

NEW JERSEY GEOLOGICAL SURVEY TECHNICAL MEMORANDUM

Landfill Leachate Flux Equations: Theoretical Development and Computer Programs

by

•

Jeffrey L. Hoffman

Department of Environmental Protection Division of Water Resources

LANDFILL LEACHATE FLUX EQUATIONS: THEORETICAL DEVELOPMENT AND COMPUTER PROGRAMS

∦ ·

by Jeffrey L. Hoffman Principal Geologist

State of New Jersey Department of Environmental Protection Division of Water Resources New Jersey Geological Survey

Thomas H. Kean, Governor Robert E. Hughey, Commissioner John W. Gaston, Jr., P.E., Director Haig F. Kasabach, Deputy State Geologist

> Trenton, New Jersey 1984

<u>CONTENTS</u>

1

I.	Abstract
II.	Introduction
III.	Liner Geometry
IV.	Assumptions
V.	Transient State Equations
VI.	Steady State Equations
VII.	Quasi-steady State Equations
VIII.	Relationship Between Quasi-steady
	State and Steady State
IX.	Efficiency and Leakage as Measures
	of Effectiveness
х.	Use of Precipitation Data with
	Transient State Equations
XI.	Conclusions
XII.	Bibliography

FIGURES

1.	Cross-section of Landfill Leachate											
	Collection System	•	•	•	•	•	•	•	•	•	. 4	ŀ
2.	Monthly Rainfall at Trenton Airport		•	•	•	•	•	•	•	•	.22	2
3.	Calculated Monthly Leakage	•	٠	•	•	•	•	•	•	•	.23	3

TABLES

1.	Quasi-steady State vs. Steady State Example	•	•	.18
2.	Steady State: Efficiency vs. Leakage	•		.20
3.	Quasi-steady State: Efficiency vs. Leakage	•	•	.20
4.	Transient State Numerical Example: Program Output	•	•	.24

APPENDICES

Α.	Variables
в.	HP-41C Programs for Transient, Steady, and
	Quasi-steady States
с.	FORTRAN Program for Iterative Transient
	State with Sample Data

I. Abstract

ł

The volume of leachate which leaks through a landfill liner is an important factor in assessing the environmental impact of the landfill. The analytic equations describing the dissipation of head on a landfill liner and the leakage through the liner are expanded here to describe two additional cases. The first is the case of a time-invariant leakage head (termed the steady state case) which results from a steady recharge. The second is the case of a quasi-steady state head which results from discrete recharge events occuring at a fixed interval.

The effectiveness of a liner can be measured by its efficiency (volume of water which leaks through the liner divided by total volume of water impinging on the liner) or by the average leakage rate. Efficiency varies depending upon the amount and timing of precipitation and can be misleading. Comparing efficiency and the average leakage rate for a typical case shows that the average leakage rate is a better measure of the effectiveness of a landfill liner.

Computer programs to solve the equations for the transient, steady state, and quasi-steady state cases, using the Hewlett-Packard HP-41C programmable calculator are listed, as is a FORTRAN program to model the transient state using irregular precipitation data.

II. INTRODUCTION

ľ

The volume of leachate which leaks out of a landfill is an important factor in assessing the environmental impact of the landfill. A currently used approach to minimizing the leachate problem is to line the bottom of the landfill with clay or some other relatively impermeable material. The liner is sloped to a collection drain and covered with a permeable material (e.g. sand or gravel) so that any leachate produced will be intercepted and drained to a central collection point. For any liner which is not totally impermeable some leachate will theoretically escape. Quantifying this amount is important. The purpose of this study is to present (1) the theoretical background to describe leakage through a landfill liner and and (2) computer programs for calculating the leakage through, and effectivness of, a liner.

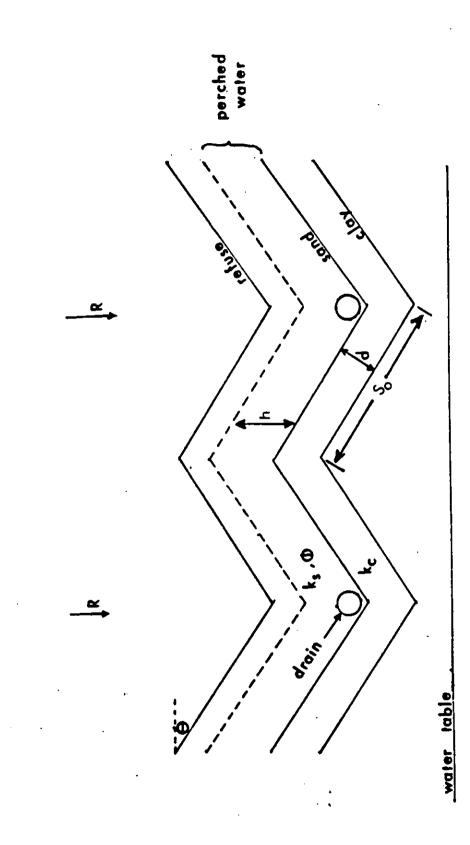
Equations for the transient response of the system have been previously developed to describe induced leakage and dissipation of a leachate head on a sloped liner (Wong, 1977; and Kmet, Quinn, and Slavik, 1981). These mathematical equations are modified to describe (1) steady state recharge (which produces a steady-state head on the liner) and (2) the case of cyclic, pulsed infiltration. This later case is termed the quasi-steady state case for it gives rise to a cyclic pattern of head growth and dissipation. For each of these two cases, and the original transient case, equation are presented to describe the head on the liner at any time, the efficiency of the liner, and the average leakage rate. The efficiency of the liner and its average leakage rate are two different measures of the effectiveness of the liner in preventing leakage. The utility of each measure is contrasted by examples based on the developed equations.

Under normal precipitation conditions, the leachate head and leakage can be estimated by a numerical technique. Precipitation data from a five-year period are used to estimate leakage from a hypothetical landfill.

Programs for the Hewlett-Packard HP-41C programmable calculator are presented for the transient, steady state, and quasi-steady state cases. A FORTRAN program to model the transient state with rainfall is also presented.

Acknowledgements

I wish to thank the many reviewers of this work, especially Wayne Hutchinson and Dave Harper of the New Jersey Geological Survey, Haydar Erdogin of the New Jersey Division of Waste Management, and Pat Leahy of the United States Geological Survey. This work


was funded in part by a grant from the United States Environmental Protection Agency.

. .

III. Liner Geometry

A cross-section of a landfill is shown in figure 1. The geometry of the clay liner is similar in shape to a piece of corrugated material. The clay liner forms a series of "V"s on the bottom of the landfill. A drain consisting of a porous pipe in a sand blanket is located at the bottom of each "V" and carries off the leachate it receives. The drains are treated as horizontal in this report.

Several variables are needed to describe the landfill geometry. The length of one arm of the "V" from crest to trough, parallel to the slope, is S_0 . The liner thickness, perpendicular to the slope, is d. The slope of the liner is Θ . The clay liner has a hydraulic conductivity of k_c while the hydraulic conductivity of the sand is k_s . The porosity of the sand blanket of φ . A complete listing of all variables is given in appendix A.

IV. ASSUMPTIONS

1

Leakage from a landfill is a complex function of infiltration and vertical and horizontal water movement, which is dependant on liner and drain properties, design, and head at bottom of the landfill. In order to make the problem tractable many simplifying assumptions are required. The major assumptions, listed below, are more fully discussed by Kmet, Quinn, and Slavik (1981).

Assumptions:

- 1. The water table is below the clay liner;
- 2. The drains are always in a free-draining condition;
- All materials (clay, sand and refuse) are fully saturated;
- 4. Any head on the liner becomes effective instantaneously and immediately forces leachate to move to the drain pipes and also through the liner;
- 5. The leachate slug is rectangular in shape and retains this shape as it dissipates. There is, at all times, a uniform head on the portion of the liner covered by the leachate;
- 6. The porosity and hydraulic conductivity of the refuse are identical to that of the sand blanket;
- 7. All flow is governed by Darcy's Law;
- 8. The landfill geometry is as shown in figure 1;
- 9. When recharge is added to a partially dissipated leachate slug lying on the liner the entire volume of liquid is redistributed resulting in a new uniform head on the liner, with the saturated length again equal to S., and;
- 10. The clay and sand layers are homogeneous, of constant areal thickness, and of uniform clope.

v. – TRANSIENT STATE EQUATIONS

Equations for dissipation of a transient head on a liner are based on the assumption that an initial head he instantaneously appears on the liner. This head gradually dissipates as the leachate moves in part through the sand to the drain and in part passes through the clay liner to the underlying soil.

The equations for calculating the head at any subsequent time are derived by equating Darcy's Law with the principal of continuity, the head h and the saturated length s (Kmet, Quinn, and Slavik, 1981).

Darcy's Law is written as

$$Q = k I A$$

where Q is the volumetric flux rate, k is the hydraulic conductivity, and A is the cross-sectional area for flow. For flow to the drain, parallel to the clay-sand interface, the flow rate at time t is:

 $Q_{\rm D} = k_{\rm S} \sin \theta \, \rm h \cos \theta \, w$

where Q_D is the flow rate, h is the head at time t measured perpendicular to the earth's surface (thus h is not parallel to d), and w is the width of the study area.

The continuity equation describing the rate at which the leachate is flowing to the drain at time t is

$$Q_{\rm D} = \frac{-\mathrm{ds}}{\mathrm{dt}} \,\phi_{\rm hcos\Theta w} \tag{3}$$

where ds/dt is the time rate of change of the saturated length parallel to the slope.

Combining equations 2 and 3 and eliminating common terms yields

(2)

$$ds = \frac{-1}{\phi} k_s \sin \theta dt \tag{4}$$

Solving differential equation 4 for the initial conditions at t=0, $s=s_0$, the saturated length as a function of time is

$$s = S_{0} \left(1 - \frac{k_{s} \sin \theta}{\phi S_{0}} t\right)$$
(5)

By defining t₁ as:

ľ

$$t_1 = \frac{S_0 \Phi}{k_s \sin \theta} \tag{6}$$

equation 5 is rewritten as:

$$s = S_0 \left(1 - \frac{t}{t_1}\right)$$
 (7)

It is easily seen that when the saturated length is equal to \emptyset , the time t is equal to t_1 . Thus t_1 is the time necessary for all the leachate to drain off the liner.

The same procedure is used to arrive at an equation for calculating the head at any time. The expression of Darcy's Law for flow through the clay is

$$Q_{\rm L} = k_{\rm C} \left(1 + \frac{\rm hcos\theta}{\rm d}\right) \ s \ \cos\theta \ w \tag{8}$$

where Q_L is the volumetric flux rate through the clay.

The continuity equation describing the rate of head dissipation is

$$Q_{\rm L} = -\frac{dh}{dt} \phi_{\rm scos} \Theta w \tag{9}$$

Combining equations 8 and 9 yields

$$dt = \frac{-\Phi}{k_c (1+h\cos\Theta/d)} dh$$
(10)

Solving differential equation 10 for the initial conditions at t=0, $h=h_0$, yields

$$h = h_0 \left[e^{-at} \left(\frac{d}{h_0 \cos \theta} + 1 \right) - \frac{d}{h_0 \cos \theta} \right]$$
(11)

where

$$a = \frac{k}{c} \frac{\cos \theta}{d\phi}$$
(12)

Let t_2 be the time when $h=\emptyset$ (the time when the leachate head has entirely dissipated). Equation 11 becomes

$$\emptyset = h_0 \left[e^{\left(-at_2\right)} \left(\frac{d}{h_0 \cos\theta} + 1 \right) - \frac{d}{h_0 \cos\theta} \right]$$
(13)

Solving for t₂ results in

$$t_2 = \frac{1}{a} \ln\left(1 + \frac{h_0 \cos\theta}{d}\right) \tag{14}$$

If t_m is defined as the lesser of t_1 and t_2 , at time t_m no leachate remains lying on the liner. The volume of leachate which leaks through the clay is calculated by integrating from time t=0 to t=t_m the time rate of change of the leachate head (dh/dt) times the area over which the leakage occurs. If V_L is the volume which leaks through the liner, the leakage volume integral is written as

$$V_{L} = \int_{\emptyset}^{t_{m}} \phi_{W} \cos \theta \left(\frac{-dh}{dt}\right) s dt$$
(15)

Substituting for dh/dt and s and then integrating results in

$$V_{L} = V_{O} \left(\frac{d}{h_{O} \cos \theta} + 1 \right) \left\{ \left[1 - \frac{1}{k} \right] \left[1 - e^{(-at_{m})} \right] + e^{(-at_{m})} \frac{t_{m}}{t_{1}} \right\}$$
(16)

where ${\tt V}_{\rm O}$ is the original volume of leachate above the clay liner, expressed as

$$V_{o} = \phi_{W}S_{o}h_{o}\cos\theta \tag{17}$$

and k is defined as

ļ

$$k = \frac{S_0 k_c}{dk_s \tan \theta}$$
(18)

By a similar procedure the volume of water which moves through the sand blanket to the drain, V_D , can be shown to be

$$V_{\rm D} = V_{\rm O} \{ \left(\frac{d}{h_{\rm O} \cos \theta} + 1 \right) \left(\frac{1}{k} \right) \left(1 - e^{\left(-at_{\rm m} \right)} \right) - \frac{d}{h_{\rm O} \cos \theta} \frac{t_{\rm m}}{t_{\rm l}} \}$$
(19)

Adding equation 16 (V_L) to 19 (V_D) does result in V_o , the original volume liner, for both t=t₁ and t=t₂, thus providing a continuity check.

The efficiency of the liner under transient conditions (E_t) is defined as the volume of leachate which moves to the drain divided by the original volume of leachate (V_D/V_O) . From equation 19 this is shown to be

$$E_{t} = \left(\frac{d}{h_{o}\cos\theta} + 1\right)\left(\frac{1}{k}\right)\left(1 - e^{\left(-at_{m}\right)}\right) - \frac{d}{h_{o}\cos\theta}\frac{t_{m}}{t_{1}}$$
(20)

The efficiency of a liner is not a good way to measure its performance as is detailed in later sections. A more useful measure is provided by the average leakage rate (L_t) , which is defined as the rate which would produce the observed volume of

leakage through the clay liner if the leakage were steady. Mathematically, the total leakage volume can be expressed

$$V_{L} = L_{t} t_{m} S_{o} w \cos \theta$$
 (21)

Solving for L_t (using equation 16 for V_L) results in

$$L_{t} = \frac{\Phi h}{t_{m}} \circ \left(\frac{d}{h_{o} \cos \theta} + 1 \right) \left\{ \left(1 - \frac{1}{k} \right) \left(1 - e^{\left(-at_{m} \right)} \right) + e^{\left(-at_{m} \right)} \frac{t_{m}}{t_{1}} \right\}$$
(22)

For a landfill lined with an efficient liner, the value of t_1 will be much less than t_2 and thus t_m will equal t_1 . That is, the leachate will tend to move to the drains instead of leaking through the clay. When this is the case the expressions for V_L , V_D , E_t , and L_t simplify to:

$$V_{L} = V_{0} \left(\frac{d}{h_{0} \cos \theta} + 1 \right) \left\{ \left(1 - \frac{1}{k} \right) \left(1 - e^{-k} \right) + e^{-k} \right\}$$
(23)

$$V_{\rm D} = V_{\rm O} \left\{ \left(\frac{d}{h_{\rm O} \cos \theta} + 1 \right) \frac{1}{k} (1 - e^{-k}) - \frac{d}{h_{\rm O} \cos \theta} \right\}$$
(24)

$$E_{t} = \left(\frac{d}{h_{o}\cos\theta} + 1\right)\frac{1}{k}(1 - e^{-k}) - \frac{d}{h_{o}\cos\theta}$$
(25)

$$L_{t} = \frac{\phi h}{t_{1}} \circ \left(\frac{d}{h_{0} \cos \phi} + 1 \right) \left\{ \left(1 - \frac{1}{k} \right) \left(1 - e^{-k} \right) + e^{-k} \right\}$$
(26)

*

- C -

VI. STEADY STATE EQUATIONS

• .

In an uncapped landfill the recharge due to rainfall may be approximated as a constant, steady movement of water downward through the refuse. This approximation results in a constant head on the liner and a constant leakage rate.

Let h_s be the steady head which is on the liner and R the steady recharge rate (units of length per time). Using Darcy's law (equation 1) the leachate flow rate to the drain, Q_D , and through the liner, Q_L , are expressed as

$$Q_{\rm D} = k_{\rm s} \sin \theta h_{\rm s} \cos \theta w \tag{27}$$

$$Q_{\rm L} = k_{\rm C} \left(1 + \frac{h}{s} \frac{\cos \theta}{d}\right) S_{\rm O} \cos \theta w$$
⁽²⁸⁾

The flow rate of recharge water which moves down through the landfill, $Q_{\rm R}$, is expressed as

$$Q_{\rm R} = RS_{\rm o} \cos \Theta w \tag{29}$$

Continuity requires that Q_R be equal to Q_D plus Q_L . Setting these equal and solving for h_s results in

$$h_{s} = \frac{S_{0}(R-k_{c})}{k_{s}\sin\theta(1+k)}$$
(30)

This equation only holds for those values of R greater than k_c . If R is less than k_c then all of the recharge will pass through the liner and h_s will equal 0.

Substituting the equation for $h_{\rm S}$ into the equations for ${\rm Q}_{\rm D}$ and ${\rm Q}_{\rm L}$ results in

$$Q_{\rm D} = w S_{\rm O} \cos \theta \, \frac{R-k}{1+k} c \tag{31}$$

$$Q_{L} = (R - \frac{R - k}{1 + k}c) S_{o} cos \Theta w$$
(32)

The expression for Q_L can be manipulated to yield a steady-state leachate flow rate, L_s . This rate is

$$L_{s} = R - \frac{R-k}{1+k}c \tag{33}$$

The steady-state efficiency (E_s) is Q_D divided by Q_R :

$$E_{s} = \frac{1-k}{1+k} c^{/R}$$
(34)

VII. QUASI-STEADY STATE EQUATIONS

ľ

Infiltration through a landfill probably does not occur at a steady rate (as was assumed in Section VI) but more likely in discrete events. Thus recharge to the leachate head will be followed by an interval of no recharge, during which the head will dissipate.

Equations describing uniform periodic recharge can be easily established. Let a recharge event of magnitude R (units of length) occur every t_R days (e.g., 1 inch every 10 days). t_R is the return period between rainfall events. If either t_1 or t_2 is less than t_R all of the leachate will either drain off or leak through the liner before the next recharge event. If this is the case then h_q , the head immediately following a rainfall event, is

$$h_q = R^* / \varphi$$
 (35)

For the remainder of this section, it is assumed that t_R is less than either t_1 or t_2 .

The calculation of h_q is straightforward. The volume of leachate on the liner immediately after a recharge event must be equal to the volume just before the event plus the recharge volume. Or:

$$\phi h_q S_o \cos \theta w = \phi h_s R \cos \theta w + R^* S_o \cos \theta w$$
 (36)

where h_R and s_R are the saturated head and length respectively at time $t_R.$ From equation 11 and 7 it is known that h_R and s_R are expressed as

$$h_{R} = h_{q} \left\{ e^{\left(-at_{R}\right)} \left(\frac{d}{h_{q}\cos\theta} + 1 \right) - \frac{d}{h_{q}\cos\theta} \right\}$$
(37)

$$s_{R} = S_{0} \left(1 - \frac{t_{R}}{t_{1}}\right)$$
 (38)

Solving for $\mathbf{h}_{\mathbf{q}}$ in equation 36 using equations 37 and 38 results in

$$h_{q} = \frac{(R^{*}/\phi) - (d/\cos\theta) (1 - e^{(-at_{R})}) (1 - t_{R}/t_{1})}{1 - e^{(-at_{R})} (1 - t_{R}/t_{1})}$$
(39)

The volume of water which leaks through the liner (V_L) is the integral over time of the saturated length s multiplied by the time rate of change of the head dh/dt:

$$V_{\rm L} = \int_{\emptyset}^{t_{\rm R}} \varphi_{\rm w} \cos \Theta \left(\frac{-dh}{dt}\right) s dt \tag{40}$$

Substituting for h and s and integrating yields

$$V_{L} = V_{0} \left(\frac{d}{h_{g} \cos \theta} + 1 \right) \left\{ 1 - e^{(-at_{R})} + \frac{1}{k} \left[e^{(-at_{R})} \left(at_{R} + 1 \right) - 1 \right] \right\}$$
(41)

The average leakage rate between recharge events, $\rm L_q$, is derived by dividing V_L by the time t_R and by the cross sectional area infiltration occurs through, swcos0. This results in

$$L_{q} = \frac{\phi h}{t_{R}} \left(\frac{d}{h_{q} \cos \theta} + 1 \right) \left\{ 1 - e^{(-a - R)} + \frac{1}{k} \left[e^{(-a t_{R})} \left(a t_{R} + 1 \right) - 1 \right] \right\}$$
(42)

The volume of water which moves to the drain between recharge events is defined as ${\rm V}_{\rm D}$ and is mathematically defined as

$$V_{\rm D} = V_{\rm O} \left\{ \left(\frac{d}{h_{\rm q} \cos \theta} + 1 \right) \frac{1}{k} \left(1 - e^{\left(-at_{\rm R} \right)} \right) - \frac{d}{h_{\rm q} \cos \theta} \frac{t_{\rm R}}{t_{\rm l}} \right\}$$
(43)

The efficiency of the liner (E_q) is calculated by dividing the volume of water which moves to the drain (V_D) by the volume of recharge (V_O) :

ų

$$E_{q} = \frac{\Phi h}{R^{*}} q \left\{ \left(\frac{d}{h_{q} \cos \theta} + 1 \right) \frac{1}{k} \left(1 - e^{\left(-at_{R} \right)} \right) - \frac{d}{h_{q} \cos \theta} \frac{t_{R}}{t_{1}} \right\}$$
(44)

A check on continuity, made by setting the volume of leachate on the liner just after the recharge event equal to V_D plus V_L plus the volume on the liner just before the recharge, is satisfied.

VIII. RELATIONSHIP BETWEEN QUASI-STEADY STATE AND STEADY STATE

If the total rainfall per year is kept constant while the recharge return period is shortened, then the quasi-steady state case approaches the steady state case. Table 1 shows a particular situation in which 52 inches (1.32 meters) per year is applied to a liner. (The yearly average rainfall for New Jersey is approxmiately 42 inches. However during wet years 52 inches can be measures at a station. Also, since waste often either contains water or generates it as it decomposes, a higher infiltration rate may be justified. The cases presented here are clearly worst case scenarios.) If all 52 inches is applied at one time then the average leakage rate through the liner, L_{α} , is 21,138 gallons per year per acre (gal/yr/acre), the initial head buildup, h_{α} , is 14.4 feet, and the liner efficiency, E_{α} , is If the frequency is increased to two recharge events per 98.5%. year (with each contributing 26 inches of recharge) then L_q becomes 24,775 gal/yr/acre, h_q becomes 7.2 feet, and E_q becomes 98.2%. Increasing the frequency to 3650 times per year (e.g., it rains 10 times per day with each rainfall event creating 0.014 inches of recharge) L_q becomes 67,303 gal/yr/acre, h_q is 3.0 feet, and E_q is 95.2%. The steady state recharge case of 52 inches per year (or 1.37X10⁻⁷ feet per second) results in a leakage rate L_s of 67,326 gal/yr/acre, a steady state leachate head h_s of 3.0 feet, and efficiency, E_s , of 95.2%.

The greater efficiency of, and lesser leakage through, the example liner under a single recharge event per year as compared to more frequent events is initially puzzling. One would expect that a higher head on the liner should produce more leakage through the clay. This discrepancy is resolved by c: lculating t1, the time needed for all leachate to slide down the liner to the drain. t_1 is 79.4 days for this case. (For this example, and all reasonably designed liner systems t_2 - the length of time necessary for the leachate slug to completely leak through the clay - is much greater than t_1 . Thus t_2 need not practically be considered.) After a recharge event the liner will have a leachate head on it for 79.4 days if no additional recharge events occur. For the first case in table 1 (1 event per year) this means there will be 79.4 days of leakage and 285.6 days of during which there will be no head on the liner. The leakage rate will change during the time the leachate is on the liner because the head and saturated length will be decreasing. But during the course of a year the liner will lose 21,138 gallons per acre to the underlying soil. Because this leakage actually occurs only over 79.4 days the instantaneous recharge rate will always be much higher than the yearly average.

For the second case (2 recharge events per year) again there exists a leachate head on the liner for 79.4 days after each event. Thus a head exists on the liner for 158.8 days per year. Since the head is always lower than that of the first case, the instantaneous leakage rate at any time will also be less. But because the leachate is on the liner for a greater amount of time more total leakage per year is observed.

If there are 8 or more recharge events per year (a return period of 46 days or less) there will always be a leachate head on the liner. When this is the case the more frequent the recharge the greater the leakage per year.

Table 1. Quasi-steady state vs. Steady State (Total yearly recharge volume held constant)

<pre># of rainfall events per year</pre>	L _g (gal/yr/acre)	E Gi (%)	h _g (feet)
1	21,138	98.5	14.4
2	24,775	98.3	7.2
4	32,047	97.7	3.6
8	48,360	96.6	3.1
16	57,872	95.9	3.0
32	62,689	95.6	3.0
64	64,883	95.4	3.0
365	66,320	95.2	2.9
730	66,523	95.2	2.9
3650	67,303	95.2	3.0
Steady State:	L _s =67,326	E _s =95.2	h _s =3.0

Landfill parameters

 $\begin{array}{l} k_{s} = 1 \ X \ 10^{-2} \ cm/sec = 1 \ X \ 10^{-4} \ meters/sec \\ k_{c} = 1 \ X \ 10^{-7} \ cm/sec = 1 \ X \ 10^{-9} \ meters/sec \\ d = 3 \ feet = 0.9144 \ meters \\ s_{o} = 150 \ feet = 45.92 \ meters \\ \Theta = 2\% = 1.14^{\circ} \\ \Phi = 0.3 \\ R = 52 \ inches/year = 1.32 \ m/year \end{array}$

18

*

IX. EFFICIENCY AND LEAKAGE AS MEASURES OF EFFECTIVENESS

It is very appealing to discuss the effectiveness of a liner in preventing leachate leakage in terms of its efficiency. However, this can be misleading. Equation 34 shows that for steady state the greater the rainfall R the greater the efficiency. This is because as the head on the liner increases the amount of water moving to the drain increases at a greater rate than the volume of water leaking through the clay. Table 2 shows for one steady state case how the efficiency, leakage, and head change as the recharge is varied. As recharge increases from 1 to 100 inches per year the liner's efficiency increases from 0% to 96.4%. However the leakage also increases from 27,152 to 99,114 gallons per year per acre.

The quasi-steady state case is different. Table 3 shows that the efficiency and the leakage amounts increase as the rainfall volume increases but the return period (t_r) remains constant.

To say that the liner is more efficient under greater recharge volumes is correct but is misleading in that the main purpose of a liner is to prevent leachate from entering the ground water. Thus the average yearly leakage rate is a better number by which to compare the effectiveness of two liners, or of one liner under differing recharge conditions.

Table 2. Steady State Case: Efficiency vs. Leakage (Increasing volume of recharge)

R (inches/year)	Es (%)	Ls (gal/yr/acre)	hs (feet)
1	0.0	27,152	0.0
5	73.3	36,200	0.2
10	85.4	39,512	0.5
25	92.7	49,445	1.4
50	95.1	66,002	2.9
100	96.4	99,114	5.8

Landfill Parameters

 $\begin{array}{l} k_{s} = 1 \ X \ 10^{-2} \ cm/sec = 1 \ X \ 10^{-4} \ m/sec \\ k_{c} = 1 \ X \ 10^{-7} \ cm/sec = 1 \ X \ 10^{-9} \ m/sec \\ d = 3 \ feet = 0.9144 \ meters \\ s_{o} = 150 \ feet = 45.72 \ meters \\ \Theta = 2 \ s = 1.14^{\circ} \\ \varphi = 0.3 \end{array}$

Table 3. Quasi-steady State: Efficiency vs. Leakage (Increasing volume of recharge)

R [*] (inches)	E (۶)	L _g (gal/yr/acre)	h _q (feet)
0.096	74.5	34,646	Ø.23
0.192	86.1	37,819	0.52
0.479	93.0	47,302	1.41
0.960	93.35	63,198	2.89
1.918	96.51	94,855	5.84

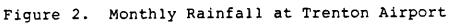
Landfill parameters

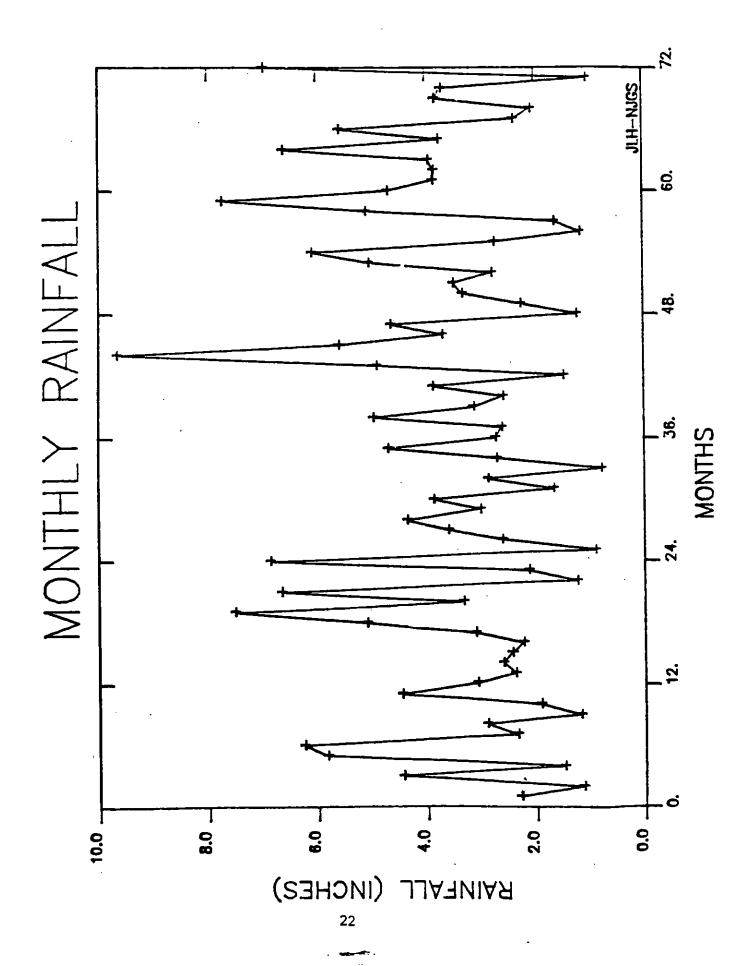
tr = 7 days ks = 1 X 10^{-2} cm/sec = 1 X 10^{-4} m/sec kc = 1 X 10^{-7} cm/sec = 1 X 10^{-9} m/sec d = 3 feet = 0.9144 meters So = 150 feet = 45.72 feet $\Theta = 2$ % = 1.14° $\varphi = 0.3$

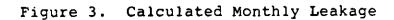
. .

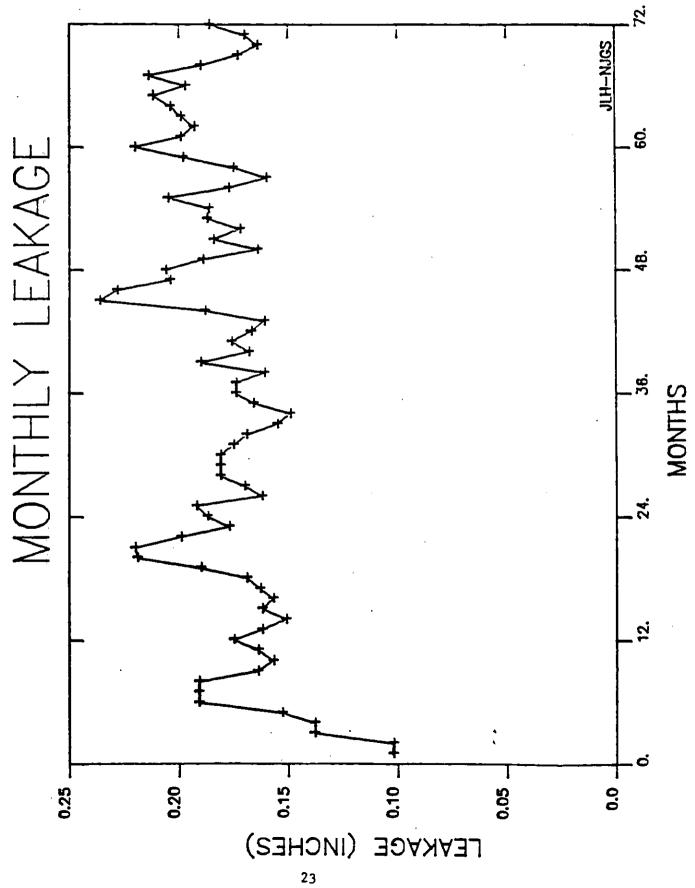
:

X. USE OF PRECIPITATION DATA WITH TRANSIENT STATE EQUATIONS


The use of rainfall data is harder to analytically describe than either the steady or quasi-steady state cases. The irregular amounts and timings of actual rainfall will create irregular recharge patterns which do not fit into one simple, analytic formula. A numerical technique is necessary.


The numerical technique used here is very simple. At an initial time an initial head is assumed to exist on the liner. This head is allowed to dissipate, sending leachate to the drain and through the liner. If the leachate head disappears before the next recharge event the leakage rate falls to zero. If a recharge event occurs before the head dissipates then the recharge volume is added to the remaining leachate lying on the liner and the total amount uniformally redistributed over the liner.


The total leakage is the integral of the leakage rate over the time that a head is actually on the liner. The equations governing the transient dissipation of a head on a liner (equations 7 and 11) are used to calculate the head and saturated length at any time after the last previous recharge event.


An example of the iterative transient state method is illustrated using five years of daily rainfall data from the Trenton, New Jersey airport. Calculations were performed using the FORTRAN program listed in Appendix C. Figure 2 displays monthly summaries of the rainfall data. The transient state numerical method was used to predict leakage through a landfill assumed to have an initial head of zero in January, 1968. The assumed physical parameters of the landfill are included on Table 4.

Leakage between each rainfall event was calculated using equation 16. The results were then summed by month for display purposes. Figure 3 shows the monthly leakage. Table 4 lists the computer output from the program. It is evident from the graphs and the summary that the leakage lags the rainfall. A rainfall peak or trough is followed the next month by a leakage peak or trough. Note that for figure 3 a leakage value of 0.1 inches is equivalent tr 43 gallons per acre.

- -

Table 4. Transient State Numerical Example: Program Output FILE: RAINLEAK OUTPUT A NEW JERSEY DEPARTMENT OF TRANSPORTATION - CMS

.

CATA INPUT:

ĸs	=	0.10E-01	CM/SEC
KC	Ξ	0.10E-06	CM / SEC
SO	z	150.	FEET
Ð	=	3.0	FEET
PORC	=	0.30	
SLUPE	=	2.00	4

CALCULATED PARAMETERS

THETA	=	0.200E-01
ĸ	=	U.250E-01
71	£	75.38 DAYS
Α	=	D.32E-03

NUMBER O	F DAYS	1	2189.
NUMBER O	F RAINFALL	EVENTS =	724
LEFT ON	LINER:		

HT = 2.790 FEET ST = 148.110 FEET

MASS BALANCE:

TOTAL RAIN	=	258.774	INCHES
	=	3234.030	CU. FT.
LEACHATE THROUGH LINER	=	12.803	INCI ES
	e '	160.758	CU. FT.
LEACHATE TO DRAIN	=	235.813	INCHES
	×	2947.071	CU. FT.
LEACHATE LEFT ON LINER	=	9.918	INCHES
	2	123.950	CU. FT.
ERROR	£	0.001	INCHES
- · · ·	=	2.251	CU. FT.
;			
RATN DRAIN LEAKA	ΩF		

MONTH	RAIN	DRAIN	LEAKAGE
1	2.290	0.419	0-102
2	1.150	U.715	0.102
3	4.440	1.490	0.138
4	1.490	1.724	C.138
5	5.840	1.980	0.153
6	6.26D	3.742	0.191
7	2.350	3.866	0.191

• •

lí

•••••

•

*

.

,

8	2.900	3.712	0.191
9	1.195	2.875	0.164
10	1.920	2.349	C.157
11	4.460	2.6L3	0.164
12	3.070	2.964	0.175
13	2.380	2.539	0.162
14	2.600	2.474	0.151
15	2.440	2.627	0.162
		2.342	
16	2.230		0.157
17	3.110	2.555	0.163
18	5.095	2.395	C•169
19	7.510	3.550	0.190
20	3.330	4.817	0.219
21	6.663	5.154	0.220
22	1. 250	4.298	0.199
23	2.130	3.244	0.177
	6.850	3.393	0.187
24		3.633	U .192
25	0.910		
26	2.610	2.882	0.162
27	3.690	2.780	0.170
28	4.350	3.399	0.181
29	3.010	3.218	C.181
30	3.870	3.343	0.181
31	1.670	2.984	U.175
32	2.870	2.855	0.169
	0.790	2.361	0+155
33			
34	2.710	2.063	0.149
35	4.700	2.762	0.166
36	2.730	2.874	0.174
37	2.610	2.980	0.174
38	4.960	2.726	0.161
39	3.130	3.597	0.190
40	2.593	3.375	0.168
41	3.880	2.983	0.176
42	1.480	2.814	0.167
43	4.900	2.432	0-161
		3.607	0.188
44	9.650		
45	5.590	5.837	0.236
46	3.700	5.245	0.228
47	4.640	4.331	0.204
48	1.240	4.270	0.206
49	2.260	3.503	0.189
50	3.330	2.901	0.164
51	3.500	3.318	0.184
52	2,790	2.946	0.172
	5.040	3.513	0.187
53		3.433	0.186
54	6.090		
55	2.740	4.266	0.205
56	1.170	3.316	0.177
57	1.640	2.523	G.160
58	5.090	2.991	0.175
59	7.740	3.971	0.198
60	4.690	4.712	C.220
	3.860	4.225	0.199
61		4.352	0.193
62	3.850	76372	V017J

63	3.950	4.001	0.199
64	6.610	4.451	0.204
65	3.760	4.433	0.212
60	5.580	4.010	0.197
67	2.38)	4.575	0.214
68	2.070	3.839	0.190
69	3.830	3.183	0.173
70	3.710	3.305	0.164
71	1.050	2.881	0+170
72	6.970	3.367	0.186

ì

XI. CONCLUSIONS

There are several ways to simplify the analysis of the quantity of leachate leaking through a landfill liner. The assumption that the flow is either in a steady, quasi-steady, or transient state allows the development of easily programmed equations. Analysis of these equations shows that as a means of comparative evaluation a landfill's liner efficiency is not as desirable a quantity as is its average leakage rate.

The analytical equations are simplifications of the real world case and a more accurate treatment can be made by using measured rainfall data and a numerical scheme. These numerical results provide an approximation to the volume of leachate which leaks from a landfill to the underlying soil.

The methods presented here allow a landfill designer to compare different liner parameters to determine which is more important, for example, comparing the effect on leakage volume of increasing slope vs. increasing the liner thickness vs. increasing the sand permeability. By doing this the designer can chose the most cost effective way to control leakage volume and meet any performance standards placed on the liner.

\$

XII. BIBLIOGRAPHY

- Wong, J. (1977). "The Design of a System for Collecting Leachate from a Lined Landfill Site." <u>Water Resources Research</u>, v. 13, no. 2, pp.404-410.
- Kmet, Peter, Quinn, Kenneth, and Slavik, Cynthia (1981). "Analysis of Design Parameters Affecting the Collection Efficiency of Clay Lined Landfills." In:Fourth Annual Madison Conference of Applied Research and Practice on Municipal and Industrial Waste, Department of Engineering and Applied Science, University of Wisconsin-Extension, Madison, WI.

APPENDIX A. VARIABLES

.

1i

variable	description/definition	units
a	k/t ₁	[l/T]
đ	clay liner thickness perpendicular to slope	[L]
Eq	quasi-steady state liner efficiency	[%]
^E s	steady state liner efficiency	{ % }
Et	transient state liner efficiency	[%]
h h _q	leachate head maximum quasi-steady state	[L]
h _s	head steady state head	[L] [L]
ho	initial transient state head	[L]
k k _c	S _o k _c /(dk _s tan0) clay liner hydraulic	[-]
k _s	conductivity sand blanket hydraulic	[L/T]
Ļa	conductivity quasi-steady state leakage	[L/T] [L/T]
	steady state leakage transient state leakage	[L/T] [L/T]
QD	volumetric flux rate to drain	[L ³ /T]
QL	volumetric flux rate through liner	[L ³ /T]
R R	steady state recharge quasi-steady state recharge	[L] [L]
S	saturated length parallel to slope	[L]
so	liner peak to trough distance	[L]
t _m tl	minimum of t_1 and t_2 So $\phi/(k_s \sin \theta)$	[T] [T]
$t_{\rm D}^2$	(1/a)ln(1+h _o cos0/d) volume of leachate inter-	[T]
17	cepted by liner and trans- mitted to drains volume of leachate which	[L ³]
V _L	leaks through liner original volume of leachate	[L ³]
v _o	on liner unit width	[L ³] [-]
6 6	slope of clay liner and sand blanket	[-]
φ	porosity of sand blanket	[-]

۰.

Appendix B. HP-41C Programs for Transient, Steady and Quasi-steady States

٠

∛I+LEE *76°	51 8	
	52 STO 22	101 È È
92 XEO "INIT"		102 RCL 22
e3 "Perosity?"	53 ROL 33	103 80%
04 FRONPT	54 j	
	55 ÷	104 ° GALZA(
65 570 66		165 ACA
86 THE? FEET	56 RCL 30	106 PEBUF
07 PROMPT	57 2	
	58 RCL 34	167 "T1 ="
68 STO 67	59 CHS	198 808
09+LEL *TSC*		189 RCL 71
10 GBY	66 1	118 365
11 ADY	61 +	
	62 *	111 -2
12 SF 12	63 RCL 33	112 ROX
13 * * T8 **		113 * YEARS
14 258	64 -	114 ACA
15 ADV	65 870 23	
	66+F31_29	115 PRESE
16 CF 12	67 NEQ MANST	116 ERP
17 XEG *CONV		
18 RCL 83	68-15	
. 19 RCL 07	65 RCCHP	
	70 * =*	
<u>2</u> 2 /	71 ACR	
21 RCL 15		
22 08	72 REL 06	
23 /	73 ACX	
	74 PREUF	
24 570 33	75 *H0 =*	
25 ROL 38	70 DC -	
26 CHS	76 ACA	
27 EtX	77 RCL 07	
	78 ACX	
28 STO 34	79 - FEET	
25-1	88 ACA	
30 ENTERT		
31 RCL 30	81 PRBUE	
32 1/X	82 ADV	
	83 ·E·	
₹ ² -	84 804	
3 1	• • • • •	
35 ENTER*	85 116	
36 RCL 34	86 ACCHR	
	87 • =•	
37 -	88 808	
38 *		
39 RCL 34	89 RCL 23	
4 0 +	90 130	
41 RCL 33	91 *	
	92 RCX	
42 1	93 37	
á" +		
44 *	94 ACCHR	
	95 PRBUF	
45 RCL 06	96 °L"	
45 +	97 ACA	
47 RCL 07		
48 +	98 :16	
49 ST0 21	99 ACCHR	
	108 * =	
50 328828.8	I	

ACRE.

30

.

51 RCL 15 52 -53 ROL 30 54 1 55 ÷ 56 / 57 CHS 58 RCL 13 59 ÷ 68 STO 24 61 119927512 62 * 63 578 25 64 RCE 15 65 RCL 18 66 / 67 683 68 1 69 ÷ 78 RCL 39 71-1 72 + 75 74 \$70 23 75+LBL 20 76 XEQ TANST 77 -8 =* 78 HCA 79 RCL 10 88 60% 81 * IN/YERP* 92 RCR 33 PROUF 84 - 8 = * 85 <u>90</u>9 86 RCL 10 87 27152.4 88 * 89 ACX 90 PRBUF 91 = 32 ACA 93 - GAL/YR/ACRE-94 ACA 95 PRBUE 96 ADV 97 *E* 98 ACA 99 115 100 ACCHR

101 * =* 102 GCB -185 RCL 23 94 194 185 🔺 186 868 107 37 108 ACCHR 169 PREUF 118 "L" 111 ACA · 112 115 113 ACCHR 114 = =" 115 eca 116 RCL 25 117 80% 118 PRBUF 115 * 122 809 121 "GAL/YR/ACRE" 122 ACA 123 PRBUF 124 -8-125 909 126 115 127 ACCHR 126 = 129 ACR 138 ROL 28 131 ACX 132 • FEET• 135 ACA 134 PREUF 135 APY 136 EHD

1

e1+181 -083-	51 ROL 34	101 ROL 37	151 RCL 09	201 BCF 251 113
02 XEQ: "INIT"	52 - 1 53 - 1 54 pri 74	182 3	152 /	202 RC: 84 202 NOVE
63 *POR05177?*	57 •	1 8 3 Ref. 68	153 STO 24	283 BOX 253 * =*
84 FROMPT	5: * 54 RGL 34 55 * 56 RGL 33 57 1 58 * 59 *	194 a		
65 STO 66	55 H	105 RCL 16	154 118927512 155 *	265 ACA 255 ROL
	56 REL 33	166-603	156 STO 25	260 HOH 062 PEDHE 256 60X
66 *R? INCRED*	57 5	197 /	105 310 40 Art rol tt	205 FREUF 257 * FE
WY FRUMPI	50 . 50 .	TAR CHE	157 RCL 33	207 "K ="
68 STO 6 3	22	199 571 17		200 HUH
69 "T-R? DAVS"	59 = 68 RCL 86	102 802 11	159 +	207 KUL 10
16 PROMPT	CH RUL HE	110 RUL 22	160 RCL 30	210 118927512 268 ADV
11 STO 09	62 ROL 28			211 x 201 MUT
42+181 *03SC*	. 62 RCL 23	112 +	162 1	212 ACY 252 KCL
12 07 19	63 💌	113-1	163 ENTERT	217 DEDIE 263 END
12 91 14	64 ROL 09	114 ENTERS	164 RCL 34	Disterna di Contra di Contra di Contra di Co
15 525 15 776	£5 /	115 ROL 34	107 301 07	
15 HEY	66 ATO 24	116 RCL 37	10J -	210 HLH
16 11 후 왕왕는 주 1	67 1199927512	117 #	155 4	215 RCA 216 *GRL/YR/ACRE* 217 RCA
17 FRA	62 RCL 28 63 * 64 RCL 09 65 7 66 STO 24 67 118927512 68 * 69 STO 25 76 RCL 33 71 1 72 +	11-	ib/ Kul do	217 BOR
18 6F 12	00 4 20 670 65	110	168 ROL 09	218 PRBUF
15 ADV	69 819 ZO	117 / 102 0TO 05	169 * 170 RCL 31	219 GFV
28+LEL 97	YE KUL SS	129 310 45	170 ROL 31	220 *E*
21 XII 110891	71 1	121 17%	171 /	221 DEC
22 ROL 17	72 ÷	122 ROL 83	17: -	202 (17
27 RUL 87	73 RCL 32 74 /	123 🔹 🕓	177 DC: 64	222 110 005 00000
	74 /	124 REL 16	170 ROL 00 177 s	ZZ: HUURA
24 /	75 1	125 666	172 - 173 ROL 06 174 * 175 ROL 20	224 * =*
25 570 19	76 801 73	194 /	175 RUL 20	225 RCA
26 RCL 31	76 RCL 34 77 -	107 076 77	176 *	226 RCL 23
27 RCL 69	51 T	101 010 00	177 REL 17	227 100
28 X(=Y?	78 \$	120 KUL 02 100 DOL 00	178 /	
29 GTO 18	79 RCL 33	129 RGL 67	179 370 23	229 ACM
30 RCL 17	88 -	130 *	180+LSL 05	238 * *
31 RCL 86	81 STO 23	131 1	181 XEQ "ANS"	
32 /	82 GTO 05	132 +	182 15	232 37
	83+LEL 10 84 1	133 RCL 34		
33 STO 20	84-1	134 *		233 ACCHR
34 17%	85 ENTER*	135.1	184 • =• 185 ACA 194 PM A4	234 FRBUF
35 RCL 8 3		136 -	185 ACR	235 L
36 *		137 RCL 30	100 KL., 60	236 RCR
37 RCL 16	87 RCL 31		187 ACX	237 113
38 COS	88 2	138 /	188 PRBUF	238 ACCHR
39 /	- 99	139 RCL 34	189 *R* =*	239 * =*
40 STO 33	90 STO 37	140 -	198 ACA	240 ACA
41 REL 30	91 RCL 32	141 1	191 RCL 08	
	92 RCL 89	142 +		241 RCL 25
42 CHS	93 *	143 RCL 33	192 ACX	242 RCX
43 E1X	94 CHS	144 1	193 - INCHES	243 PREUF
44 STO 34			194 ACA	244 • •
45 1	95 E1X	145 +	195 PRBUF	245 ACR
46 ENTERT	96 STD 34	146 *	196 -7-	246 GAL/YR/ACRE-
47 RCL 30	97 1	147 RCL 06	197 ACA	247 ACA
48 1/%	98 ENTERT	148 *	198 114	
	99 RCL 34	149 RCL 28	199 ACCHR	248 FRBUF
49 -	100 -	150 *		249 - H-
50 1			200 * =*	250 ALA

• ,

· ·

•

.

.

.

.

.

•

32

.

-

....

01+LBL -GHS-02+LBL 28 03 SCI 2 04 *KS =* **05 ACR** 86 RCL 01 87 ACX 08 - CH/SEC-. 09 RCA 10 PREUF 11 "KC =" 12 ACA 13 ROL 02 14 RCX 15 * CH/SE0* 16 ACA 17 PREUF 18 FIX 2 19 "DC =-28 ACA ---21 RCL 83 22 ACX 23 * FEET* 24 ACA 25 PRBUE 26 -58 =* 27 ACA 28 RCL 94 29 ACX 38 * FEET* 31 ACA 32 PRBUF 33 16 34 ACCHR 35 • = • 36 ACA 37 RCL 05 38 ACX 39 - -48 ACA 41 37 42 ACCHR 43 PRBUE 44+LEL 99 45 ETH 46 END

BI+LEL *INIT-82 *KS CR/SEC* **03 FRONPT** 64 STO 81 85 TKC CH/SECT 06 PROMPT 07 STO 02 88 - BC? FEET-**89 FROMPT** 10 STO 03 11 \$80? FEET* 12 PROMPT 13 STO 84 14 *SLOPE? ** 15 PROMPT 16 \$70.85 17 RTH 18 EHD .

01+LBL *CONV+ 62 RCL 01 83 2834.65 ÿ4 + 95 STO 14 66 RCL 82 07 2834.6 98 * 09 STO 15 18 RCL 85 11 166 12 Z 13 RTPN 14 STO 16 15 ROL 08 16 12 17 🕗 18 STO 17 19 RCL 84 29 RCL 03 21 / 22 RCL 83 23 × 24 RCL 01 25 7 26 RCL 16 27 TAN 28 / 29 STO 30 30 RCL 84 31 RCL 14 32 / 33 RCL 06 34 * 35 RCL 16 36 SIN 37 / 38 STO 31 39 1/X 40 RCL 30 41 * 42 ST0 32 43 RTH 44 END

** TS **

 KS = 1.00-01 CM/SEC
 KC = 1.00-07 CM/SEC
 DC = 3.00 FEET
 S0 = 150.00 FEET
 0 = 1.00 %

 * = 0.00
 H0 = 5.00 FEET
 Et = 90.02%

Lt = 9,783.98 GAL/ACRE

T1 = 0.22 YEARS

• •

.

* 88 *

XB = 1.00-02 CM/SEC KC = 1.00-07 CM/SEC DC = 3.00 FEET S0 = 150.00 FEET 0 = 2.00 % R = 52.00 IN/YEAR R = 1.411.524.00 GAL/YR/ACRE Es = 95.23%

Ls = 67,326.74 GAL/YR/ACRE Hs = 2.99 FEET

* QSS * KS = 1.00-02 CM/SEC KC = 1.00-07 CM/SEC DC = 3.00 FEET SE = 150.00 FEET 0 = 2.00 % 4 = 0.30 R* = 52.00 INCHES Tr = 365.00 DAYS R = 1,411.924.80 GAL/YR/ACRE Eq = 92.50 % Lq = 21,138.84 GAL/YR/ACRE Hq = 14.44 FEET

•

Appendix C. FORTRAN Program for Iterative Transient State with •••

Sample Data FILE: RAINLEAK FORTRAN A NEW JERSEY DEPARTMENT OF TRANSPORTATION - CMS

۵			RA100010
			RAICOO2D
C			PAI00030
Ç			RA100040
C C C			RA100050
C	RA	INLEAK	RA100060
C C C			RA100070
С	THIS PROGRA	AM COMPUTES THE LEAKAGE THROUGH A LANDFILL LINER	
С	BASED ON T	HE LINER'S PHYSICAL CHARACTERISTICS AND MEASURED	RA100080
Ċ.	RAINFALL D	ATES AND AMOUNTS. ALL OF THE RAIN IS ASSUMED 10	RA100090
r r	INETI TRATE	INTO THE LANDFILL AND IMPINGE ON THE LINER.	RA100100
č			P & ICO110
			RA100120
	DEEEDENCE		RA100130
L c	REFERENCE:	EACHAGE FLUX EQUATIONS	RA100140
L.	LANUFILL L	HOLEMAN LENICO CECHOLICI	RA100150
C	JEFFREY L.	HOFFMAN, SENICE GEOLOGIST	PAI00160
C	NEW JERSEY	GEOLOGICAL SURVEY	RA100170
C			RAIGO180
С		·	RAI00190
C			PA100200
С		·	
С			RA100210
С	VARIABLES	MEANING	RA100220
		~~~ * * * * * *	RA100230
Č			RA100240
Ē	A	= K/T1 (1/DAYS)	FA100250
C C	ζo	= COSINE(THETA)	RA100260
č	D	THICKNESS OF CLAY LAYER PERPENDICULAT TO SLOPE (FEET)	RA100270
	DDMMYY	DAY, MONTH, YEAR OF RAINFALL EVENT (FORMAT = 312)	RAI002 80
	DNEW	DAY OF RAINFALL OF PREVIOUS LOOP	RAI00290
Ľ		DAY OF RAINFALL OF PREVIOUS LOOP	RA100300
L A	DOLD	= 1 + D/(HO + CO)  (DIMENSIONLESS)	<b>FAID0310</b>
C	DTERM	· · · · · · · · · · · · · · · · · · ·	RA100320
C	EX		P.A 100330
0000000000	EXTERM		RA100340
C	Fl		RA100350
C		OLD MONTH	RAID( 360
C	F2	= DNEW/T ==> DAYS BEWTEEN RAINS IN NEW MONTH	RAI0/370
C	HT	SATURATED HEAD PERPENDICULAR TO SLOPE AT END OF DRY	PA100380
C		PERIOD (FEET)	
C	HO	SATURAGED HEAD PERPENDICULAT TO SLOPE JUST AFTER	RA100390
С		RAINFALL EVENT (FEET)	RA100400
с <u>с с с</u> с с	I	DO LOOP PARAMETER	<b>FAI00410</b>
č	Ī4	± 4	PA100420
č	ĸ	= SO*KC/(D*KS*ATAN (THETA)) (DIMENSIONLESS)	RA100430
č	ĸc	CLAY LINER PERMEABILITY (FEET/DAY)	<u>RA100440</u>
č	KČCMS	CLAY LINER PERMEABILITY (CENTIMETERS/SECOND)	RAIOC 150
		SAND BLANKET PERMEABILITY (FEET/DAY)	RAI00460
C	KS	SAND BLANKET PERMEABILITY (CENTIMETERS/SECOND)	RA100470
C	KSCMS	TOTAL NUMBER OF MONTHS SINCE SIMULATION BEGAN	RA100480
С С	MKNT	INTER NUMBER OF BOUILD STUCE STUCEALING PROVIDE	RAI00490
Č	PKNTM1	# MKNT -1 Month of Rainfall event of current loop	PA100500
Č C	MN Ew	NUMBER OF DAYS IN EACH MONTH (IGNORING LEAP YEARS)	
C	MNTH(12)	NUMBER OF DATAEALL EVENT OF DEVIOUS LOOD	RA100520
C C	MOLD	MONTH OF RAINFALL EVENT OF PREVIOUS LOOP	RAI00530
C	NCCUNT	COUNTER FOR NUMBER OF RAINFALL EVENTS	
С	PURD	POROSITY OF SAND BLANKET (DIMENSIONLESS)	RA100540
С	RAIN	RAIN AMOUNT OF PREVIOUS LCOP (FEET)	PA100550

•

C	RCUM	CUMMULATIVE RAINFALL (INCHES) RAIN AMOUNT OF CURRENT LOOP (INCHES) KAIN AMOUNT OF PREVIOUS LOOP (INCHES)	RA100560
С	RINNE	RAIN AMOUNT OF CURRENT LOOP (INCHES)	RA100570
	RINGLD	KAIN AMBUNT DE PREVIDUS LOOP (INCHES)	RA100580
ř	SI	SINE(THETA)	PAID059C
C C	SLOPE	SLOPE OF LINER (%)	PA100600
č	ST	SATURATED LENGTH PARALLEL TO SLOPE JUST BEFORE NEXT	RA100610
č	51	RAINFALL EVENT (FEET)	RA100620
r r	SO	LINER PEAK TO TROUGH DISTANCE PARALLEL TO SLOPE (FEET)	
	T	TIME BETWEEN PREVIOUS RAINFALL EVENT AND EVENT OF	RA100640
د م	1	CURRENT LOOP (DAYS)	FA100650
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TCUM	COUNTER FOR TOTAL NUMBER OF DAYS IN SIMULATION	RA100660
	THETA	COUNTER FOR TOTAL NUMBER OF DATS IN SIMOERTION	RA100670
C .		NTNITHIN OF TI AND TO (DAYS)	RA100680
C C	TM	MINIMUM OF T1 AND T2 (DAYS) = SO*PORO/(KS*S1) ==> NUMBER OF DAYS A HEAD CAN STAY	
Ĺ	T1	= SUFFURU/(KSFS[) ==> NUMBER OF DATS A HEAD CAN STAT	RAIC0700
C		ON LINER BEFORE SLIDING OFF TO DRAIN	
C	T 2	= (ALOG(1 + HO*CO/D))/A ==> NUMBER DF DAYS A HEAD CAN	RA100710
C		STAY ON LINEP BEFORE LEAKING THROUGH	EAI00720 RA100730
C	VD	LEAKAGE TO DRAIN (FEEL)	
C		LEAKAGE TO DEAIN (INCHES)	RAIC0740
С	VDSUM (	CUMMULATIVE LEAKAGE TO DRAIN (FEET)	FA100750
	VL	STAY ON LINEP BEFORE LEAKING THROUGH LEAKAGE TO DRAIN (FEET) LEAKAGE TO DRAIN (INCHES) CUMMULATIVE LEAKAGE TO DRAIN (FEET) LEAKAGE THROUGH LINER (FEET) LEACHATE LEFT ON LINER (INCHES)	PA100760
C	VLEFIN	LEACHATE LEFT ON LINER (INCHES) LEACHATE LEFT ON LINER (CUBIC FEET) LEAKAGE THROUGH LINER (INCHES) CUMMULATIVE LEAKAGE THROUGH LINER (FEET) CUMMULATIVE MASS ERPOR (CUBIC FEET) CUMMULATIVE MASS ERROR (INCHES) CUMMULATIVE RAINFALL (CUBIC FEET)	RA100770
C	VLEFT	LEACHATE LEFT ON LINER (CUBIC FEET)	KA100780
C	VLINCH	LEAKAGE THROUGH LINER (INCHES)	PAI00790
C	VLSUM	CUMMULATIVE LEAKAGE THROUGH LINER (FEET)	RA100800
C	VRES	CUMMULATIVE MASS ERPOR (CUBIC FEET)	FA100810
C	VEESIN	CUMMULATIVE MASS ERROR (INCHES)	RA100820
С	VRSUM		
C	VO	VOLUME OF LEACHATE ON LINER JUST BEFORE A RAINFALL	RAID0840
C		EVENT (CUBIC FEET)	RAIGU85D
С	YNEW	YEAR OF RAINFALL EVENT OF CURRENT LOOP	RA100860
č	YGLD	YEAR OF RAINFALL EVENT OF CURRENT LOOP YEAR OF RAINFALL EVENT OF PREVIOUS LOOP	R A IDO 870
č	ZZ(75,6)	RUNIELI JOWANIEJ	RAI00880
č		CCL. 1: RAIN (INCHES)	P.A100890
Č		CCL. 2: LEACHATE TO DRAIN (INCHES)	RA100900
Č		COL. 3: LEAKAGE THROUGH LINER (INCHES)	R A 100910
			RAI00920
С С			RA100930
č			R 4 I 00 940
č			RA100950
			RA100960
C C	DATA	INPUT	RA100970
č	• • • •		RA100980
C C	CARD	VARIABLE	RAI00990
ř			RAI01000
ř			<b>RAI01010</b>
Č	1	K SCM S	RA101020
	2	KCCMS	PAI01030
Č	3	SO	RAI01040
Ċ	э 6		RAI01050
c c	4 5	PORO	RAI01060
r	6	SLOPE	RAI01070
c c	ь 7+	DDMMYY, RAIN	RAI01080
	1 4	Montes de la conserve	FA101090
L C			FAI01100
L			

. .

.

FILE: RAINLEAK FORTRAN, A NEW JERSEY DEPARTMENT OF TRANSPORTATION - CMS

· · · · ·

-			PAI01110
С			
С	UhIT	DEFINITIONS	RA101120
С	1		R4101130
C	UNIT	DEFINITION	<b>RAIŬ1140</b>
C			RA101150
C			RA 101160
С	5	DATA INPUT	RAT01170
C	6	FULL NUMERIC OUTPUT	RAIG118D
C	7	DATA FOR GRAPHICAL USE	RA101190
С			PA101200
С			PA101210
С	_		RA101220
С	-		RA101230
С			RA101240
C			PAI01250
	INT _i e G	ER DOLD, MOLD, YCLC, DNEW, MNEW, YNEW	RA101250
	REAL	KS, KSCMS, KC, KCCMS, K, THETA, T1, T2, A, HD	FA101270
		ER MNTH(12)/31,28,31,30,31,30,31,31,30,31,30,31,30,31/	RA101280
	REAL	ZZ(75,6)/450+0.0/	RAI01290
C-			RAI01300
C			RAI01310 PAI01320
C.		READ IN INPUT DATA AND OUTPUT IT	FA101320
		(5,4) KSCMS	PA101340
		(5,*) KCCMS	RAI01350
		(5,*) SO	PAI01360
		(5,*) D	RA101370
		(5,*) PORD	RA101380
		<pre>(5, ≠) SLOPE (6, 602) KSCMS,KCCMS,S0,C,PORC,SLOPE</pre>	RAI01390
r		COMPUTE PARAMETERS	RAI01400
Ļe		335. + KSCMS	RAI01410
		335.**KCCMS	RAI01420
		A = ATAN(SLOPE/100.)	RAI01430
		COS(THETA)	FAIG1440
		SIN(THETA)	RA101450
		SO*KC/(D*K S*A TAN (THETA))	FA10146D
		SO*PORO/(KS*SI)	<b>FAI01470</b>
	A = )		RAI01480
		E (6,603) THETA, K, T1, A	FA101490
۲.		INITIALIZE SUMMATION VARIABLES	RAI01500
		VT = U	RAI01510
	HT =		RAI01520
	ST =		RAI01530
	-	M = 0.0	RAI01540
		$\mathbf{M} = \mathbf{O}_{\bullet}\mathbf{O}_{\bullet}$	RA 101 550
	+ -	= 0.0	FA101560
	TCUM	= 0.0	RAI01570
	MKNT		RA101580
С.		••• KEAD FIRST RAINFALL DATE AND MAGNITUDE	RA101590
	READ	(5,501) DOLD, MOLD, YOLD, RINOLD	RAI01600
		,1) = RINGLD	RA101610
C			RAI01620
		LOOP	RAI01630
C	•		RAID1640
C .		•••READ NEW DATE AND RAIN	RA101650

.

•

-

•

. .

10 READ (5,501,END=60) DNEW, MNEW, YNEW, RINNEW	F 4 10 1 6 60
NCCUNT = NCCUNT + 1	PA101670
CONDUTE INTERVAL DETUEEN DATHEND EVENTS (T)	
C COMPUTE INTERVAL BETWEEN RAINFALL EVENTS (T)	PAI01690
IF (MULD .NE. MNEW) GO TO 20	RA101700
T = DNEW - DOLD	FA101710
GO TO 3D	
20 T = MNTH(MOLD) - DOLD + DNEW IF ((MOLD .EQ. 2) .AND. (MOD(YNEW,4) .EQ. 0)) T = T+1	RA101720
	RAI01730
MKNT = MKNT + 1	RAI01740
CACCUMULATE VARIABLES JUST READ IN	RA 101750
$30 ZZ(MKNT_{1}) = ZZ(MKNT_{1}) + RINNEW$	FA101760
TCUM = TCUM + T	RA101770
RCUM = RCUM + RINNEW	RAI01780
CCOMPUTE TERMS IN SOLUTION	<u>8 4101790</u>
RAIN = RINOLD/12.	<b>RAI01800</b>
HO = HT + ST / SO + RAIN / PORC	RA101810
T2 = (ALDG(1 + HO CO/D))/A	FAI01820
TM = AMINI(T1, T2, T)	RAI01830
VU = PORD+HT+ST+CO + RAIN+SO+CO	<b>RAIG1840</b>
EX = EXP(-A + TM)	RAI01850
DTERM = 1 + D/(H0+C0)	RAIC1860
EXTERM = 1 - EX	RA101870
	RAI01880
	RA101890
VD = VO+{DTERM+EXTERM/K - D+TM/(HO+CC+T1)}	RA101900
VL = VO * DTERM * (EXTERM * (1-1/K) + EX * TM/T1)	RAI01900
VDINCH = 12 * VC/(SO*CO)	+
$VLINCH = 12 \cdot * VL/(SO * CO)$	RA101920
VDSUM = VDSUM + VD	RAI01930
VLSUM = VLSUM + VL	RAI01940
IF (MOLD .NE. MNEW) GD TO 40	RAI01950
ZZ(MKNT+2) = ZZ(MKNT+2) + VDINCH	RAI01560
ZZ(MKNT,3) = ZZ(MKNT,3) + VLINCH	PAI01970
GO TO 50	RAI01980
40  MKNTM1 = MKNT - 1	RAI01990
F1 = (MNTH(MOLD) - DOLC)/T	RA102000
$c_2 = DNEW/T$	PAIU2010
ZZ(MKNTM1,2) = ZZ(MKNTM1,2) + F1*VDINCH	P.AI02020
ZZ(MKNT,2) = ZZ(MKNT,2) + F2 + VDINCH	<b>RA102030</b>
ZZ(MKNTM1,3) = ZZ(MKNTM1,3) + F1*VLINCH	RA102040
ZZ(MKNT,3) = ZZ(MKNT,3) + F2 + VLINCH	R A 10 20 50
50 CONTINUE	RA102060
HT = HO + (EX+DTERM - D/(HO+CG))	<b>FA102070</b>
ST = SO + (1 - TM/T1)	RAI02080
CPEASSIGN HOLDING VALUES	PA102090
JGLD = DNEW	RAIDZIDC
MOLD = MNEW	RA 102110
YOLD = YNEW	RA102120
RINOLD = RINNEW	RA102130
CRINDLD = RINNEW CREAD IN NEXT EVENT	RAIDZ14U
•	RA102150
GO TO 10	FA102150
60 CONTINUE	RA102170
	PAI02180
C>END OF RAIN LOOP	PAI02180 PAI02190
	RA102190
CMASS BALANCE	NHIU22UU

*

VESUM = (RCUM/12.)*SO*CO	FA102210
VLINCH = 12.+VLSUM/(SO*CO)	FA102220
VDINCH = 12.*VDSUH/(SO*CO)	FA102230
VLEFT = PORC+HT+ST+CO	RA102240
VLEFIN = 12. #VLEFT/(SO*CC)	RAI02250
VRES = VRSUM - (VDSUM + VLSUM + VLEFT)	RA102260
$VRESIN = VRES /(12. \pm SO \pm CO)$	RA102270
C C DUTFUT RESULTS	RA102280
WRITE (6,609) TOUM, NOGUNT	RA102290
- WRITE (6,610) HT, ST	RA102300
WRITE (6,611) ROUM, VRSUM, VLINCH, VLSUM, VDINCH, VDSUM,	
۵ VLEFIN, VLEFT, VRESIN, VRES	FAIU232C
$\mathbf{I4} = 4$	RA102330
WRITE (6,512)	<b>FAID2340</b>
WRITE (7,+) MKNT, 14	RA102350
DD 70 I = 1, MKNT	RA102360
WRITE (7,702) I, ZZ(I,1), ZZ(I,2), ZZ(I,3)	PA102370
WRITE (6,702) I, ZZ(I,1), ZZ(I,2), ZZ(I,3)	PA102380
70 CONTINUE	RAI02390 RAI02400
CFDRMATS 501 FORMAT (312+2X+F10+3)	FA102400
602 FORMAT (2X, "DATA INPUT:",/	RA102420
$\frac{1}{5} \frac{1}{5} \frac{1}$	FAI02420
$\epsilon /5x.1KC = 1.59.2.1 CM/SEC1.$	RA102440
$\epsilon /5x.150 = 1.69.0.1 FEET.$	RAI0245D
$\& /5X \cdot D = * \cdot F9 \cdot 1 \cdot * FEET' \cdot$	FA102460
<pre>&amp; /5X,'KS = ',E9.2,'CM/SEC', &amp; /5X,'KC = ',E9.2,'CM/SEC', &amp; /5X,'SO = ',F9.D,'FEET', &amp; /5X,'D = ',F9.1,'FEET', &amp; /5X,'PDRD = ',F9.2,</pre>	RA102470
£ /5X, SLOPE = 1, F9.2, 1 21)	RAI02480
603 FORMAT (//2X, CALCULATED PARAMETERS!,/	RA102490
&/5X; [#] THETA = *;E9.3;	RAI02500
6/5X, 'K = ',E9.3,	R 4 10 25 10
$\xi/5X_{+}^{+}T1 = *_{+}F9_{+}2_{+}^{+} DAYS^{+}_{+}$	PA102520
ε/5X,∦A = ⁴,E9.2///)	RA102530
604 FORMAT (7(2X, F8.3))	RA102540
609 FORMAT (/5X "NUMBER OF CAYS = ",F10.).	RA102550
E /5X *NUMBER OF RAINFALL EVENTS = *,110}	RA102560
610 FORMAT (/5X, LEFT ON LINER: ',	RAI02570
$\epsilon/10X$ , HT = ', F10.3,' FEET',	RAIC2580
&/lox,*ST = *,Fl0.3,* FEET*) 611 FORMAT {///5x,*MASS BALANCE:*,	RA102590 PAIG2600
$\frac{1}{10^{2}}$	RA102610
$\epsilon / 10 \hat{x}_1^* = \frac{1}{2} F 10 \cdot 3 \cdot 10 F 1 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 $	PAI02620
<pre>&amp;//lux,'LEACHATE THROUGH LINER = ',Flo.3,' INCHES',</pre>	RA102630
$\epsilon / 10 X_{3}^{*}$ = $^{*}_{*}F10_{*}3_{*}^{*}$ CU _* FT _* [*]	FA102640
E//IDX, 'LEACHATE TO DRAIN = ',FID.3,' INCHES',	FA102650
$\epsilon / 10X_{1}^{*}$ = ",F10.3," CU. FT.",	RA102660
6//10X, LEACHATE LEFT ON LINER = ', F10.3, ' INCHES',	FA102670
$\pounds /10X_{7}$ = ',F10.3,' CU. FT.',	RAI02680
6//10%, 'ERROR = ', F10.3, ' INCHES',	RA102690
$\epsilon / 10X$ , = ', F10.3, CU. FT.')	RA102700
612 FORMAT (//2X,'MONTH', 4X, "RAIN', 5X, 'DRAIN', 3X, 'LEAKAGE')	RA102710
701 FORMAT (312+7(2×+F8+3))	RA102720
702 FCRMÅT (15, 7(2X, F8+3))	RA102730
C	RA102740
999 STOP	RAI02750

39

. . . .

·

END

5A102760

. .

· · · · • •

17

-

0.01					
0.0000001					
150.					
3.					
0.3					
2.0					
3 168 3	0.070				
4 168	0.010				
6 168.	0.150				
14 168	1.740				
23 168	0.180				
28 168	0.010				
29 168	0.040				
30 1 68	0.090				
2 268	0.520				
10 268	0.030				
29 268	0.600				
1 368	0.100				
5 368	0.010				
10 368	0.100				
12 368	1.800				
13 368	0.450				
17 368	0.640				
18 368	0.760				
23 368	0.560				
29 368	0.020				
1 468	0.080				
4 468	0.010				
5 468	0.020				
8 468	0.060				
22 468	0.010 1.210				
24 468	0.010		•		
27 468 30 468	= <b>0.0</b> 90				
1 568	0.010				
2 568	0.010				
3 568	0.030				
4 568	0.010				
5 568	0.020				
6 568	0.030	-			
11 568	0.780				
12 568	0.090				
16 568	0.620				
18 568	0.040				
19 568	0.260				
23 568	0.380				
24 568	0.190	•			
27 568	<b>U.070</b>			•	
28 568	0.850				
25 568	2.320				
30 568	0.130				
2 668	0.020				
11 668	0.310				
12 668	4.420				
13 668	0.010				