*ENTER 34 CYCLE LENGTH (SECONDS).

7788909475849789908890
*dELAY IS 0.20 CYCLE PER PEDESTRIAN
*Indicates typed by computer program
II. PEDOP1

PEDOPI is then used to obtain the TOTAL POINTS for a site, performing the computations as in Section A of the manual method description, Appendix B, pages 17 to 23. For existing pedestrian activity sites, the number one must be coded in the first column of the first line of the input to signify that the site to be examined is one where pedestrian activity exists. The remaining input data would then be coded starting with the second line, using one line for each site. Figure C-2 is a listing of the actual input data for the thirteen sites evaluated in the study where pedestrian activity exists. Figure C-3a shows the input format used to code the site data.

On the terminal system, after all the data has been coded, PEDOPI must be called.

The calculations to be done by PEDOPI are only accurate when the input is within certain ranges. Therefore, a check of the input variables should be done. An optional input vapiable edit routine nas been included in the PEDOPI computer program to perform this check. This check need not be done once all errors have been corrected. In this case, the number 2 must be typed to indicate the check is not to be performed. PEDOP will then calculate the parameter scores, store these scores in an array, indicate which columns are to be used to sort the array, and then terminate. Shown in Figure $C-4 a$ is the terminal display when this procedure is followed.

The number one must be typed in the first column when requested if the input edit routine is to be used.

When required, the edit routine will check each variable, one site at a time, to make sure that they are within their designated limits. If any variables are not within their limits, the edit routine will print

1
$\begin{array}{lllllllllllllllll}164700 & 192 & .32 & 119 & 50 & 0 & 34 & 0 & 4 & 50 & 2 & 0 & 1204 & \text { RT } & 18 & \text { MP } & 39.3\end{array}$
$\begin{array}{lllllllllllllllllll}134000 & 253 & .10 & 64 & 50 & 0 & 35 & 110 & 5 & 50 & 2 & 4 & 0426 & \text { RT } 130 \text { MP } 32.6\end{array}$

$\begin{array}{llllllllllllllllllllll}124 & 2400 & 83 & .23 & 34 & 55 & 0 & 30 & 330 & 5 & 50 & 2 & 6 & 1817 & \text { RT } 202 \text { MP } 24.6\end{array}$
 $231200 \quad 92222.9 \quad 48501080 \quad 0 \quad 0 \quad 1 \quad 4002101507$ RT 37 MP 38.4
 $1 \begin{array}{llllllllllllll}59200 & 64 & 0 & 80 & 50 & 0 & 15 & 0 & 4 & 50 & 2 & 0 & 2016 & \text { RT } \\ 22 & \text { MP } 48.5\end{array}$ $\begin{array}{lllllllllllllll}135000 & 346 & 23 & 41 & 40 & 0 & 29 & 0 & 4 & 50 & 2 & 2 & 0908 & \text { RT 1-9 MP } 59.7\end{array}$ $166300 \quad 147.508050 \quad 0 \quad 251845050202008$ RT 1-9 MP 41.2

 $238000 \quad 195 \quad 34 \quad 3455400 \quad 0218521123101208$ RT 18 MP 33.7 9999999

FIGURE C-2. PEDOP1 PROGRAM INPUT DATA FOR SITES WHERE PEDESTRIAN ACTIVITY EXISTS

Figure C-3a.INPUT FORMAT FOR PEDOP1 COMPUTER PROGRAM. SITES WHERE PEDESTRIAN ACTIVITY EXISTS.

Figure C-3b. INPUT FORMAT FOR PEDOP 1 COMPUTER PROGRAM. SITES WHERE PEDESTRIAN ACTIVITY IS NOT POSSIBLE.

```
RUN PEDOP1 TEXT
```

*EXECUTION BEGINS...
*TYPE 1 FOR EDIT, 2 FOR NO EDIT.
2
*SORT OUTPUT OF THIS PROGRAM ON COLUMSN 43 THROUGH 49 FOR EXISTING PEDESTRIAN ACTIVITY.
*R;

FIGURE C-4a - PEOOP1 OUTPUT (INPUT VARIABLE CHECK NOT DONE)

```
RUN PEDOPI TEXT
*EXECUTION BEGINS...
*TYPE 1 FOR EDIT, }2\mathrm{ FOR NO EUIT.
l
*ERROR IN VARIBLES 3 AT SITE 1208 RT 18 MP 33.7
*R;
```

 FIGURE C-4b - PEDOPI OUTPUT (INPUT VARIABLLS CHECK DOHE - ONE ERROR)
    ```
RUN PEDOPI TEXT
*EXECUTION BEGINS...
*TYPE 1 FOR EDIT, 2 FOR NO EDIT.
l
*NO INPUT ERRORS DETECTED.
*SORT OUTPUT OF THIS PROGRAM ON COLUMNS 43 THROUGH 49 FOR EXISTING PEDESTRIAN ACTIVITY.
*R;
```

FIGURE C-4c - PEDOPI OUTPUT (INPUT VARIABLES CHECK DONE - NO ERRORS)
*Indicates typed by computer program
out the number of the variables that are incorrect and the site description for every site with an incorrect variable. PEDOP1 will then terminate. Figure $C-4 b$ shows an example of the terminal display for this procedure.

However, when the variables for all sites are within their limits, the message "NO INPUT ERRORS DETECTED" is output by the terminal. The calculations for the parameter scores are then performed, these scores are stored in an array, and the columns which are to be used to sort the array are indicated. PEDOP1 will then terminate. Shown in Figure C-4c is the terminal display when this procedure is followed.

The equations used by PEDOP1 to calculate point scores are only valid within the boundaries described by the limits of the graphs used in the manual method. These graphs are used to calculate the respective equivalent point scores as described in Appendix B. For locations where pedestrian activity exists, Table $\mathrm{C}-1$ summarizes these boundaries and defines the thirteen input variables and their limits, as used in the edit routine.

The following is a discussion of the calculations performed by PEDOP1 for sites where pedestrian activity exists.

1. The computer uses the annual average daily traffic, average day pedestrian count, and the average pedestrian delay to calculate the point score for the PEDESTRIAN AND VEHICLE VOLUME parameter. Average pedestrian delay is calculated either by COMDEL for a signalized location or by equation (1), page 18 of the manual method description, Appendix B , for an unsignalized location. The POINTS AWARDED are determined the same way as Figures B-1, B-2, and B-3 are used in the manual method.

| EDIT ROUTINE | LIMITS | | DEFINITION |
| :---: | :---: | :---: | :---: |
| VARIABLE NAME | LOWER | UPPER | |
| $\operatorname{VAR}(1)$ | 1 | 2 | Protection at Crossing (Signalized or Unsignalized) (Must be Integer) |
| $\operatorname{VAR}(2)$ | 1 | none* | Average 24 Hour Vehicle Volume |
| $\operatorname{VAR}(3)$ | 1 | none* | Average 12 Hour Pedestrian Volume |
| $\operatorname{VAR}(4)$ | 0 | none* | Average Pedestrian Delay |
| $\operatorname{VAR}(5)$ | 8 | 120 | Roadway Width |
| $\operatorname{VAR}(6)$ | 1 | none* | Posted Speed Limit |
| $\operatorname{VAR}(7)$ | 0 | none* | Minimum Actual Sight Distance |
| $\operatorname{VAR}(8)$ | 0 | 74 | Maximum Vehicle Green and Yellow |
| $\operatorname{VAR}(9)$ | 0 | none* | School Children Crossing |
| $\operatorname{VAR}(10)$ | 1 | 5 | School Children Protection (Must be Integer) |
| $\operatorname{VAR}(11)$ | 1 | none* | Distance to Alternate Crossing |
| $\operatorname{VAR}(12)$ | 1 | 3 | Alternate Crossing Protection (Must be Integer) |
| $\operatorname{VAR}(13)$ | 0 | 10 | Judgement |
| * Limited by input format | | | |
| TABLE C-1. LIMITS OF INPUT VARIABLES FOR LOCATIONS WHERE PEDESTRIAN ACTIVITY EXISTS | | | |

2. The signalized or unsignalized site indicator, which is 1 for a signalized site, informs the computer that the calculations for the PEDESTRIAN CROSSING/MAXIMUM VEHICLE GREEN parameter need to be performed. The computer uses the roadway width and maximum vehicle green and yellow variables to calculate the point score for the PEDESTRIAN CROSSING/MAXIMUM VEHICLE GREEN parameter for a signalized site. The POINTS AWARDED are obtained the same way as Figure B-6 is used in the manual method.
3. The signalized or unsignalized site indicator, which is 2 for an unsignalized site, informs the computer that the calculations for the SIGHT DISTANCE parameter need to be performed. The computer uses the roadway width, posted speed limit, and sight distance variables to calculate the point score for the SIGHT DISTANCE parameter for an unsignalized location. The POINTS AWARDED are obtained the same way as Figures B-4 and B-5 are used in the manual method.
4. The computer uses the school children crossings and school childrens' protection variables to calculate the point score for the SCHOOL CROSSING parameter. The POINTS AWARDED are obtained the same way as Figure B-7 is used in the manual method.
5. The computer uses the distance to alternate crossing and protection at alternate crossing variables to calculate the point score for the $12 T E R N A T E$ CROSSING parameter. The POINTS AWARDED are obtained the same way as Figure B-8 is used in the manual method.
6. The POINTS AWARDED for the JUDGEMENT parameter is determined by the manual method and the POINTS AWARDED is the input for this program.

The county and municipality code is a four digit number used in the State of New Jersey for identification purposes. This indicator will be used later in the PEDOP2 computer program. An alphanumeric site description is also included to allow for the identification of a site's route number, milepost designation, and date of the field study.

The point scores for the five parameters, the total priority point score for the site, the difference between 200 points and the total priority point score, the county and municipality code, and the alphanumeric site description are stored in an array by PEDOPI.

III. PEDOP2

Before using the PEDOP2 program, the stored array from PEDOP1 must be run through a sort program. The sort program used for this project is a canned program on the New Jersey Department of Transportation computer system. This program uses the difference between 200 points and the total priority point score variable, columns 43 through 49 of PEDOP1 output, as the sorting base. This is because the sort program lists in ascending order and the priority list is wanted in descending order.

1. As a result of running the sort program, the stored output array from PEDOP1 is now arranged in a priority order. This stored array is used as the input for the PEDOP2 computer program. This program is used to output the PEDOP1 array in an orderly fashion as to easily pick out the top priority sites. The number of sites is dimensionally limited to one hundred. Therefore, if there are more than one hundred sites, the dimension statement will need to be increased.
2. One of three format options must be chosen when the PEDOP2 program is run. Figure C-5 shows examples of each of the three options for the output from PEDOP2 for the thirteen LOCATIONS WITH EXISTING PEDESTRIAN ACTIVITY that were evaluated during this study.
(a) The first option is if a list of all sites in order of priority is wanted, the number one, format II, must be coded. Under this option the five parameter scores, the total score, the county and municipality code, and the site description will be outputted for all the sites which have been evaluated. They will be ranked in order from the site with the highest total score to the site with the lowest total score.
(b) The second option is if the PEDOP2 output for a single site is desired, the number two, format Il, must be coded. The county and municipality code for the specific site would then be inputted. The scores, description, and also the actual rank from the ranked list of all evaluated sites is outputted.
(c) Finally, the number three, format Il, must be coded to cause the program to terminate.

B. LOCATIONS WHERE PEDESTRIAN ACTIVITY IS NOT POSSIBLE

I. PEDOPI

For sites where pedestrian activity is not possible, PEDOP1 is used first to obtain the TOTAL POINTS for a site, performing the computations as in Section B of the manual method description, Appendix B, pages 23 to 29. For no pedestrian activity sites, the number two must be coded in the first column of the first line of input to signify that the site to be examined is one where pedestrian activity is not possible. The remaining input data would then be coded starting with the second line, using one line for each site.

RUN PEDOP2 TEXT

*EXECUTION BEGINS....
*TYPE 1 FOR ALL SITES, 2 FOR SELECTED SITES, 3 WHEN FINISHED.

1

*LOCATIONS WHERE PEDESTRIAN ACTIVITY CAN OCCUR.

| *PED + VEH
 * SCORE | $\begin{aligned} & \text { SIGHT } \\ & \text { DIST. } \end{aligned}$ | $\begin{aligned} & \text { SCHOOL } \\ & \text { CROSS. } \end{aligned}$ | ALTER.
 CROSS. | JUDGEMENT | TOTAL SCORE | CNTY
 MUN | SITE DESCRIPTION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 31.4 | 40.2 | 7.3 | 16.4 | 10.0 | 105.3 | 0305 | RT 130 MP 46.0 |
| 16.1 | 31.6 | 10.0 | 30.0 | 10.0 | 97.7 | 1208 | RT 18 MP 33.7 |
| 11.1 | 4.6 | 0.0 | 25.0 | 2.0 | 42.7 | 1109 | RT 27 MP 00.2 |
| 15.3 | 4.3 | 0.0 | 13.1 | 10.0 | 42.7 | 1507 | RT 37 MP 38.4 |
| 18.7 | 11.4 | 9.6 | 0.2 | 0.0 | 39.9 | 2008 | RT 1-9 MP 41.2 |
| 0.0 | 36.2 | 0.0 | 0.1 | 0.0 | 36.3 | 2016 | RT 22 MP 48.5 |
| 11.1 | 9.2 | 9.4 | 0.4 | 4.0 | 34.1 | 0309 | RT 130 MP 37.1 |
| 8.4 | 0.7 | 10.9 | 0.3 | 4.0 | 24.3 | 0259 | RT 46 MP 65.7 |
| 10.6 | 11.4 | 0.0 | 0.2 | 0.0 | 22.2 | 1204 | RT 18 MP 39.3 |
| 2.3 | 1.1 | 10.0 | 0.1 | 6.0 | 19.5 | 1817 | RT 202 MP 24.6 |
| 3.0 | 2.1 | 8.0 | 0.4 | 4.0 | 17.5 | 0426 | RT 130 MP 32.6 |
| 3.6 | 12.5 | 0.0 | 0.2 | 0.0 | 16.3 | 0226 | RT 46 MP 68.5 |
| 8.5 | 1.5 | 0.0 | 0 | 2.0 | 12.5 | 090 | -9 MP 59.7 |

*TYPE 1 FOR ALL SITES, 2 FOR SELECTED SITES, 3 WHEN FINISHED.

2

*TYPE COUNTY AND MUNICIPALITY CODE FOR DESIRED SITE AS XXXX
2016
*LOCATION WHERE PEDESTRIAN ACTIVITY CAN OCCUR

* PED + VEH SIGHT SCHOOL ALTER. JUDGE- TOTAL CNTY
*RNK SCORE DIST. CROSS. CROSS. MENT SCORE MUN SITE DESCRIPTION
$\begin{array}{llllllllll}* & 0 & 0.0 & 36.2 & 0.0 & 0.1 & 0.0 & 36.3 & 2016 & \text { RT } 22 \text { MP } 48.5\end{array}$
*TYPE 1 FOR ALL SITES, 2 FOR SELECTED SITES, 3 WHEN FINISHED.
3
*R;
*Indicates typed by computer program.
FIGURE C-5. PEDOP2 PROGRAM OUTPUT DATA FOR SITES WHERE PEDESTRIAN ACTIVITY EXISTS

Figure C-6 is a listing of the actual input data for the six sites evaluated in the study where pedestrian activity is not possible. Figure $\mathrm{C}-3 \mathrm{~b}$ shows the input format used to code the site data.

Again, an edit option is in PEDOP1. Refer to discussion on page for the required action. The only variation in the input edit routine is due to the number of input variables to be checked. For locations where pedestrian activity is not possible, Table C-2 summarizes the boundaries and defines the eighteen input variables and their limits, as used in this routine.

The following is a discussion of the calculations performed by PEDOP1 for sites where pedestrian activity is not possible.

1. The computer uses the number of households, school attraction factor, commercial attraction factor, institutional attraction factor, recreational attraction factör, school children for both zones, and bus stop attracted trips variables to calculate the point score for the TRIP GENERATION parameter. These variables are determined by using the method in Section B (for parameter I) of the manual method, Appendix B, pages 24 to 26. The POINTS AWARDED are obtained the same way as Figure B-9 is used in the manual method.
2. The computer uses the protection at alternate crossing and distance to alternate crossing variables to calculate the point score for the ALTERNATE CROSSING parameter. The POINTS AWARDED are obtained the same way as Figure B-10 is used in the manual method.
3. The computer uses the safety at alternate crossing, uniqueness of location variables, surplus trips factor, plus trips generated to calculate the point score for the JUDGEMENT parameter. These variables are determined by using the method in Section B III of the manual method for this parameter in Appencix B, Page 26 . The surplus

2

| 292 | 0.1 | 0 | | 349 | 1.3 | 0 | 0 | 0 | | 11071 | 3 | 5 | | 01616 | RT | | MP | 56.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 882 | 0.1 | 0 | | 286 | 0.3 | 0 | 0 | 0 | 0 | 1862 | 0 | 5 | 0 | 00908 | RT | 495 | | 1.2 |
| 96 | 0.3 | 0 | . 3 | 66 | 00 | 0 | . 3 | 0 | 0 | 1450 | 3 | 5 | 330 | 00247 | RT | 17 | MP | 15.5 |
| 334 | 0.3 | 0 | . 0 | 250 | 00 | . 3 | . 3 | 0 | 0 | 11215 | 0 | 5 | 205 | 00261 | RT | | MP | 7.9 |
| 0 | 00 | 0 | . 3 | 763 | 0.4 | 0 | 0 | 0 | 0 | 12640 | 0 | 5 | 0 | 01111 | RT | 29 | MP | 1.9 |
| 258 | 1.2 | 0 | 0 | 417 | 0.2 | 0 | 0 | 0 | 0 | 11430 | 0 | 5 | 0 | 00909 | RT | | MP | 8.8 | 99999999

| EDIT ROUTINE VARIABLE NAME | $\begin{aligned} & \text { LII } \\ & \text { LOWER } \end{aligned}$ | TS* ${ }^{\text {UPPER }}$ | DEFINITION |
| :---: | :---: | :---: | :---: |
| $\operatorname{VAR}(1)$ | 0 | none* | Number of Households in Zone 1 |
| $\operatorname{VAR}(2)$ | 0 | 1 | School Attraction Factor for Zone 1 |
| VAR(3) | 0 | 0.4 | Commercial Attraction Factor for Zone 1 |
| $\operatorname{VAR}(4)$ | 0 | 0.3 | Institutional Attraction Factor for Zone 1 |
| $\operatorname{VAR}(5)$ | 0 | 0.3 | Recreational Attraction Factor for Zone 1 |
| $\operatorname{VAR}(6)$ | 0 | none* | Number of Households in Zone 2 |
| $\operatorname{VAR}(7)$ | 0 | 1 | School Attraction Factor for Zone 2 |
| VAR(8) | 0 | 0.4 | Commercial Attraction Factor for Zone 2 |
| $\operatorname{VAR}(9)$ | 0 | 0.3 | Institutional Attraction Factor for Zone 2 |
| $\operatorname{VAR}(10)$ | 0 | 0.3 | Recreational Attraction Factor for Zone 2 |
| $\operatorname{VAR}(11)$ | 0 | none* | School Children in Zone 1 |
| $\operatorname{VAR}(12)$ | 0 | none* | School Children in Zone 2 |
| $\operatorname{VAR}(13)$ | 1 | 3 | Alternate Crossing Protection (Must be Integer) |
| $\operatorname{VAR}(14)$ | 1 | none* | Distance to Alternate Crossing |
| VAR(15) | 0 | 5 | Safety at Alternate Crossing |
| $\operatorname{VAR}(16)$ | 0 | 35 | Uniqueness of Location |
| $\operatorname{VAR}(17)$ | 0 | none* | Bus Stop Trips Generated |
| $\operatorname{VAR}(18)$ | 0 | 1 | Surplus Trip Factor (Must be Integer) |

[^2]trip factor allows the evaluator to elect not to include the additional points received from this section. If the surplus trip factor is zero, the points are included; if the surplus trip fac tor is one, the points are not included. The POINTS AWARDED for the JUDGEMENT parameter are obtained the same way they are obtained in the manual method, Appendix B. The county and municinality code and the aiphanumeric site description are to be included in the input.

The point scores for the three parameters, the total priority point score, the difference between 200 points and the total priority point score, the county and municipality code, and the alphanumeric site description are stored in an array by PEDOPI. II. PEDOP2

Before using the PEDOP2 program, the stored array from PEDOP1 is run through the sort program as described earlier on page 60. The sort program uses the difference between 200 points and the total priority point score variable, which are now columns 29 through 35 of PEDOPI output, as a sorting base.

As a result of running the sort program, the stored output array from PEDOP1 is not arranged in a priority order. This stored array is now used as input for the PEDOP2 computer program. The program outputs the PEDOP1 array in an orderly fashion as to easily pick out the top priority sites.

The procedure, format, and options for the PEDOP2 program for locations where pedestrian activity is not possible are the same as those discussed earlier on page 61.

Figure C-7 shows the PEDOP2 output for the six LOCATIONS WITH NO PEDESTRIAN ACTIVITY POSSIBLE that were evaluated during this study.

RUN PEDOP2 TEXT
*EXECUTION BEGINS...
*TYPE 1 FOR ALL SITES, 2 FOR SELECTED SITES, 3 WHEN FINISHED

1
*LOCATIONS WHERE PEDESTRIAN ACTIVITY CANNOT OCCUR

* TRIP ALTER. JUDGE- TOTAL CNTY
* GEN. CROSS. MENT SCORE MUN SITE DESCRIPTION
$\begin{array}{llllllll}* & 55.2 & 50.0 & 5.0 & 110.2 & 0909 & \text { RT } & 3\end{array} \mathbf{M P} 8.8$
* 41.4 50.0 $\quad 8.0 \quad 99.4 \quad 1616$ RT 80 MP 56.5
* $41.150 .0 \quad 5.0 \quad 96.1 \quad 0261$ RT 4 MP 7.9
* $\quad 39.3 \quad 33.7 \quad 5.0$, $78.0 \quad 0908$ RT 495 MP 1.2
* $22.9 \quad 50.0 \quad 5.0$, 77.91111 RT 29 MP 1.9
* $\begin{array}{llllllllllllll}39.8 & 13.2 & 8.0 & 61.0 & 0247 & \text { RT } & 17 & \text { MP } & 15.5\end{array}$
*TYPE 1 FOR ALL SITES, 2 FOR SELECTED SITES, 3 WHEN FINISHED 2
*TYPE COUNTY AND MUNICIPALITY CODE FOR DESIRED SITE AS XXXX 1111
*LOCATION WHERE PEDESTRIAN ACTIVITY CANNOT OCCUR
* TRIP ALTER. JUDGE- TOTAL CNTY
*RNK GEN. CROSS. MENT SCORE MUN SITE DESCRIPTIOH
$\begin{array}{lllllllll}* & 22.9 & 50.0 & 5.0 & 77.9 & 1111 & \text { RT } 29 \text { MP } & 1.9\end{array}$
*TYPE 1 FOR ALL SITES, 2 FOR SELECTED SITES, 3 WHEN FINISHED 3
*R;
*Indicates typed by computer program

FIGURE C-7. PEDOP2 PROGRAM OUTPUT DATA FOR SITES WHERE PEDESTRIAN ACTIVITY IS NOT POSSIBLE

APPENDIX D

COMDEL COMPUTER PROGRAM

| C | PROGRAM COMDEL | COMOOO10 |
| :---: | :---: | :---: |
| C | This program calculates the average pedestrian delay in cycles | COMOOO20 |
| C | FOR A SIGNALIZED INTERSECTION． | COM00030 |
| | DIMENSION A（100），B（100），C（100），R（100） | COM00040 |
| C | N＝NUMBER OF SIGNAL CYCLES IN PEDESTRIAN PEAK HOUR | C OMOOO50 |
| c | $A=$ NUMBER OF PEDESTRIANS WAITING AT THE BEGINNING OF GREEN TIME | COM00060 |
| C | $B=$ NUMBER OF PEDESTRIANS CROSSING DURING GREEN TIME | COMOOO 70 |
| C | $R=$ RED TIME IN SECONDS | COM00080 |
| 6 | $C=$ CYCLE TIME IN SECONDS | COM00090 |
| 1000 | WRITE16．505） | COMOO100 |
| | READ（5，500） N | C OMOOR－10 |
| | IFANOGT． 100 ICALL EXIT | С ом00120 |
| | WRITE（6．501）N | COMOO130 |
| | CALL FREERDINOA | COMOO140 |
| | WRITE 6.5021 N | COMOOL50 |
| | CALL FREERDA ${ }^{\text {a }}$ B | COMOO160 |
| | WRITE16．503） N | COMOO170 |
| | CALL FREERDS ${ }^{\text {a }}$ R） | COMOO180 |
| | WRITE 66.504 （ N | COMOO190 |
| | CALL FREERD $\mathrm{N}_{9} \mathrm{C}$ ） | COMOO200 |
| C | THIS PART OF PROGRAM CALCULATES TOTAL DELAY IN SECONOS | COM00210 |
| | $D E L A Y=0$ 。 | COM00220 |
| | $\mathrm{I}=0$ | COMOO230 |
| 100 | $\underline{I}=1+1$ | C OMOO240 |
| | IFII．EQdNGO TO 300 | COMOO250 |
| C | WHEN $I=N_{2}$ GO TO 300 TO CALCULATE THE TOTAL DELAY FOR THE LAST | COM00260 |
| C | CYCLE IN THE PEDESTRIAN PEAK HOUR AND ADD THIS TO THE PREVIGUS | COM00270 |
| C | CYCLES TOTAL DELAY | COM00280 |
| | IF（ATI－81［）1110，110，120 | COM00290 |
| C | THIS EQUATION CALCulates the total delay for one cycle when the | COM00300： |
| C | NUMBER OF PEDESTRIANS WAITING AT THE BEGINNING OF GREEN IS LESS | comoo31c |
| C | THAN OR EQUAL TO THE NUMBER OF PEDESTRIANS CROSSING DURING GREEN | COM00326 |
| C | and adds this to the previdus cycles total delay | COMOO33． |
| 110 | | COM00348 |
| | 60703.00 | COMOO350 |
| C | This equation calculates the total delay for one cycle mhen the | COMOO366 |
| ros | THE Number of profstrians WAITING AT THE beginning of green is | COM00370 |
| ， | | COMO0380 |
| | \therefore－mis yo mhe fevgcus cacles total delay | COM00390 |
| 120 | | COM00400 |
| 200 | $\mathrm{I}=\mathrm{I}+1$ | COMOO410 |
| | IFAEEEQONGO TO 310 | COM00420 |
| ¢ | UEN I＝N，GO 70310 TO CALCULATE THE TOTAL dELAY for the last | COMOO430 |
| | \therefore Ste in the peoestrian peak hour and add this to the previous | COMOO440 |
| | GCLES TOMA DELAY | COMO0450 |
| | Ftan，！－8id $1210.210,220$ | COMOO460 |
| ＇， 0 | | COMOO470 |
| | 3） 14100 | COM00480 |
| 22： | | COM00490 |
| | SD 70200 | COM00500 |
| 301 | | COMOO5 20 |
| | $\therefore \quad C \quad 20$ | COM00520 |
| | | COM00530 |
| | I＇s SkT Of program calculates average deday in cycles | COM00540 |
| | \because F＇MAL NUMBER OF PEDESTRIANS CROSSING DURING PEOESTRIAN | COMOO550 |
| | ＇\because＇次 | C OMOO560 |
| | 1 ar－chat Jr ma cicle times in seconds | C0M00570 |
| | －La゙い。 | CJM00580 |
| | ？in－0． | CEMOO590 |
| | 0 O （4）$\quad=80 \mathrm{~N}$ | CDM00600 |

 PED=PED+B\{I) COMOO610
 CYCLE=CYCLE+CII
 700 CONTINUE
$D=N$.
COMOO620
COMOO630
$D E L A Y=$ 娄 DELAY/PED)/(CYCLE/D)
WRITE 6,600 DELAY
GO. TO 1000
500 FORMATII 31
C OMOO640
C OMOO650
GORMAT:I31
C OM00660
COMOO680
501 FORMAT ENTER 140° OBSERVATIONS OF PEOPLE AT START DF GREEN. $/ 1$ COMOOG9O
502 FORMAT ' ENTER , I4; DRSERVATIONS OF PEOPIE CROSSING IN GREEN. $/ 1$ COMOOTOO
503 FORMAT ENTER * ${ }^{3} 4$ RED TPME(SECONDS: $\%$) COMOOZ 20
504 FORMATI ENTER 14 CYCLE LENGTH(SECONDS): $/ 1$ COMOOT20
505 FORMAT (: ENTER NUMBER OF CYCLES IN HDUR. $>100=E N D$ OF DATA. $/ 1$ COMOOR30
600 FORMAT $/ / / / / / /^{\circ}$ DELAY IS,$F 4.2 \circ$ CYCLE PER PEDESTRIANO/////1 COMOOT40
END
COMOO750

APPEIUDIX E

PEDOP 1 COMPUTER PROGRAM

PROGRAM PEDOPIT
PED00010
THIS PROGRAM CALCULATES A POINT VALUE TO BE USED TO WARRENT THE NEED FOR PEDESTRIAN GRADE SEPARATIONS BOTH，SITES

PED00020
PED00030
WHERE PEDESTRIAN ACTIVITY EXISTS AND SITES WHERE PEDESTRIAN
PED00040
ACTIVITY IS NOT POSSIble are analyzed，uSing data collected
IN THE FIELD。
DIMENSION A $101, \mathrm{~B}(101, \mathrm{C}(10,31, \mathrm{D}(10,3), \operatorname{SCORE}(2), \mathrm{VAR}(18)$
DIMENSION SITE 88 ），IX（18），IY（18）
THE FUNCTION A IS THE－PERCENTAGES DF PEDESTRIANS CROSSING USED TO DESCRIBE THE FAMILY OF CURVES
DATA A／01，010．2．03，50． 10.20 .500100 .250 ，
THE FUNCTION B is the volumes used as the CUT－off points between
THE LINEAR AND QUADRATIC PORTIONS OF THE CURVES
DATA B／0．，0．0．47．，430，36．，28，0．，0．，0．，0． 1
THE FUNCTION C IS THE COEFFICIENTS USED TO DESCRIBE THE LINEAR
PORTION OF THE CURVES
DATA C／0．，0．， $7706642 \mathrm{E}-2,1465187,01187115,-1929188 \mathrm{E}-1,00,00000 \mathrm{O}$

THE FUNCTION－D IS THE COEFFICIENTS USEO TO DESCRIBE THE QUADRATIC PORTION OF THE CURVES
DATA D／0．0－． $9413147 \mathrm{E}-1.1615385 \mathrm{E}+2,-.2461538 \mathrm{E}+2,-.2409091 \mathrm{E}+2$ ． 1－． $2166667 E+2,0166290,06937389,3912830, .2495947,0.0 .7501346 \mathrm{E}-1$,

PEDOOO50
PED00060
PED00070
PED00080
PED00090
PEDOO 100
PEDOOL20
PEDOO1．20
PEDOO130
PEDOO 140
PEDOO 150
PEDOO160
PEDOO170
PEDOO180
PED00190
PED00200
PED00210 $2.7692308,1153846 E+10 \cdot 1363636 E+1,1666667 E+1,06170825,06432457$ ， 3．1539962E＋1，．1538107E＋1，0．0．02984180E－2，0．，0．0．0．，0．， $2340030 \mathrm{E}-1$,

INPUT EDIT ROUTINE．
THIS PART DF PROGRAM CHECKS THE INPUT VARIABLES TO SEE IF THEY ARE WITHIN THEIR DESIGNATED LIMITS．
IF EDIT ROUTINE－IS NOT TO－BE USED TYPE IN 2．THIS WILL MAKE THE PROGRAM BEGIN THE COMPUTATIONS STARTING WITH STATEMENT 12.
IF EDIT ROUTINE IS TO BE USED，TYPE IN 1.
WRITE（6，501）
READ（5：500）ICONT
IFIICONT GT． 11 GO TO 12
CALL ZEROS（1）
$J=0$
READ 8,5001 KASE
IFIKASE．GT．11 GO TC 8
IKASE＝13
2 READ（8，510）（VARAI）I $=1,13$ ）（SITESM）$M=1,8$ ）
IFIVARA．GE．9 60 TO 7
DO $3 \mathrm{I}=1,13$
以及 $1=0$
3 I $\because I I D=0$
THIS PART OF PROGRAM CHECKS THE THIRTEEN INPUT VARIABLES FOR LOCATIONS WHERE PEDESTRIAN ACTIVITY EXISTS．
PROTECTIGN AT THE CROSSING MUST BE ONE OR TWO．

AVERAGE 24 HOUR VEHICLE VOLUME MUST BE GREATER THAN ZERO． IF（VAR（2）－LEOU）IX（2）＝1
AVERAGE 12 HCUR PEDESTRIAN VOLUME MUST BE GREATER THAN ZERD． IFIVAR 3\％．LEのOIIX $31=1$
AVERAGE PEDESTRIAN DELAY MUST BE GREATER THAN OR EQUAL TO ZERO． IF（VAR14）．LT．O1IX（4）＝1

PEDOO220
PED00230
PED00240
PED00250
PEDO0260
PEDOO270
PED00280
PEDOO290
PED00300
PED00310
PED00320
PED00330
PED00340
PED00350
PED00360
PED00370
PED00380
PED00390
PED00400
PED00410
PEDO0420
PED00430
PED00440
PEDOO450
PEDO0460
PED00470
PEDOO480
PED00490
PED00500
PED00510
PEDO0520
PED00530
PED00540
PED00550
ROADVAY WIDTH MUST BE GREATER THAN OR EQUAL TO EIGHT AND
LESS THAN OR EQUAL TO ONE HUNDRED AND TWENTY． IF（VAR（5）．LT．8．OR．VAR（5）．GT．1201IX（5）＝1

PED00560
PED00570
C POSTED SPEED LIMIT MUST BE GREATER THAN ZERO． IFIVAR（6）。LE．0：IX（6）＝1

PED00580
PED00590
PED00600

6 IFIKASE。GT. II GO TO 11
GO TO 2
If any input errors have been detected. call exit.
7 IFCJ.GT*O1 CALL EXIT
IF NO INPUT ERRORS HAVE BEEN DETECTED. PRINT THIS MESSAGE
AND BEGIN THE COMPUTATIONS STARTING WITH STATEMENT 12.
WRITE16,502)
GOTO 12
IKASE=18

IFIVARI11.GE.9999. GO TO 7
DO $9 \cdot I=1,18$
$1 \times(1)=0$
9 IVII $1=0$
THIS PART OF PROGRAA CHECKS THE EIGHTEEN INPUT VARIABLES FOR
LOCATIONS WHERE PEDESTRIAN ACTIVITY IS NOT POSSIBLE.
NUABER OF HOUSEHOLDS IN-ZONE 1 MUST BE
GREATER: THAN OR EQUAL TO ZERD.

SCHOOL ATTRACTION FACTOR FOR ZONE 1 MUST BE ONE OR ZERO. CF(VAR (21.GT. 1.OR。VAR (2).LT.OIIX 2)=1
COMMERCIAL ATTRACTION FACTOR FOR ZONE 1 MUST BE
$0.1,0.2,0.3,0.40$ OR ZERD.

INSTITUTIONAL ATTRACTION FACTOR FOR ZONE 1 MUST BE 0.3 OR ZERO. IF (VAR $(41.6 T .0 \cdot 3.0 R, V A R(4) \cdot L T, 011 \times(4)=1$
RECREATIONAA ATTRACTION FACTOR FOR ZONE 1 MUST BE 0.3 OR ZERO.

SCHOOL CHILDREN PROTECTION MUST BE ONE, TWO, THREE, FOUR, OR FIVE.PEDO0690

PED00610
PED00620
PED00630
PEDOO640
PEDOO650
PED00660
PED00670
PED00680
PED00700
PEDOO710
PEDOOT20
PED00730
PED00740
PED00750
PE000760
PED00770
PED00780
PED00790
PED00800
PEDOOB10
PED00820
PED00830
PED00840
PEDOO850
PEDOO860
PED 00870
PED00880
PED00890
PED00900
PED00910
PED00920
PED00930
PEDO0940
PED00950
PED00960
PED00970
PED00980
PED00990
PED01000
PEDOLOLO
PEDOLO20
PED01030
PEDO1040
PEDO1050
PEDOL060
PED01070
PEDOLO80
PED01090
PEDO1100
PED01110
PEDOL120
PEDO1130
PEDOI140
PEDO1150
PEDOL160
PEDO1170
PEDO 1180
PED01190
PED01200

```
C NUMBER OF HOUSEHOLDS IN ZONE 2 MUST BE
C GREATER THAN OR EQUAL TO ZERO.
        IF(VAR (6).LT.0)IX 6)=1
C SCHOOL ATTRACTION FACTOR FOR ZONE 2 MUST BE ONE OR ZERO.
        IFIVAR(7).GT.1.OR.VAR (7).LT.01IXA7)=1
        COMMERCIAL ATTRACTION FACTOR FOR ZONE 2 MUST BE
    0.1, 0.2, 0.3.0.0.4, OR ZERO.
        IF(VAR&81.GT.0.4.OR.VAR(8).LTT.01)IX(8)=1
        INSTITUTIONAL ATTRACTION FACTOR FOR IONE 2 MUST BE 0.3 OR ZERO.
        IF(VAR (9).GT:0.3.OR.VAR(9).LT.O|IX(9)=1
        RECREATIONAL ATTRACTION FACTOR FOR ZONE 2 MUST BE 0.3 OR ZERO.
        IF(VAR(10),GT:0,3.0R,VAR(10),LT,01IX(10)=1
    SCHOOL CHILDREN IN ZONE I MUST BE GREATER THAN OR EQUAL TO ZERO.
        IF(VAR(11).LT.OIIX(11)=1
    SCHOOL CHILDREN IN ZONE 2 MUST BE GREATER THAN OR EQUAL TO ZERO.
        IF(VAR(12).LT.0)IX(12)=1
    ALTERNATE CROSSING PROTECTION MUST BE ONE, TWO, OR THREE.
        IF(VAR(13).GT.3.OR.VAR(13).LT.1)IX(13)=1
    DISTANCE TO ALTERNATE CROSSING MUST BE GREATER THAN ZERO.
        IF(VAR(14).LE,01IX\14)=1
    ADEQUACY AND SAFETY AT ALTERNATE CROSSING MUST BE GREATER THAN OR
    EQUAL TO ZERO AND LESS THAN OR EQUAL TO FIVE.
        IFIVAR(15).GT.5.0R.VAR/15%.LT.O|\\15)=1
    UNIQUENESS OF LOCATION MUST BE GREATER THAN OR EQUAL TO ZERO
    AND LESS THAN OR EQUAL TO THIRTY FIVE.
        IF(VAR(16):GT:35.OR.VAR(16).(T.0) IX(16)=1
    BUS STOP TRIPS GENERATED MUST BE GREATER THAN OR EQUAL TO ZERO.
        IFIVAR 171. LT.01IX17]=1
    SURPLUS TRIP FACTOR MUST BE ZERO OR ONE.
        IF(VAR&181.GT.1.OR.VAR(181.LT.0IIX(18)=1
        GOTO }
    KASE=1 SIGNIFIES PEDESTRIAN ACTIVITY
    KASE=2 SIGNIFIES NO PEDESTRIAN ACTIVITY POSSIBLE
    12 READ|1.500%KASE
    {RITE(2,500)-KASE
    IFIKASEOEQ.2IGO TO 300
    1 READ(2,510)fVAR(1),1=1,13),SITE
    IF.VARI1) EQUALS 9% ALL DATA HAS BEEN READ.
    H゙EVAR\A1 GE 9* 60 T0 999
    THIS PART OF PROGRAM IS FOR LOCATIONS WHERE PEDESTRIAN
    ACTIVITY EXISTS.
    IPROT REFERS TO THE PROTECTION AT THE CROSSING IN QUESTION
    IPROT=I=SIGNALIZED CROSSING
    IPROT=2=UNSIGNALIZED CROSSING
    IPROT= VAR:I:
    VEH=AVERAGE }24\mathrm{ HOUR VEHICLE VOLUME
    VEH=VAR|2:
    PED=AVERAGE }12\mathrm{ HOUR PEDESTRIAN VOLUME
    PED=VAR (3)
    oElay=average delay during the pedestrian peak hour measured in
    SECOIDSIUNSIGNALIZED# OR CYCLESISIGNALIZED:
    DELAY=VARG&!
    RA-ROADWAY WIDTH IN FEET &CURB-TO-CURB OR CURB-TO-ISLAND:
    RW=VAR(5)
    SPD=POSTEO SPEED IN MILES PER HOUR
    SPD=VAR16老
    SD=THE MINIMUM ACTUAL SIGHT DISTANCE
    SD=VAR(7)
    YGY=THE MAXIMUM VEHICLE GREEN AND YELLOW ALLOWED BY THE
    SIGNAL TIMING
12 READ 118500 KASE
報ITE（2，500）KASE
1 READ（1，510）（VARII \(1=1,131\) ，SITE
IF VARIl EQUALS 9，All DATA．HAS BEEN READ．
H＂EARMA GE 9． 60 TO 999
THIS PART OF PROGRAM IS FDR LOCATIONS WHERE PEDESTRIAN
ACTIVITY EXISTS。
IPROT REFERS TO THE PROTECTION AT THE CROSSING IN QUESTION
IPROT \(=1=\) SIGNALIZED CROSSING
IPROT＝2＝UNSIGNALIZED CROSSING
IPROT \(=V A R: 1:\)
VEH＝AVERAGE 24 HOUR VEHICLE VOLUME
VEH＝VAR 2 I
PED＝AVERAGE 12 HOUR PEDESTRIAN VOLUME
PEO＝VAR（3）
oelay＝average delay during the pedestrian peak hour measured in
SECOIDSIUNSIGNALIZED OR CYCLESISIGNALIZED：
DELAY＝VART4
S＇⿹ROADWAY WIDTH IN FEET \＆CURB－TO－CURB OR CURB－TO－ISLAND：
RW＝VAR：SI
\(S P D=V A R 161\)
\(C\) SD＝THE MINIMUM ACTUAL SIGHT DISTANCE
SD＝VAR 7 I
VGY＝THE MAXIMUM VEHICLE GREEN AND YELLOW ALLOWED BY THE
SIGNAL TIMING
```

PEDOL210
PEDO1220
PED01230
PEDO1240
PEDO1250
PEDO1 260
PEDOL 270
PEDO1280
PED01290
PEDO1300
PED01310
PEDO1320
PEDO1330
PEDO1340
PEDO1350
PED01360
PEDO1370
PED01380
PED01390
PED01400
PED01410
PEDO1420
PEDO1430
PEDO1440
PEDO1450
PEDO1460
PED01470
PEDO1480
PED01490
PEDO1500
PEDO151，
PEDO152：
PEDOL53＇
PED0154：
PEDO1556．
PEDO1560
PED01570
PEDOL580
PEDO159C
PEDO1600
PEDO1610
PED01620
PEDO1630
PEDO1640
PED01650
PEDO1660
PED01670
PED01680
PEDO1690
PED01700
PED01710
PED01720
PED01730
PEDO1740
PEDO1750
PED01760
PEDO1770
PEDO1780
PED01790
PED01800

VGY=VAR 681
SC=NUMBER OF SCHOOL CHILDREN CROSSINGS PER DAY
$S C=V A R(9)$
JPROT REFERS TO THE PROTECTION AFFORDED SCHOOL CHILDREN
$J P R O T=1=$ NO PROTECTION
JPROT=2=PASSIVE PROTECTICN(SIGNS
$J P R O T=3=F L A S H I N G \cdot S C H O O L$ SIGN
J JPROT $=4=51 G N A L$
JPROT $=5=$ CROSSING GUARD
JPROT=VAR (10)
DALT=DISTANGE TO NEAREST ALTERNATE LEGAL CROSSING
DALT=VAREIL
KPROT REFERS TO THE PROTECTION AT THE ALTERNATE CROSSING
KPROT=l=GRADE SEPARATION.
$K P R O T=2=A C T I V E$ PROTECTIONISIGNAL
KPROT=3=PASSIVE PROTECTION \&SIGNS:
KPROT=VAR(12)
EJ= JUDGEMENT
EJ=VAR(13)
$P V V=P E D * V E H$
$\mathrm{PCT}=1 \mathrm{PED} / \mathrm{PVV} 1 * 100$.
IFIPVV.GT:60000.) PVV $=60000$.
IFIPCT,GE. 25. ${ }^{\text {P }}$ PCT $=25^{\circ}$
PVV=PVV/1000.
DO $10 \mathrm{I}=1,9$
$\mathrm{N}=\mathrm{I}$
$\mathrm{M}=\mathrm{N}+1$
PEDO18:0
PED01820
PEDO1 830
PEDO1840
PED01850
PEDO1860
PED01870
PEDO1880
PED01890
PED01900
PED01910
PEDO1920
PEDO1930
PED01940
PEDOL950
PEDO1960
PED01970
PED01980
PED01990
PED02000
P EDO20:10
PED02020
PED02030
PED02040
PEDO2050
P EDO2060
PED02076

THIS SECTION DETERMINES THE TWO KNOWN PERCENTAGE CURVES WHICH
BOUND THE POINT IN QUESTION
IF PCT.GT.A(ND.AND.PCT.LE.AOMIIGO TO 20
10 cantinue
20. $K=1$

THIS SECTIGN DETERMINES THE CONSTANT VOLUME POINT PROJECTIONS ON
THE UPPER AND LOWER BOUNDARY CURVES
21 IF (PVV.GT.B(N) IGO TO 22

GO TO 23

23 IFKK.EQ. $21 G 0$ TO 24
$k=k+1$
$\mathrm{N}=\mathrm{N}+1$
GO 7021
THIS SECTION INTERPOLATES BETWEEN THE TWO CALCULATED pOINT VALUES

IFIXSCORE, GT.40. IXSCORE=40.
IFIRU.GT. 120. 1RW=120.
IFIIPROT.EQ. $21 G 0$ TO. 50
IFIOELAY,G7:2. ${ }^{\text {D }}$ DELAY=.
PT $1=S C O R E$ FOR PEDESTRIAN ANO VEHICLE VOLUME WITH PEAK HOUR DELAY
FACTOR PARAMETER
PTI=XSCORE* DELAY
THIS SECTIEN COMPARES THE DESIRED PEDESTRIAN SIGNAL TIME WITH
THE ACTUAL TIME
$\mathrm{PCH}=\mathrm{RN} / 4 \mathrm{~m}_{4}+7$.
IFIVGYoGTक $74.1 V G Y=74 \circ$
IFIPCH/VGV-1. $30,30,40$
PT2=SCORE FOR PEDESTRIAN CHANGE/MAXIMUM VEHICLE GREEN AND YELLOW PARAMETER FOR SIGNALIZED CROSSINGS

PED02080
PED02090
PED02100
PED02110
PEDO2120
PED02130
PEDO2140
PED02150
PEDO2 160
PED02170
PEDO2180
PED02190
PED02200
PED02210
PED02220
PED02230
PED02240
P E002250
PED02260
PED02270
PED02280
PED02290
PEDO2300
PED02310
PED02320
PEDO2330
PEDO2340
PED02350
PED02360
PED02370
PE002380
PED02390
PED02400

GO TO 80
40 PT2＝10．＊＊（1．t．699＊（PCH／VGY－1．））
GO TO 80
THIS SECTION COMPARES THE DESIRED SIGHT DISTANCE WITH THE ACTUAL SIGHT DISTANCE
50 IFIDELAY．GT．120．DDELAY $=120$ ．
PTI＝XSCORE＊DELAY／60．
$\mathrm{DG}=\mathrm{BRW} / 4.1 * S P D * 1.467$
IFIDG．GT．2500．1 DG $=2500$ ．
IF（SD．GT．2000．$) S D=2000$ ．
IF FDG／SD－1． $60,60,70$ ．
PT $2=S C O R E$ FOR ACTUAL SIGHT DISTANCEIDESIRABLE SIGHT DISTANCE
PARAMETER FOR UNSIGNALIZED CROSSINGS

GO TO 80

80 CONTINUE
IF（PT2．GT．50．）PT2 $=50$ ．
THIS SECTION COMPARES THE NUMBER OF SCHOOL CHILDREN WITH THE
FORM OF PROTECTION
IF（SC．EQ．O．）GO TO 149
GO TO $1100,110,120,130,1401$, JPROT
100 IF（SC－125． $1101,102,102$
PT3＝SCORE FOR THE SCHOOL CROSSING PARAMETER
$101 \mathrm{PT} 3=.85+32 * S C-1.11 \mathrm{E}-2$＊SC＊＊2
GO TO 150
102 PT3－23．t．093＊（SC－125．）
IFIPT3．GT． 30 ．IPT $3=30$ ．
GO TO 150
110 IF $4 S C-125.1111,112,112$
111 PT3＝658＋．25＊SC－1．8E－3）SSC＊2
GO $70-150$
112 PT $3=19.2+.08 *$（SC－125．）
IFIPT3．GT．25． 1 PT3 $=25$ ．
GO TO 150
120 IFISC－125．121．122， 122
$121 \mathrm{PT} 3=$ 。406＊。197＊SC－（．637E－3）＊SC＊＊2
GO TO 150
122 PT3 $=15.6 * 6586 *(S C-125.1$
IFAPT3．GT．20． 1 PT $3=20$ ．
GO TO 150
130 IF（SC－125，131，132，132
$131 \operatorname{Pr} 3=327+.155 * \mathrm{SC}-1.502 \mathrm{E}-3$ ） $\mathrm{SC} * * 2$
GO TO． 150
132 PTB＝11． $84.0426 *(S C-125$.
IFIPT3．GT．15．IPT3 $=15$ ．
GO TO 150
140 IF（SC－125．） $141,142,142$
141 PT $3=0413+0116 * \mathrm{SC}-1.43 \mathrm{E}-31 * \mathrm{SC} * 2$
GO 70150
$142 \mathrm{PT} 3=8.2 * .024$ 敉 $(S C-125$. ）
IFIPT3．GT． $10.1 \mathrm{PT} 3=10$ 。
GO TO 150
149 PT3 3 ．
150 CONTINUE
PEDO2410
PED02420
PEDO2430
PED02440
PED02450
PED02460
PED02470
PED02480
PED02490
PED02500
PED02510
PED02520
PED02530
PEDO2540
PED02550
P ED02560
PEDO2570
PED02580
PED02590
P ED02600
PED02610
PED02620
PED02630
PED02640
PED02650
PED02660
PED02670
PED02680
P ED02690
PED02700
PED02710
PED02720
PED02730
PED02740
PED02750
PED02760
PED02770
PED02780
PED02790
PED02800
PED02810
PED02820
PED02830
PED02840
PED02850
PED02860
PED02870
PED02880
PED02890
PED02900
c THIS SEGTION COMPARES THE NUMBER OF PEDESTRIANS WITH THE DISTANCE
TO the nearest alternate legal crossing
350 IF 1 PED．GT．2000．PED $=2000$.
PED02910
PED02920
PED02930
PED02940
PED02950
PED02960
PED02970
IF GDALT．GT．2000． 10 ALT $=2000$ ．
PED02980
PED02990
C THE DENOMINATOR IS A CONVENIENCE FACTOR ASSOCIATED WITH THE

PROPENSITY TO WALK A CERTAIN DISTANCE
PED03010
SCALE=PED*DALT*100. $1.190 .17192-(.05304016 * D A L T) *(.7866165 E-5) *(D A L T P E D 03020$ 1**21)
IFISCALE.GT. $1.0 \mathrm{E}+6$) SCALE $=1.0 \mathrm{E}+6$
IFAKASE.EQ. 21 GO TO 360
GO TO $1151,160,170$: KPRROT
PT4=SCORE FOR DISTANCE TO NEAREST ALTERNATE CROSSING PARAMETER
151 PT4 $=(2.0 \mathrm{E}-5)$ *SCALE
GO. 10.180
160 PT4=12.5E-5)*SCALE
GD T0 180
170 PT4 $=15 .+11.5 \mathrm{E}-51 * S C A L E$
180 CONTINUE
PT5=SCORE FOR JUDGEMENT PARAMETER
PT5=EJ
PTOT=FINAL SCORE USED TO RANK LOCATIONS WITH EXISTING PEDESTRIAN.
ACTIVITY.
IFIPT5.GT. 10.IPT5=10.
SRTTOT=PTOT SUBTRACTED FROM MAX. POSSIBLE SCORE SO THAT SORTING WILL PUT LOCATIONS IN PROPER ORDER.
PTOT=PT1+PT2+PT3*PT4*PT5
SRTTOT $=200$. - PTOT
WRITE 2,600)PT1,PT2,PT3,PT4,PT5,PTOT,SRTTOT,SITE
GO TO 1
THIS PART OF THE PROGRAM IS FOR LOCATIONS WHERE PEDESTRIAN
ACTIVITY IS NOT POSSIBLE
300 READ 1,520 IGVAR II $1=1,181, S I T E$
IFIVARII ©GE. 9999.1 GO TO 999
ZHI IS THE NUMBER OF HOUSEHOLDS IN ZONE 1
$Z \mathrm{HI}=\mathrm{VAR}(1)$
ATSI REFERS TO THE EXISTENCE OF A SCHOOL IN ZONE 1
IF A SCHOOL EXISTS ATS $1=1.0$
IF A SCHOOL DOES NOT EXIST ATSI $=0.0$
ATS $=\triangle A R(2)$
ATCL REFERS TO THE EXISTENCE OF COMMERCIAL ACTIVITY IN ZONE 1
IF COMMERCIAL ACTIVITY EXISTS:
ATC $1=0.1$, IF THERE ARE 1 TO 4 ESTABLISHMENTS. ATC $1=0.2$ IF THERE ARE 5 TO 8 ESTABLISHMENTS, ATCl $=0.3$. IF THERE ARE 9 TO 12 ESTABLISHMENTS. ATCl=0.4, IF THERE ARE 13. OR MORE ESTABLISHMENTS.
IF COMMERCIAL ACTIVITY DOES NOT EXIST, ATC $1=0.0$.
ATCL = VAR (3)
ATII REFERS TO THE EXISTENCE OF INSTITUTIONAL ACTIVITY IN ZONE 1
IF INSTITUTIGNAL ACTIVITY EXISTS ATII=0.3
IF INSTITUTI GNAL ACTIVITY DOES NOT EXIST ATLI $=0.0$.
AT $L=\operatorname{VAR}(4)$
ATRI REFERS TO THE EXISTENCE OF RECREATIONAL ACTIVITY IN ZONE 1
IF RECREATIONAL ACTIVITY EXISTS ATRI $=0.3$
IF RECREATIONAL ACTIVITY DOES NOT EXIST ATR $1=0.0$
ATRI $=$ VAR (5)
ZH2,ATS2,ATC 2,ATI2,AND ATR2 ARE DEFINED AS ABOVE EXCEPT THAT
VARIABLES APPLY TO ZONE 2
$2 H 2=V A R(6)$
ATS2 $=$ VAR (7)
ATC2 $=$ VAR (8)
AT12=VAR(9)
ATR2=VAR (10)
SCI IS THE ACTUAL NUMBER OF SCHOOL CHILDREN IN ZONE I IF KNOWN. IF NOT KNOWN $S C 1=0.0$
SCl=VAR(11)

PED03030
PED03040
PED03050
PED03060
PED03070
PED03080
PED03090
PED03100
PED03110
PEDO3t20
PED03130
PED03140
PED03150
PED03160
PED03170
PED03180
PED03190
PED03200
PED03210
PED03220
PED03230
PED03240
PED03250
PED03260
PED03270
PED03280
PED03290
PED03300
PED03310.
PED03320
PED03330
PED03340
PED03350
PED03360
PED03370
PED03380
PED03390.
PED03400
PED03410
PED03420
PED03430.
PED03440
PED03450
PED03460
PED03470.
PED03480
PED03490
PED03500
PED03510
PED03520
PED03530
PED03540
PED03550
PED03560
PED03570
PED03580
PED03590
PED03600
$U L=V A R 1161$BUS=NUMBER OF PEDESTRIAN TRIPS GENERATED BY A BUS STOP.BUS=VAR (17)
STF=SURPLUS TRIP FACTOR.
IF STF=O, SURPLUS TRIPS GENERATED POINTS WILL BE INCLUDED.IF STF=1. SURPLUS TRIPS GENERATED POINTS WILL NOT BE INCLUDED.$S T F=$ VAR (18)
IF(SCl:EQ.0.)GO TO 310
PTA CALCULATES THE NUNPTA $=2 H 1 *$ ATC 2*ATI2*ATR21*2**SC1
GO TO 320
310 PTA $=2 H 1$ * $(A T S 2+A T C 2+A T I 2 * A T R 2)$
320 IFISC2.EQ. O. 1 GO TO 330
PTB CALCULATES THE NUMBER OF TRIPS GENERATED IN ZONE 2 by
ATTRACTIONS IN ZONE I$\mathrm{PTB}=2 \mathrm{H} 2$ * $(A T C 1+A T I I+A T R 1) * 2$. $\operatorname{sC} 2$
GO TO 340
330 PTB $=2 H 2 *$ ATSI ATC $1+A T I \& A T R 11$
340 PED=PTA*PTB+BUS
PTI=SCORE FOR TRIP GENERATION PARAMETER
PTEPEED/10.
IFTPTI.GT.70. 1 PTI $=70$.
The distance to alternate crossing parameter is calculated in the
FIRS F PaRT OF THE PROGRAM
GU 10350
360 GO TO $1370,371,380$, KPROT
370 PT2=15.OE-5 承SCALEGU 10390371 PT2=16.0E-53.3CNLE
5010390

390 COHT NNU
IFRSTFEQAL $1 G 0$ TO 391
IFIPED. T. 700.160 - 3391
STG G SURPLUS TRYP GENERATION: IS THE NUMBER OF TRIPS GENERATED
IN ESCESS OF THE 700 USEO IN PTI DIVIDED BY 15
$S T G=1 P E D-700.1 / 15$.
IESSTG.GT. 20. $15 T G=20$.
G0 T0 392
391 STG=0.
392 IF $A S A C$. $G T$. 5. $1 A S A C=5$.
IFIUL ©GT. 35. UL $=35$.
C PT3=SCORE FOR JUDGEMENT PARAMETER.
PT3=ASAC+STGFUL
C PTOT=FINAL SCORE USED TO RANK LOCATIONS WITH NO PEDESTRIAN

PED03610
PED03620
PED03630
PED03640
PED03650
PED03660
PED03670
PEDO3680
PED03690
PED03700
PED03710
PED03720
PED03730
PED03740
PED03750
PED03760
PED03770
PED03780
PED03790
PED03800
PED03810
PED03820
PED03830
PED03840
PED03850
PED03860
PED03870
PED03880
PED03890
PED03900
PED0391:
PED03926
PED0393
PED0394:
PED03956
PED0396C
PED03970
PED0398C
PED 03990
PED04000
PED04010
PED04020
PED04030
PED04040
PED04050
PED04060
PED04070
PEDO4080
PED04090
PED04100
PED041 10
PED04 126
PEDOA130
PED04140
PED04150
PEDQ4 160
PED04170
PED04180
PED04190
PED04200

APPENDIX F

PEDOP2 COMPUTER PROGRAM

| C | PROGRAM PEDOP2 | PEDO0010 |
| :---: | :---: | :---: |
| C | THIS PROGRAM TAKES THE SORTED OUTPUT OF PROGRAM PEDOPI AND | PED00020 |
| C | FORMATS IT FOR OUTPUT. IT ALSO SEARCHES FOR SPECIFIC LOCATIONS | PED00030 |
| C | ON THE BASIS OF THE COUNTY AND MUNICIPALITY CODES, IF DESIRED. | PED00040 |
| C | | PED00050 |
| C | JCNT NUMBER OF SITES INPUTTED. | PED00060 |
| C | | P EDOOO70 |
| c | 2=LOCATIONS WHERE PEDESTRIAN ACTIVITY CAN OCCUR. | PED00080 |
| 6 | IOPT $1=$ TYPE ALL SITES WITH THEIR CORRESPDNDING SCORES. | PED00090 |
| C | $2=$ SEARCH FOR SITE BY COUNTY AND MUNICIPALITY. | PEDOOL00 |
| C | $3=$ END OF JOB. | PEDOO110 |
| c | VAR INPUT FOR PROGRAM, SCORE BY PARAMETER PARAMETERS ARE | PEDOO120 |
| c | DIFFERENT DEPENDING ON THE VALUE FOR KASE. | PED00130 |
| C | VARE1. PED AND VEH. SCORE OR TRIP GENERATION SCORE. | PEDCO140 |
| C | VARI2I SIGHT DISTANCE OR DIST. TO ALTERNATE CROSSING SCORE. | PE000150 |
| C | VARI3) SCHOOL CROSSING OR JUDGEMENT SCORE. | PEDOO160 |
| c | VAR(4) DISTANCE TO ALTERNATE CROSSING OR TOTAL SCORE. | PED00170 |
| C | VAR (5) JUDGEMENT SCOREIPED. ACTIVITY CAN OCCUR KASE) | PEDO0180 |
| C | VAR 661 TOTAL SCORESPED. ACTIVITY CAN OCCUR KASEI. | PEDOO190 |
| C | SITE LOCATION OF SITE AND SITE DESCRIPTION. | PED00200 |
| C | SITEII COUNTY AND MUNICIPALITY COOE. | PED00210 |
| C | SITE (2) THRU SITEABI SITE DESCRIPTION. | PEDO0220 |
| C | COMUN COUNTV AND MUNICIPALITY CODE INPUTTED TO BE SEARCHED FOR. | PED00230 |
| c | | PED00240 |
| C | | *PED00250 |
| C | | PED00260 |
| | DIMENSION SITE 100,81 , VAR (100,6) | PED00270 |
| | JCNT $=1$ | PEDO0280 |
| C | READ KASE TO DETERMINE WHAT SECTION OF PROGRAM IS TO BE USED. | PED00290 |
| | READ 1, 500) KASE | PED00300 |
| C | READ DATA AND STORE. | PED00310 |
| 110 | READ (1, 501, END $=1111$ (VAR (JCNT, 1), $1=1,61,(S I T E(J C N T, ~ I), ~ I=1,8) ~$ | PED00320 |
| C | INCREMENT SITE COUNT AND CHECK FOR TOO MANY SITES. | PED00330 |
| | $J C N T=J C N T+1$ | PEDO0340 |
| | IFAJCNT GT. 1011 G0 TO 112. | PED00350 |
| | GO TO 110 | PED00360 |
| C | DECRENENT JCNT TO COMPENSATE FOR LAST INCREMENT. | PED00370 |
| 111 | JCNT $=$ JCNT -1 | PED00380 |
| C | If KASE $=2$ P PEDESTRIAN ACTIVITY CAN NOT OCCUR,GO TO THAT SECTIUN | P ED00390 |
| C | OF THE PROGRAM。 | PED00400 |
| | IFIKASE EQ, 2) GO TO 300 | PED00410 |
| C | ENTER CODE FOR TYPE OF OUTPUT AND TYPE HEADINGS. | PED00420 |
| 1 | WRITE (6,508) | PED00430 |
| | READ 5 5,5001 IOPT | PED00440 |
| | IFIIOPT GT. 2) CALL EXIT | PED00450 |
| | IF(IOPT GT, 1) GO TO 100 | PED00460 |
| | WRETE (68510) | PEDOO470 |
| | DO 101 $\mathrm{J}=2 \mathrm{~g}$ JCNT | PED00480 |
| 101 | | PEDOO490 |
| | GO TO 1 | PED00500 |
| C | ENTER COUNTY ANO MUNICIPALITY CODE, SEARCH FOR PROPER SITE(S), | PEDOO510 |
| 6 | AND WRITE THE OUTPUT. | PE000520 |
| 100 | WRITE(6,509) | PED00530 |
| | READ 50.5031 COMUA | PED00540 |
| | WRITE 605131 | PEDOO550 |
| | DO $102 \mathrm{~J}=1, \mathrm{JCNT}$ | PED00560 |
| | IFISITESJ, 1 NE COMUN) GO TO 102 | PED00570 |
| | WRITE (6, 504) J, (VAR J,I), $1=1,6),(S I T E(J, I), I=1,8)$ | PED00580 |
| 102 | CONTINUE | PED00590 |
| | GO TO 1 | PED00600 |

THIS SECTION OF THE PROGRAM DUEES THE SAME FUNCTION AS THE PART
beginning at statement ig but for locations where pedestrian
ACTIVITY CAN NOT OCCUR.
300 WRITE 6,508)
READS5,500) IOPT
IFIIOPT GT. 21 CALL EXIT
IFIIOPT GT. 11 GO TO 103
WRITE(6.511)
DC. $104 \mathrm{~J}=1, \mathrm{JCNT}$

60 TO 300
103 WRITE (6,509)
READ 5,5031 COMUN
WRITE(6,514)
DO 105 J $\mathrm{J}=\mathrm{I}, \mathrm{JCNT}$
IF(SITE(J,1) ©NE. COMUN GO TO 105

105 CONTINUE
60 T0 300
TOO MANY SITES HAVE BEEN READ IN.WRITE ERROR MESSAGE INDICATING
THAT DIMENSION MUST BE INCREASED AND CALL EXIT.
112 WRITE(6,512)
CALL EXIT
500 FORMAT (11)
501 FORMAT16F7.1.1551,7A4.A21
502 FORMATIIH,6F7. $1,5 \mathrm{X}, \mathrm{A} 4,4 \mathrm{X}, 6 \mathrm{~A} 4, \mathrm{~A} 21$
503 FORMAT (A4)
504 FORMATILH, $14,6 \mathrm{~F} 7,1,5 \mathrm{X}, \mathrm{A} 4,4 \mathrm{X}, 6 \mathrm{~A} 4, \mathrm{~A} 21$
505 FORMAT:4F7,1,T51,7A4,A21
506 FORMAT (1H , 4 F7, 1, $5 \mathrm{X}, \mathrm{A} 4,4 \mathrm{X}, 6 \mathrm{~A} 4, \mathrm{~A} 2$)
507 FORMAT (1H, $14,4 \mathrm{~F}, 1,5 \mathrm{X}, \mathrm{A} 4,4 \mathrm{X}, 6 \mathrm{~A} 4, \mathrm{~A} 2)$
508 FORMAT $/ / / / 1 / 0$ TYPE 1 FOR ALL SITES, 2 FOR SELECTED SITES, 3 WHEN PEDO0920 FFINISHED. $/ 1$

PEDOO610
PEDOO620
PED00630
PED00640
PED00650
PED00660
PED00670
PED00680
PED00690
PED00700
PED00710
PED00720
PED00730
PED00740
PED00750
PED00760
PE000770
PED00780
PED00790
PEDOO800
PEDOO810
PEDOO820
PED00830
PEDOO840
PED00850
PED00 860
PED00870
PED00880
PED00890
PED00900
PED00910
508 FORMAT 1 TYPE 1 FOR ALL SITES; 2 FOR SELECTED SITES; 3 WHEN
PED00930
509 FORMATI' TYPE COUNTY AND MUNICIPALITY CODE FOR DESIRED SITE AS XXXPEDOO940 $1 x^{\circ} / \frac{1}{3}$
510 FORMATUH ${ }^{\circ}$ LOCATIONS WHERE PEDESTRIAN ACTIVITY CAN OCCUR $\% / / /$ 10 PED NEH SICHT SCHOOL ALTER JUDGE TOTAL $5 X^{\circ}{ }^{\circ}$ CNTY PEDHEH SIGHT SCHOOL ALTER. JUDGE TOTAL " $5 X^{\circ} \mathrm{CNT} / \mathrm{M}$. PED00970 2: SCORE DIST. CROSS. CROSS. MENT SCORE., 6 . MUN SITE DESCPEDOO980 3RIPTION / / P PED00990
511 PORMATIH ${ }^{\circ}$ LOCATIDNS WHERE PEDESTRIAN ACTIVITY CAN NOT OCCUR. $/ / / P E D O 1000$ 1" TRIP ALTER JUDGE TOTAL * $5 X^{\circ}$ "CNTY* ${ }^{\circ}$ GEN. CROSS. MENT PEDOLOLO 2 SCORE © 6 , ${ }^{\circ}$ MUN SITE DESCRIPTION /I PEDOIO20
512 FORMAT: MORE THAN 100 SITES. DIMENSION MUST BE INCREASED. GOODBY.PEDOIO3O 10)

513 FORMATI1H "LOCATIONS WHERE PEDESTRIAN ACTIVITY CAN OCCUR."/// PEDOIO50 1* PEDHEH SIGHT SCHOOL ALTER. JUDGE TOTAL' $5 X^{\circ}$. CNTY// PEDOLOGO 2' RNK SCORE DIST. CROSS CROSS. MENT SCOREO.6X. MUN SITE PEDOIOTO 3DESCRIPTION:/1
514 FORMATU $1 H$ LDCATIONS WHERE PEDESTRIAN ACTIVITY CAN NOT OCCUR. $/ / / P E D 01090$ 1\% TRIP ALTER. JUDGE TOTAL' $5 X^{\circ}$ "CNTY\% RAK GEN. CROSS.PEDO1100 2 MENT SCORE, 6X, MUN SITEDESCRIPTION:/I PEDOL110 END

[^0]: MANUAL METHOD FOR THE PEDESTRIAN GRADE SEPARATION LOCATION PRIORITY RANKING SYSTEM

[^1]: * If the actual number of school children is known for either zone, multiply by two and use that number for Total Trips Per Day.

[^2]: * Limited by input format.

